mirror of https://gitee.com/openkylin/linux.git
1724 lines
49 KiB
C
1724 lines
49 KiB
C
/*
|
|
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
|
|
* Copyright (C) 2010 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trace.h"
|
|
|
|
kmem_zone_t *xfs_trans_zone;
|
|
kmem_zone_t *xfs_log_item_desc_zone;
|
|
|
|
/*
|
|
* A buffer has a format structure overhead in the log in addition
|
|
* to the data, so we need to take this into account when reserving
|
|
* space in a transaction for a buffer. Round the space required up
|
|
* to a multiple of 128 bytes so that we don't change the historical
|
|
* reservation that has been used for this overhead.
|
|
*/
|
|
STATIC uint
|
|
xfs_buf_log_overhead(void)
|
|
{
|
|
return round_up(sizeof(struct xlog_op_header) +
|
|
sizeof(struct xfs_buf_log_format), 128);
|
|
}
|
|
|
|
/*
|
|
* Calculate out transaction log reservation per item in bytes.
|
|
*
|
|
* The nbufs argument is used to indicate the number of items that
|
|
* will be changed in a transaction. size is used to tell how many
|
|
* bytes should be reserved per item.
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_buf_res(
|
|
uint nbufs,
|
|
uint size)
|
|
{
|
|
return nbufs * (size + xfs_buf_log_overhead());
|
|
}
|
|
|
|
/*
|
|
* Various log reservation values.
|
|
*
|
|
* These are based on the size of the file system block because that is what
|
|
* most transactions manipulate. Each adds in an additional 128 bytes per
|
|
* item logged to try to account for the overhead of the transaction mechanism.
|
|
*
|
|
* Note: Most of the reservations underestimate the number of allocation
|
|
* groups into which they could free extents in the xfs_bmap_finish() call.
|
|
* This is because the number in the worst case is quite high and quite
|
|
* unusual. In order to fix this we need to change xfs_bmap_finish() to free
|
|
* extents in only a single AG at a time. This will require changes to the
|
|
* EFI code as well, however, so that the EFI for the extents not freed is
|
|
* logged again in each transaction. See SGI PV #261917.
|
|
*
|
|
* Reservation functions here avoid a huge stack in xfs_trans_init due to
|
|
* register overflow from temporaries in the calculations.
|
|
*/
|
|
|
|
|
|
/*
|
|
* In a write transaction we can allocate a maximum of 2
|
|
* extents. This gives:
|
|
* the inode getting the new extents: inode size
|
|
* the inode's bmap btree: max depth * block size
|
|
* the agfs of the ags from which the extents are allocated: 2 * sector
|
|
* the superblock free block counter: sector size
|
|
* the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
|
|
* And the bmap_finish transaction can free bmap blocks in a join:
|
|
* the agfs of the ags containing the blocks: 2 * sector size
|
|
* the agfls of the ags containing the blocks: 2 * sector size
|
|
* the super block free block counter: sector size
|
|
* the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_write_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* In truncating a file we free up to two extents at once. We can modify:
|
|
* the inode being truncated: inode size
|
|
* the inode's bmap btree: (max depth + 1) * block size
|
|
* And the bmap_finish transaction can free the blocks and bmap blocks:
|
|
* the agf for each of the ags: 4 * sector size
|
|
* the agfl for each of the ags: 4 * sector size
|
|
* the super block to reflect the freed blocks: sector size
|
|
* worst case split in allocation btrees per extent assuming 4 extents:
|
|
* 4 exts * 2 trees * (2 * max depth - 1) * block size
|
|
* the inode btree: max depth * blocksize
|
|
* the allocation btrees: 2 trees * (max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_itruncate_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1,
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(5, 0) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
|
|
mp->m_in_maxlevels, 0)));
|
|
}
|
|
|
|
/*
|
|
* In renaming a files we can modify:
|
|
* the four inodes involved: 4 * inode size
|
|
* the two directory btrees: 2 * (max depth + v2) * dir block size
|
|
* the two directory bmap btrees: 2 * max depth * block size
|
|
* And the bmap_finish transaction can free dir and bmap blocks (two sets
|
|
* of bmap blocks) giving:
|
|
* the agf for the ags in which the blocks live: 3 * sector size
|
|
* the agfl for the ags in which the blocks live: 3 * sector size
|
|
* the superblock for the free block count: sector size
|
|
* the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_rename_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* For creating a link to an inode:
|
|
* the parent directory inode: inode size
|
|
* the linked inode: inode size
|
|
* the directory btree could split: (max depth + v2) * dir block size
|
|
* the directory bmap btree could join or split: (max depth + v2) * blocksize
|
|
* And the bmap_finish transaction can free some bmap blocks giving:
|
|
* the agf for the ag in which the blocks live: sector size
|
|
* the agfl for the ag in which the blocks live: sector size
|
|
* the superblock for the free block count: sector size
|
|
* the allocation btrees: 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_link_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* For removing a directory entry we can modify:
|
|
* the parent directory inode: inode size
|
|
* the removed inode: inode size
|
|
* the directory btree could join: (max depth + v2) * dir block size
|
|
* the directory bmap btree could join or split: (max depth + v2) * blocksize
|
|
* And the bmap_finish transaction can free the dir and bmap blocks giving:
|
|
* the agf for the ag in which the blocks live: 2 * sector size
|
|
* the agfl for the ag in which the blocks live: 2 * sector size
|
|
* the superblock for the free block count: sector size
|
|
* the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_remove_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* For create, break it in to the two cases that the transaction
|
|
* covers. We start with the modify case - allocation done by modification
|
|
* of the state of existing inodes - and the allocation case.
