linux/drivers/mmc/host/imxmmc.c

1150 lines
29 KiB
C

/*
* linux/drivers/mmc/host/imxmmc.c - Motorola i.MX MMCI driver
*
* Copyright (C) 2004 Sascha Hauer, Pengutronix <sascha@saschahauer.de>
* Copyright (C) 2006 Pavel Pisa, PiKRON <ppisa@pikron.com>
*
* derived from pxamci.c by Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* 2005-04-17 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* Changed to conform redesigned i.MX scatter gather DMA interface
*
* 2005-11-04 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* Updated for 2.6.14 kernel
*
* 2005-12-13 Jay Monkman <jtm@smoothsmoothie.com>
* Found and corrected problems in the write path
*
* 2005-12-30 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* The event handling rewritten right way in softirq.
* Added many ugly hacks and delays to overcome SDHC
* deficiencies
*
*/
#ifdef CONFIG_MMC_DEBUG
#define DEBUG
#else
#undef DEBUG
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/delay.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/sizes.h>
#include <asm/arch/mmc.h>
#include <asm/arch/imx-dma.h>
#include "imxmmc.h"
#define DRIVER_NAME "imx-mmc"
#define IMXMCI_INT_MASK_DEFAULT (INT_MASK_BUF_READY | INT_MASK_DATA_TRAN | \
INT_MASK_WRITE_OP_DONE | INT_MASK_END_CMD_RES | \
INT_MASK_AUTO_CARD_DETECT | INT_MASK_DAT0_EN | INT_MASK_SDIO)
struct imxmci_host {
struct mmc_host *mmc;
spinlock_t lock;
struct resource *res;
int irq;
imx_dmach_t dma;
unsigned int clkrt;
unsigned int cmdat;
volatile unsigned int imask;
unsigned int power_mode;
unsigned int present;
struct imxmmc_platform_data *pdata;
struct mmc_request *req;
struct mmc_command *cmd;
struct mmc_data *data;
struct timer_list timer;
struct tasklet_struct tasklet;
unsigned int status_reg;
unsigned long pending_events;
/* Next to fields are there for CPU driven transfers to overcome SDHC deficiencies */
u16 *data_ptr;
unsigned int data_cnt;
atomic_t stuck_timeout;
unsigned int dma_nents;
unsigned int dma_size;
unsigned int dma_dir;
int dma_allocated;
unsigned char actual_bus_width;
int prev_cmd_code;
};
#define IMXMCI_PEND_IRQ_b 0
#define IMXMCI_PEND_DMA_END_b 1
#define IMXMCI_PEND_DMA_ERR_b 2
#define IMXMCI_PEND_WAIT_RESP_b 3
#define IMXMCI_PEND_DMA_DATA_b 4
#define IMXMCI_PEND_CPU_DATA_b 5
#define IMXMCI_PEND_CARD_XCHG_b 6
#define IMXMCI_PEND_SET_INIT_b 7
#define IMXMCI_PEND_STARTED_b 8
#define IMXMCI_PEND_IRQ_m (1 << IMXMCI_PEND_IRQ_b)
#define IMXMCI_PEND_DMA_END_m (1 << IMXMCI_PEND_DMA_END_b)
#define IMXMCI_PEND_DMA_ERR_m (1 << IMXMCI_PEND_DMA_ERR_b)
#define IMXMCI_PEND_WAIT_RESP_m (1 << IMXMCI_PEND_WAIT_RESP_b)
#define IMXMCI_PEND_DMA_DATA_m (1 << IMXMCI_PEND_DMA_DATA_b)
#define IMXMCI_PEND_CPU_DATA_m (1 << IMXMCI_PEND_CPU_DATA_b)
#define IMXMCI_PEND_CARD_XCHG_m (1 << IMXMCI_PEND_CARD_XCHG_b)
#define IMXMCI_PEND_SET_INIT_m (1 << IMXMCI_PEND_SET_INIT_b)
#define IMXMCI_PEND_STARTED_m (1 << IMXMCI_PEND_STARTED_b)
static void imxmci_stop_clock(struct imxmci_host *host)
{
int i = 0;
MMC_STR_STP_CLK &= ~STR_STP_CLK_START_CLK;
while(i < 0x1000) {
if(!(i & 0x7f))
MMC_STR_STP_CLK |= STR_STP_CLK_