|
|
*/
|
|
|
|
/*
|
|
* For create we can modify:
|
|
* the parent directory inode: inode size
|
|
* the new inode: inode size
|
|
* the inode btree entry: block size
|
|
* the superblock for the nlink flag: sector size
|
|
* the directory btree: (max depth + v2) * dir block size
|
|
* the directory inode's bmap btree: (max depth + v2) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_create_resv_modify(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
|
|
(uint)XFS_FSB_TO_B(mp, 1) +
|
|
xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* For create we can allocate some inodes giving:
|
|
* the agi and agf of the ag getting the new inodes: 2 * sectorsize
|
|
* the superblock for the nlink flag: sector size
|
|
* the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
|
|
* the inode btree: max depth * blocksize
|
|
* the allocation btrees: 2 trees * (max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_create_resv_alloc(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
|
|
mp->m_sb.sb_sectsize +
|
|
xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp), XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(mp->m_in_maxlevels, XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
STATIC uint
|
|
__xfs_calc_create_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX(xfs_calc_create_resv_alloc(mp),
|
|
xfs_calc_create_resv_modify(mp));
|
|
}
|
|
|
|
/*
|
|
* For icreate we can allocate some inodes giving:
|
|
* the agi and agf of the ag getting the new inodes: 2 * sectorsize
|
|
* the superblock for the nlink flag: sector size
|
|
* the inode btree: max depth * blocksize
|
|
* the allocation btrees: 2 trees * (max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_icreate_resv_alloc(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
|
|
mp->m_sb.sb_sectsize +
|
|
xfs_calc_buf_res(mp->m_in_maxlevels, XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
STATIC uint
|
|
xfs_calc_icreate_reservation(xfs_mount_t *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX(xfs_calc_icreate_resv_alloc(mp),
|
|
xfs_calc_create_resv_modify(mp));
|
|
}
|
|
|
|
STATIC uint
|
|
xfs_calc_create_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (xfs_sb_version_hascrc(&mp->m_sb))
|
|
return xfs_calc_icreate_reservation(mp);
|
|
return __xfs_calc_create_reservation(mp);
|
|
|
|
}
|
|
|
|
/*
|
|
* Making a new directory is the same as creating a new file.
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_mkdir_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_create_reservation(mp);
|
|
}
|
|
|
|
|
|
/*
|
|
* Making a new symplink is the same as creating a new file, but
|
|
* with the added blocks for remote symlink data which can be up to 1kB in
|
|
* length (MAXPATHLEN).
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_symlink_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_create_reservation(mp) +
|
|
xfs_calc_buf_res(1, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* In freeing an inode we can modify:
|
|
* the inode being freed: inode size
|
|
* the super block free inode counter: sector size
|
|
* the agi hash list and counters: sector size
|
|
* the inode btree entry: block size
|
|
* the on disk inode before ours in the agi hash list: inode cluster size
|
|
* the inode btree: max depth * blocksize
|
|
* the allocation btrees: 2 trees * (max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_ifree_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
|
|
MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
|
|
XFS_INODE_CLUSTER_SIZE(mp)) +
|
|
xfs_calc_buf_res(1, 0) +
|
|
xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
|
|
mp->m_in_maxlevels, 0) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* When only changing the inode we log the inode and possibly the superblock
|
|
* We also add a bit of slop for the transaction stuff.
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_ichange_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
mp->m_sb.sb_inodesize +
|
|
mp->m_sb.sb_sectsize +
|
|
512;
|
|
|
|
}
|
|
|
|
/*
|
|
* Growing the data section of the filesystem.
|
|
* superblock
|
|
* agi and agf
|
|
* allocation btrees
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_growdata_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* Growing the rt section of the filesystem.
|
|
* In the first set of transactions (ALLOC) we allocate space to the
|
|
* bitmap or summary files.
|
|
* superblock: sector size
|
|
* agf of the ag from which the extent is allocated: sector size
|
|
* bmap btree for bitmap/summary inode: max depth * blocksize
|
|
* bitmap/summary inode: inode size
|
|
* allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_growrtalloc_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* Growing the rt section of the filesystem.
|
|
* In the second set of transactions (ZERO) we zero the new metadata blocks.
|
|
* one bitmap/summary block: blocksize
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_growrtzero_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
|
|
}
|
|
|
|
/*
|
|
* Growing the rt section of the filesystem.
|
|
* In the third set of transactions (FREE) we update metadata without
|
|
* allocating any new blocks.
|
|
* superblock: sector size
|
|
* bitmap inode: inode size
|
|
* summary inode: inode size
|
|
* one bitmap block: blocksize
|
|
* summary blocks: new summary size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_growrtfree_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
|
|
xfs_calc_buf_res(1, mp->m_rsumsize);
|
|
}
|
|
|
|
/*
|
|
* Logging the inode modification timestamp on a synchronous write.
|
|
* inode
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_swrite_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
|
|
}
|
|
|
|
/*
|
|
* Logging the inode mode bits when writing a setuid/setgid file
|
|
* inode
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_writeid_reservation(xfs_mount_t *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
|
|
}
|
|
|
|
/*
|
|
* Converting the inode from non-attributed to attributed.
|
|
* the inode being converted: inode size
|
|
* agf block and superblock (for block allocation)
|
|
* the new block (directory sized)
|
|
* bmap blocks for the new directory block
|
|
* allocation btrees
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_addafork_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(1, mp->m_dirblksize) +
|
|
xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* Removing the attribute fork of a file
|
|
* the inode being truncated: inode size
|
|
* the inode's bmap btree: max depth * block size
|
|
* And the bmap_finish transaction can free the blocks and bmap blocks:
|
|
* the agf for each of the ags: 4 * sector size
|
|
* the agfl for each of the ags: 4 * sector size
|
|
* the super block to reflect the freed blocks: sector size
|
|
* worst case split in allocation btrees per extent assuming 4 extents:
|
|
* 4 exts * 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_attrinval_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
|
|
XFS_FSB_TO_B(mp, 1))),
|
|
(xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* Setting an attribute at mount time.
|
|
* the inode getting the attribute
|
|
* the superblock for allocations
|
|
* the agfs extents are allocated from
|
|
* the attribute btree * max depth
|
|
* the inode allocation btree
|
|
* Since attribute transaction space is dependent on the size of the attribute,
|
|
* the calculation is done partially at mount time and partially at runtime(see
|
|
* below).
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_attrsetm_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* Setting an attribute at runtime, transaction space unit per block.
|
|
* the superblock for allocations: sector size
|
|
* the inode bmap btree could join or split: max depth * block size
|
|
* Since the runtime attribute transaction space is dependent on the total
|
|
* blocks needed for the 1st bmap, here we calculate out the space unit for
|
|
* one block so that the caller could figure out the total space according
|
|
* to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp).
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_attrsetrt_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
|
|
XFS_FSB_TO_B(mp, 1));
|
|
}
|
|
|
|
/*
|
|
* Removing an attribute.
|
|
* the inode: inode size
|
|
* the attribute btree could join: max depth * block size
|
|
* the inode bmap btree could join or split: max depth * block size
|
|
* And the bmap_finish transaction can free the attr blocks freed giving:
|
|
* the agf for the ag in which the blocks live: 2 * sector size
|
|
* the agfl for the ag in which the blocks live: 2 * sector size
|
|
* the superblock for the free block count: sector size
|
|
* the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_attrrm_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_DQUOT_LOGRES(mp) +
|
|
MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
|
|
xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
|
|
XFS_FSB_TO_B(mp, 1)) +
|
|
(uint)XFS_FSB_TO_B(mp,
|
|
XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
|
|
xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
|
|
(xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
|
|
xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
|
|
XFS_FSB_TO_B(mp, 1))));
|
|
}
|
|
|
|
/*
|
|
* Clearing a bad agino number in an agi hash bucket.
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_clear_agi_bucket_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
|
|
}
|
|
|
|
/*
|
|
* Clearing the quotaflags in the superblock.
|
|
* the super block for changing quota flags: sector size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_qm_sbchange_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
|
|
}
|
|
|
|
/*
|
|
* Adjusting quota limits.
|
|
* the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot)
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_qm_setqlim_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
|
|
}
|
|
|
|
/*
|
|
* Allocating quota on disk if needed.
|
|
* the write transaction log space: XFS_WRITE_LOG_RES(mp)
|
|
* the unit of quota allocation: one system block size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_qm_dqalloc_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return XFS_WRITE_LOG_RES(mp) +
|
|
xfs_calc_buf_res(1,
|
|
XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
|
|
}
|
|
|
|
/*
|
|
* Turning off quotas.
|
|
* the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
|
|
* the superblock for the quota flags: sector size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_qm_quotaoff_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return sizeof(struct xfs_qoff_logitem) * 2 +
|
|
xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
|
|
}
|
|
|
|
/*
|
|
* End of turning off quotas.
|
|
* the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_qm_quotaoff_end_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return sizeof(struct xfs_qoff_logitem) * 2;
|
|
}
|
|
|
|
/*
|
|
* Syncing the incore super block changes to disk.
|
|
* the super block to reflect the changes: sector size
|
|
*/
|
|
STATIC uint
|
|
xfs_calc_sb_reservation(
|
|
struct xfs_mount *mp)
|
|
{
|
|
return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
|
|
}
|
|
|
|
/*
|
|
* Initialize the precomputed transaction reservation values
|
|
* in the mount structure.
|
|
*/
|
|
void
|
|
xfs_trans_init(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_trans_reservations *resp = &mp->m_reservations;
|
|
|
|
resp->tr_write = xfs_calc_write_reservation(mp);
|
|
resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
|
|
resp->tr_rename = xfs_calc_rename_reservation(mp);
|
|
resp->tr_link = xfs_calc_link_reservation(mp);
|
|
resp->tr_remove = xfs_calc_remove_reservation(mp);
|
|
resp->tr_symlink = xfs_calc_symlink_reservation(mp);
|
|
resp->tr_create = xfs_calc_create_reservation(mp);
|
|
resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
|
|
resp->tr_ifree = xfs_calc_ifree_reservation(mp);
|
|
resp->tr_ichange = xfs_calc_ichange_reservation(mp);
|
|
resp->tr_growdata = xfs_calc_growdata_reservation(mp);
|
|
resp->tr_swrite = xfs_calc_swrite_reservation(mp);
|
|
resp->tr_writeid = xfs_calc_writeid_reservation(mp);
|
|
resp->tr_addafork = xfs_calc_addafork_reservation(mp);
|
|
resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
|
|
resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp);
|
|
resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp);
|
|
resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
|
|
resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
|
|
resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
|
|
resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
|
|
resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
|
|
resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp);
|
|
resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp);
|
|
resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp);
|
|
resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp);
|
|
resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp);
|
|
resp->tr_sb = xfs_calc_sb_reservation(mp);
|
|
}
|
|
|
|
/*
|
|
* This routine is called to allocate a transaction structure.
|
|
* The type parameter indicates the type of the transaction. These
|
|
* are enumerated in xfs_trans.h.
|
|
*
|
|
* Dynamically allocate the transaction structure from the transaction
|
|
* zone, initialize it, and return it to the caller.
|
|
*/
|
|
xfs_trans_t *
|
|
xfs_trans_alloc(
|
|
xfs_mount_t *mp,
|
|
uint type)
|
|
{
|
|
xfs_trans_t *tp;
|
|
|
|
sb_start_intwrite(mp->m_super);
|
|
tp = _xfs_trans_alloc(mp, type, KM_SLEEP);
|
|
tp->t_flags |= XFS_TRANS_FREEZE_PROT;
|
|
return tp;
|
|
}
|
|
|
|
xfs_trans_t *
|
|
_xfs_trans_alloc(
|
|
xfs_mount_t *mp,
|
|
uint type,
|
|
xfs_km_flags_t memflags)
|
|
{
|
|
xfs_trans_t *tp;
|
|
|
|
WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
|
|
atomic_inc(&mp->m_active_trans);
|
|
|
|
tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
|
|
tp->t_magic = XFS_TRANS_MAGIC;
|
|
tp->t_type = type;
|
|
tp->t_mountp = mp;
|
|
INIT_LIST_HEAD(&tp->t_items);
|
|
INIT_LIST_HEAD(&tp->t_busy);
|
|
return tp;
|
|
}
|
|
|
|
/*
|
|
* Free the transaction structure. If there is more clean up
|
|
* to do when the structure is freed, add it here.
|
|
*/
|
|
STATIC void
|
|
xfs_trans_free(
|
|
struct xfs_trans *tp)
|
|
{
|
|
xfs_extent_busy_sort(&tp->t_busy);
|
|
xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
|
|
|
|
atomic_dec(&tp->t_mountp->m_active_trans);
|
|
if (tp->t_flags & XFS_TRANS_FREEZE_PROT)
|
|
sb_end_intwrite(tp->t_mountp->m_super);
|
|
xfs_trans_free_dqinfo(tp);
|
|
kmem_zone_free(xfs_trans_zone, tp);
|
|
}
|
|
|
|
/*
|
|
* This is called to create a new transaction which will share the
|
|
* permanent log reservation of the given transaction. The remaining
|
|
* unused block and rt extent reservations are also inherited. This
|
|
* implies that the original transaction is no longer allowed to allocate
|
|
* blocks. Locks and log items, however, are no inherited. They must
|
|
* be added to the new transaction explicitly.
|
|
*/
|
|
xfs_trans_t *
|
|
xfs_trans_dup(
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_trans_t *ntp;
|
|
|
|
ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
|
|
|
|
/*
|
|
* Initialize the new transaction structure.
|
|
*/
|
|
ntp->t_magic = XFS_TRANS_MAGIC;
|
|
ntp->t_type = tp->t_type;
|
|
ntp->t_mountp = tp->t_mountp;
|
|
INIT_LIST_HEAD(&ntp->t_items);
|
|
INIT_LIST_HEAD(&ntp->t_busy);
|
|
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
ASSERT(tp->t_ticket != NULL);
|
|
|
|
ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
|
|
(tp->t_flags & XFS_TRANS_RESERVE) |
|
|
(tp->t_flags & XFS_TRANS_FREEZE_PROT);
|
|
/* We gave our writer reference to the new transaction */
|
|
tp->t_flags &= ~XFS_TRANS_FREEZE_PROT;
|
|
ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
|
|
ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
|
|
tp->t_blk_res = tp->t_blk_res_used;
|
|
ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
|
|
tp->t_rtx_res = tp->t_rtx_res_used;
|
|
ntp->t_pflags = tp->t_pflags;
|
|
|
|
xfs_trans_dup_dqinfo(tp, ntp);
|
|
|
|
atomic_inc(&tp->t_mountp->m_active_trans);
|
|
return ntp;
|
|
}
|
|
|
|
/*
|
|
* This is called to reserve free disk blocks and log space for the
|
|
* given transaction. This must be done before allocating any resources
|
|
* within the transaction.
|
|
*
|
|
* This will return ENOSPC if there are not enough blocks available.
|
|
* It will sleep waiting for available log space.
|
|
* The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
|
|
* is used by long running transactions. If any one of the reservations
|
|
* fails then they will all be backed out.
|
|
*
|
|
* This does not do quota reservations. That typically is done by the
|
|
* caller afterwards.
|
|
*/
|
|
int
|
|
xfs_trans_reserve(
|
|
xfs_trans_t *tp,
|
|
uint blocks,
|
|
uint logspace,
|
|
uint rtextents,
|
|
uint flags,
|
|
uint logcount)
|
|
{
|
|
int error = 0;
|
|
int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
|
|
|
|
/* Mark this thread as being in a transaction */
|
|
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
|
|
/*
|
|
* Attempt to reserve the needed disk blocks by decrementing
|
|
* the number needed from the number available. This will
|
|
* fail if the count would go below zero.
|
|
*/
|
|
if (blocks > 0) {
|
|
error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
|
|
-((int64_t)blocks), rsvd);
|
|
if (error != 0) {
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
return (XFS_ERROR(ENOSPC));
|
|
}
|
|
tp->t_blk_res += blocks;
|
|
}
|
|
|
|
/*
|
|
* Reserve the log space needed for this transaction.
|
|
*/
|
|
if (logspace > 0) {
|
|
bool permanent = false;
|
|
|
|
ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
|
|
ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
|
|
|
|
if (flags & XFS_TRANS_PERM_LOG_RES) {
|
|
tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
|
|
permanent = true;
|
|
} else {
|
|
ASSERT(tp->t_ticket == NULL);
|
|
ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
|
|
}
|
|
|
|
if (tp->t_ticket != NULL) {
|
|
ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
|
|
error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
|
|
} else {
|
|
error = xfs_log_reserve(tp->t_mountp, logspace,
|
|
logcount, &tp->t_ticket,
|
|
XFS_TRANSACTION, permanent,
|
|
tp->t_type);
|
|
}
|
|
|
|
if (error)
|
|
goto undo_blocks;
|
|
|
|
tp->t_log_res = logspace;
|
|
tp->t_log_count = logcount;
|
|
}
|
|
|
|
/*
|
|
* Attempt to reserve the needed realtime extents by decrementing
|
|
* the number needed from the number available. This will
|
|
* fail if the count would go below zero.
|
|
*/
|
|
if (rtextents > 0) {
|
|
error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
|
|
-((int64_t)rtextents), rsvd);
|
|
if (error) {
|
|
error = XFS_ERROR(ENOSPC);
|
|
goto undo_log;
|
|
}
|
|
tp->t_rtx_res += rtextents;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* Error cases jump to one of these labels to undo any
|
|
* reservations which have already been performed.
|
|
*/
|
|
undo_log:
|
|
if (logspace > 0) {
|
|
int log_flags;
|
|
|
|
if (flags & XFS_TRANS_PERM_LOG_RES) {
|
|
log_flags = XFS_LOG_REL_PERM_RESERV;
|
|
} else {
|
|
log_flags = 0;
|
|
}
|
|
xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
|
|
tp->t_ticket = NULL;
|
|
tp->t_log_res = 0;
|
|
tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
|
|
}
|
|
|
|
undo_blocks:
|
|
if (blocks > 0) {
|
|
xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
|
|
(int64_t)blocks, rsvd);
|
|
tp->t_blk_res = 0;
|
|
}
|
|
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Record the indicated change to the given field for application
|
|
* to the file system's superblock when the transaction commits.
|
|
* For now, just store the change in the transaction structure.
|
|
*
|
|
* Mark the transaction structure to indicate that the superblock
|
|
* needs to be updated before committing.
|
|
*
|
|
* Because we may not be keeping track of allocated/free inodes and
|
|
* used filesystem blocks in the superblock, we do not mark the
|
|
* superblock dirty in this transaction if we modify these fields.
|
|
* We still need to update the transaction deltas so that they get
|
|
* applied to the incore superblock, but we don't want them to
|
|
* cause the superblock to get locked and logged if these are the
|
|
* only fields in the superblock that the transaction modifies.
|
|
*/
|
|
void
|
|
xfs_trans_mod_sb(
|
|
xfs_trans_t *tp,
|
|
uint field,
|
|
int64_t delta)
|
|
{
|
|
uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
|
|
xfs_mount_t *mp = tp->t_mountp;
|
|
|
|
switch (field) {
|
|
case XFS_TRANS_SB_ICOUNT:
|
|
tp->t_icount_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_IFREE:
|
|
tp->t_ifree_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_FDBLOCKS:
|
|
/*
|
|
* Track the number of blocks allocated in the
|
|
* transaction. Make sure it does not exceed the
|
|
* number reserved.
|
|
*/
|
|
if (delta < 0) {
|
|
tp->t_blk_res_used += (uint)-delta;
|
|
ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
|
|
}
|
|
tp->t_fdblocks_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_RES_FDBLOCKS:
|
|
/*
|
|
* The allocation has already been applied to the
|
|
* in-core superblock's counter. This should only
|
|
* be applied to the on-disk superblock.
|
|
*/
|
|
ASSERT(delta < 0);
|
|
tp->t_res_fdblocks_delta += delta;
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
flags &= ~XFS_TRANS_SB_DIRTY;
|
|
break;
|
|
case XFS_TRANS_SB_FREXTENTS:
|
|
/*
|
|
* Track the number of blocks allocated in the
|
|
* transaction. Make sure it does not exceed the
|
|
* number reserved.
|
|
*/
|
|
if (delta < 0) {
|
|
tp->t_rtx_res_used += (uint)-delta;
|
|
ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
|
|
}
|
|
tp->t_frextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RES_FREXTENTS:
|
|
/*
|
|
* The allocation has already been applied to the
|
|
* in-core superblock's counter. This should only
|
|
* be applied to the on-disk superblock.
|
|
*/
|
|
ASSERT(delta < 0);
|
|
tp->t_res_frextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_DBLOCKS:
|
|
ASSERT(delta > 0);
|
|
tp->t_dblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_AGCOUNT:
|
|
ASSERT(delta > 0);
|
|
tp->t_agcount_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_IMAXPCT:
|
|
tp->t_imaxpct_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTSIZE:
|
|
tp->t_rextsize_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RBMBLOCKS:
|
|
tp->t_rbmblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_RBLOCKS:
|
|
tp->t_rblocks_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTENTS:
|
|
tp->t_rextents_delta += delta;
|
|
break;
|
|
case XFS_TRANS_SB_REXTSLOG:
|
|
tp->t_rextslog_delta += delta;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
tp->t_flags |= flags;
|
|
}
|
|
|
|
/*
|
|
* xfs_trans_apply_sb_deltas() is called from the commit code
|
|
* to bring the superblock buffer into the current transaction
|
|
* and modify it as requested by earlier calls to xfs_trans_mod_sb().
|
|
*
|
|
* For now we just look at each field allowed to change and change
|
|
* it if necessary.
|
|
*/
|
|
STATIC void
|
|
xfs_trans_apply_sb_deltas(
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_dsb_t *sbp;
|
|
xfs_buf_t *bp;
|
|
int whole = 0;
|
|
|
|
bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
|
|
sbp = XFS_BUF_TO_SBP(bp);
|
|
|
|
/*
|
|
* Check that superblock mods match the mods made to AGF counters.
|
|
*/
|
|
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
|
|
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
|
|
tp->t_ag_btree_delta));
|
|
|
|
/*
|
|
* Only update the superblock counters if we are logging them
|
|
*/
|
|
if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
|
|
if (tp->t_icount_delta)
|
|
be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
|
|
if (tp->t_ifree_delta)
|
|
be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
|
|
if (tp->t_fdblocks_delta)
|
|
be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
|
|
if (tp->t_res_fdblocks_delta)
|
|
be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
|
|
}
|
|
|
|
if (tp->t_frextents_delta)
|
|
be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
|
|
if (tp->t_res_frextents_delta)
|
|
be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
|
|
|
|
if (tp->t_dblocks_delta) {
|
|
be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_agcount_delta) {
|
|
be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_imaxpct_delta) {
|
|
sbp->sb_imax_pct += tp->t_imaxpct_delta;
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextsize_delta) {
|
|
be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rbmblocks_delta) {
|
|
be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rblocks_delta) {
|
|
be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextents_delta) {
|
|
be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
|
|
whole = 1;
|
|
}
|
|
if (tp->t_rextslog_delta) {
|
|
sbp->sb_rextslog += tp->t_rextslog_delta;
|
|
whole = 1;
|
|
}
|
|
|
|
if (whole)
|
|
/*
|
|
* Log the whole thing, the fields are noncontiguous.
|
|
*/
|
|
xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
|
|
else
|
|
/*
|
|
* Since all the modifiable fields are contiguous, we
|
|
* can get away with this.
|
|
*/
|
|
xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
|
|
offsetof(xfs_dsb_t, sb_frextents) +
|
|
sizeof(sbp->sb_frextents) - 1);
|
|
}
|
|
|
|
/*
|
|
* xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
|
|
* and apply superblock counter changes to the in-core superblock. The
|
|
* t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
|
|
* applied to the in-core superblock. The idea is that that has already been
|
|
* done.
|
|
*
|
|
* This is done efficiently with a single call to xfs_mod_incore_sb_batch().
|
|
* However, we have to ensure that we only modify each superblock field only
|
|
* once because the application of the delta values may not be atomic. That can
|
|
* lead to ENOSPC races occurring if we have two separate modifcations of the
|
|
* free space counter to put back the entire reservation and then take away
|
|
* what we used.
|
|
*
|
|
* If we are not logging superblock counters, then the inode allocated/free and
|
|
* used block counts are not updated in the on disk superblock. In this case,
|
|
* XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
|
|
* still need to update the incore superblock with the changes.
|
|
*/
|
|
void
|
|
xfs_trans_unreserve_and_mod_sb(
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
|
|
xfs_mod_sb_t *msbp;
|
|
xfs_mount_t *mp = tp->t_mountp;
|
|
/* REFERENCED */
|
|
int error;
|
|
int rsvd;
|
|
int64_t blkdelta = 0;
|
|
int64_t rtxdelta = 0;
|
|
int64_t idelta = 0;
|
|
int64_t ifreedelta = 0;
|
|
|
|
msbp = msb;
|
|
rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
|
|
|
|
/* calculate deltas */
|
|
if (tp->t_blk_res > 0)
|
|
blkdelta = tp->t_blk_res;
|
|
if ((tp->t_fdblocks_delta != 0) &&
|
|
(xfs_sb_version_haslazysbcount(&mp->m_sb) ||
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY)))
|
|
blkdelta += tp->t_fdblocks_delta;
|
|
|
|
if (tp->t_rtx_res > 0)
|
|
rtxdelta = tp->t_rtx_res;
|
|
if ((tp->t_frextents_delta != 0) &&
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY))
|
|
rtxdelta += tp->t_frextents_delta;
|
|
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
|
|
(tp->t_flags & XFS_TRANS_SB_DIRTY)) {
|
|
idelta = tp->t_icount_delta;
|
|
ifreedelta = tp->t_ifree_delta;
|
|
}
|
|
|
|
/* apply the per-cpu counters */
|
|
if (blkdelta) {
|
|
error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
|
|
blkdelta, rsvd);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
if (idelta) {
|
|
error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
|
|
idelta, rsvd);
|
|
if (error)
|
|
goto out_undo_fdblocks;
|
|
}
|
|
|
|
if (ifreedelta) {
|
|
error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
|
|
ifreedelta, rsvd);
|
|
if (error)
|
|
goto out_undo_icount;
|
|
}
|
|
|
|
/* apply remaining deltas */
|
|
if (rtxdelta != 0) {
|
|
msbp->msb_field = XFS_SBS_FREXTENTS;
|
|
msbp->msb_delta = rtxdelta;
|
|
msbp++;
|
|
}
|
|
|
|
if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
|
|
if (tp->t_dblocks_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_DBLOCKS;
|
|
msbp->msb_delta = tp->t_dblocks_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_agcount_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_AGCOUNT;
|
|
msbp->msb_delta = tp->t_agcount_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_imaxpct_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_IMAX_PCT;
|
|
msbp->msb_delta = tp->t_imaxpct_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_rextsize_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_REXTSIZE;
|
|
msbp->msb_delta = tp->t_rextsize_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_rbmblocks_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_RBMBLOCKS;
|
|
msbp->msb_delta = tp->t_rbmblocks_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_rblocks_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_RBLOCKS;
|
|
msbp->msb_delta = tp->t_rblocks_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_rextents_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_REXTENTS;
|
|
msbp->msb_delta = tp->t_rextents_delta;
|
|
msbp++;
|
|
}
|
|
if (tp->t_rextslog_delta != 0) {
|
|
msbp->msb_field = XFS_SBS_REXTSLOG;
|
|
msbp->msb_delta = tp->t_rextslog_delta;
|
|
msbp++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we need to change anything, do it.
|
|
*/
|
|
if (msbp > msb) {
|
|
error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
|
|
(uint)(msbp - msb), rsvd);
|
|
if (error)
|
|
goto out_undo_ifreecount;
|
|
}
|
|
|
|
return;
|
|
|
|
out_undo_ifreecount:
|
|
if (ifreedelta)
|
|
xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
|
|
out_undo_icount:
|
|
if (idelta)
|
|
xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
|
|
out_undo_fdblocks:
|
|
if (blkdelta)
|
|
xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
|
|
out:
|
|
ASSERT(error == 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Add the given log item to the transaction's list of log items.
|
|
*
|
|
* The log item will now point to its new descriptor with its li_desc field.
|
|
*/
|
|
void
|
|
xfs_trans_add_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_log_item_desc *lidp;
|
|
|
|
ASSERT(lip->li_mountp == tp->t_mountp);
|
|
ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
|
|
|
|
lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
|
|
|
|
lidp->lid_item = lip;
|
|
lidp->lid_flags = 0;
|
|
list_add_tail(&lidp->lid_trans, &tp->t_items);
|
|
|
|
lip->li_desc = lidp;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_trans_free_item_desc(
|
|
struct xfs_log_item_desc *lidp)
|
|
{
|
|
list_del_init(&lidp->lid_trans);
|
|
kmem_zone_free(xfs_log_item_desc_zone, lidp);
|
|
}
|
|
|
|
/*
|
|
* Unlink and free the given descriptor.
|
|
*/
|
|
void
|
|
xfs_trans_del_item(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_trans_free_item_desc(lip->li_desc);
|
|
lip->li_desc = NULL;
|
|
}
|
|
|
|
/*
|
|
* Unlock all of the items of a transaction and free all the descriptors
|
|
* of that transaction.
|
|
*/
|
|
void
|
|
xfs_trans_free_items(
|
|
struct xfs_trans *tp,
|
|
xfs_lsn_t commit_lsn,
|
|
int flags)
|
|
{
|
|
struct xfs_log_item_desc *lidp, *next;
|
|
|
|
list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
|
|
struct xfs_log_item *lip = lidp->lid_item;
|
|
|
|
lip->li_desc = NULL;
|
|
|
|
if (commit_lsn != NULLCOMMITLSN)
|
|
IOP_COMMITTING(lip, commit_lsn);
|
|
if (flags & XFS_TRANS_ABORT)
|
|
lip->li_flags |= XFS_LI_ABORTED;
|
|
IOP_UNLOCK(lip);
|
|
|
|
xfs_trans_free_item_desc(lidp);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
xfs_log_item_batch_insert(
|
|
struct xfs_ail *ailp,
|
|
struct xfs_ail_cursor *cur,
|
|
struct xfs_log_item **log_items,
|
|
int nr_items,
|
|
xfs_lsn_t commit_lsn)
|
|
{
|
|
int i;
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
/* xfs_trans_ail_update_bulk drops ailp->xa_lock */
|
|
xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
|
|
|
|
for (i = 0; i < nr_items; i++)
|
|
IOP_UNPIN(log_items[i], 0);
|
|
}
|
|
|
|
/*
|
|
* Bulk operation version of xfs_trans_committed that takes a log vector of
|
|
* items to insert into the AIL. This uses bulk AIL insertion techniques to
|
|
* minimise lock traffic.
|
|
*
|
|
* If we are called with the aborted flag set, it is because a log write during
|
|
* a CIL checkpoint commit has failed. In this case, all the items in the
|
|
* checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
|
|
* means that checkpoint commit abort handling is treated exactly the same
|
|
* as an iclog write error even though we haven't started any IO yet. Hence in
|
|
* this case all we need to do is IOP_COMMITTED processing, followed by an
|
|
* IOP_UNPIN(aborted) call.
|
|
*
|
|
* The AIL cursor is used to optimise the insert process. If commit_lsn is not
|
|
* at the end of the AIL, the insert cursor avoids the need to walk
|
|
* the AIL to find the insertion point on every xfs_log_item_batch_insert()
|
|
* call. This saves a lot of needless list walking and is a net win, even
|
|
* though it slightly increases that amount of AIL lock traffic to set it up
|
|
* and tear it down.
|
|
*/
|
|
void
|
|
xfs_trans_committed_bulk(
|
|
struct xfs_ail *ailp,
|
|
struct xfs_log_vec *log_vector,
|
|
xfs_lsn_t commit_lsn,
|
|
int aborted)
|
|
{
|
|
#define LOG_ITEM_BATCH_SIZE 32
|
|
struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
|
|
struct xfs_log_vec *lv;
|
|
struct xfs_ail_cursor cur;
|
|
int i = 0;
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
|
|
spin_unlock(&ailp->xa_lock);
|
|
|
|
/* unpin all the log items */
|
|
for (lv = log_vector; lv; lv = lv->lv_next ) {
|
|
struct xfs_log_item *lip = lv->lv_item;
|
|
xfs_lsn_t item_lsn;
|
|
|
|
if (aborted)
|
|
lip->li_flags |= XFS_LI_ABORTED;
|
|
item_lsn = IOP_COMMITTED(lip, commit_lsn);
|
|
|
|
/* item_lsn of -1 means the item needs no further processing */
|
|
if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* if we are aborting the operation, no point in inserting the
|
|
* object into the AIL as we are in a shutdown situation.
|
|
*/
|
|
if (aborted) {
|
|
ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
|
|
IOP_UNPIN(lip, 1);
|
|
continue;
|
|
}
|
|
|
|
if (item_lsn != commit_lsn) {
|
|
|
|
/*
|
|
* Not a bulk update option due to unusual item_lsn.
|
|
* Push into AIL immediately, rechecking the lsn once
|
|
* we have the ail lock. Then unpin the item. This does
|
|
* not affect the AIL cursor the bulk insert path is
|
|
* using.
|
|
*/
|
|
spin_lock(&ailp->xa_lock);
|
|
if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
|
|
xfs_trans_ail_update(ailp, lip, item_lsn);
|
|
else
|
|
spin_unlock(&ailp->xa_lock);
|
|
IOP_UNPIN(lip, 0);
|
|
continue;
|
|
}
|
|
|
|
/* Item is a candidate for bulk AIL insert. */
|
|
log_items[i++] = lv->lv_item;
|
|
if (i >= LOG_ITEM_BATCH_SIZE) {
|
|
xfs_log_item_batch_insert(ailp, &cur, log_items,
|
|
LOG_ITEM_BATCH_SIZE, commit_lsn);
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
/* make sure we insert the remainder! */
|
|
if (i)
|
|
xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
xfs_trans_ail_cursor_done(ailp, &cur);
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
|
|
/*
|
|
* Commit the given transaction to the log.
|
|
*
|
|
* XFS disk error handling mechanism is not based on a typical
|
|
* transaction abort mechanism. Logically after the filesystem
|
|
* gets marked 'SHUTDOWN', we can't let any new transactions
|
|
* be durable - ie. committed to disk - because some metadata might
|
|
* be inconsistent. In such cases, this returns an error, and the
|
|
* caller may assume that all locked objects joined to the transaction
|
|
* have already been unlocked as if the commit had succeeded.
|
|
* Do not reference the transaction structure after this call.
|
|
*/
|
|
int
|
|
xfs_trans_commit(
|
|
struct xfs_trans *tp,
|
|
uint flags)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_lsn_t commit_lsn = -1;
|
|
int error = 0;
|
|
int log_flags = 0;
|
|
int sync = tp->t_flags & XFS_TRANS_SYNC;
|
|
|
|
/*
|
|
* Determine whether this commit is releasing a permanent
|
|
* log reservation or not.
|
|
*/
|
|
if (flags & XFS_TRANS_RELEASE_LOG_RES) {
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
log_flags = XFS_LOG_REL_PERM_RESERV;
|
|
}
|
|
|
|
/*
|
|
* If there is nothing to be logged by the transaction,
|
|
* then unlock all of the items associated with the
|
|
* transaction and free the transaction structure.
|
|
* Also make sure to return any reserved blocks to
|
|
* the free pool.
|
|
*/
|
|
if (!(tp->t_flags & XFS_TRANS_DIRTY))
|
|
goto out_unreserve;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
error = XFS_ERROR(EIO);
|
|
goto out_unreserve;
|
|
}
|
|
|
|
ASSERT(tp->t_ticket != NULL);
|
|
|
|
/*
|
|
* If we need to update the superblock, then do it now.
|
|
*/
|
|
if (tp->t_flags & XFS_TRANS_SB_DIRTY)
|
|
xfs_trans_apply_sb_deltas(tp);
|
|
xfs_trans_apply_dquot_deltas(tp);
|
|
|
|
error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
|
|
if (error == ENOMEM) {
|
|
xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
|
|
error = XFS_ERROR(EIO);
|
|
goto out_unreserve;
|
|
}
|
|
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
xfs_trans_free(tp);
|
|
|
|
/*
|
|
* If the transaction needs to be synchronous, then force the
|
|
* log out now and wait for it.
|
|
*/
|
|
if (sync) {
|
|
if (!error) {
|
|
error = _xfs_log_force_lsn(mp, commit_lsn,
|
|
XFS_LOG_SYNC, NULL);
|
|
}
|
|
XFS_STATS_INC(xs_trans_sync);
|
|
} else {
|
|
XFS_STATS_INC(xs_trans_async);
|
|
}
|
|
|
|
return error;
|
|
|
|
out_unreserve:
|
|
xfs_trans_unreserve_and_mod_sb(tp);
|
|
|
|
/*
|
|
* It is indeed possible for the transaction to be not dirty but
|
|
* the dqinfo portion to be. All that means is that we have some
|
|
* (non-persistent) quota reservations that need to be unreserved.
|
|
*/
|
|
xfs_trans_unreserve_and_mod_dquots(tp);
|
|
if (tp->t_ticket) {
|
|
commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
|
|
if (commit_lsn == -1 && !error)
|
|
error = XFS_ERROR(EIO);
|
|
}
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
|
|
xfs_trans_free(tp);
|
|
|
|
XFS_STATS_INC(xs_trans_empty);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Unlock all of the transaction's items and free the transaction.
|
|
* The transaction must not have modified any of its items, because
|
|
* there is no way to restore them to their previous state.
|
|
*
|
|
* If the transaction has made a log reservation, make sure to release
|
|
* it as well.
|
|
*/
|
|
void
|
|
xfs_trans_cancel(
|
|
xfs_trans_t *tp,
|
|
int flags)
|
|
{
|
|
int log_flags;
|
|
xfs_mount_t *mp = tp->t_mountp;
|
|
|
|
/*
|
|
* See if the caller is being too lazy to figure out if
|
|
* the transaction really needs an abort.
|
|
*/
|
|
if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
|
|
flags &= ~XFS_TRANS_ABORT;
|
|
/*
|
|
* See if the caller is relying on us to shut down the
|
|
* filesystem. This happens in paths where we detect
|
|
* corruption and decide to give up.
|
|
*/
|
|
if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
|
|
XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
#ifdef DEBUG
|
|
if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
|
|
struct xfs_log_item_desc *lidp;
|
|
|
|
list_for_each_entry(lidp, &tp->t_items, lid_trans)
|
|
ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
|
|
}
|
|
#endif
|
|
xfs_trans_unreserve_and_mod_sb(tp);
|
|
xfs_trans_unreserve_and_mod_dquots(tp);
|
|
|
|
if (tp->t_ticket) {
|
|
if (flags & XFS_TRANS_RELEASE_LOG_RES) {
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
log_flags = XFS_LOG_REL_PERM_RESERV;
|
|
} else {
|
|
log_flags = 0;
|
|
}
|
|
xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
|
|
}
|
|
|
|
/* mark this thread as no longer being in a transaction */
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
|
|
xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
|
|
xfs_trans_free(tp);
|
|
}
|
|
|
|
/*
|
|
* Roll from one trans in the sequence of PERMANENT transactions to
|
|
* the next: permanent transactions are only flushed out when
|
|
* committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
|
|
* as possible to let chunks of it go to the log. So we commit the
|
|
* chunk we've been working on and get a new transaction to continue.
|
|
*/
|
|
int
|
|
xfs_trans_roll(
|
|
struct xfs_trans **tpp,
|
|
struct xfs_inode *dp)
|
|
{
|
|
struct xfs_trans *trans;
|
|
unsigned int logres, count;
|
|
int error;
|
|
|
|
/*
|
|
* Ensure that the inode is always logged.
|
|
*/
|
|
trans = *tpp;
|
|
xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Copy the critical parameters from one trans to the next.
|
|
*/
|
|
logres = trans->t_log_res;
|
|
count = trans->t_log_count;
|
|
*tpp = xfs_trans_dup(trans);
|
|
|
|
/*
|
|
* Commit the current transaction.
|
|
* If this commit failed, then it'd just unlock those items that
|
|
* are not marked ihold. That also means that a filesystem shutdown
|
|
* is in progress. The caller takes the responsibility to cancel
|
|
* the duplicate transaction that gets returned.
|
|
*/
|
|
error = xfs_trans_commit(trans, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
trans = *tpp;
|
|
|
|
/*
|
|
* transaction commit worked ok so we can drop the extra ticket
|
|
* reference that we gained in xfs_trans_dup()
|
|
*/
|
|
xfs_log_ticket_put(trans->t_ticket);
|
|
|
|
|
|
/*
|
|
* Reserve space in the log for th next transaction.
|
|
* This also pushes items in the "AIL", the list of logged items,
|
|
* out to disk if they are taking up space at the tail of the log
|
|
* that we want to use. This requires that either nothing be locked
|
|
* across this call, or that anything that is locked be logged in
|
|
* the prior and the next transactions.
|
|
*/
|
|
error = xfs_trans_reserve(trans, 0, logres, 0,
|
|
XFS_TRANS_PERM_LOG_RES, count);
|
|
/*
|
|
* Ensure that the inode is in the new transaction and locked.
|
|
*/
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_trans_ijoin(trans, dp, 0);
|
|
return 0;
|
|
}
|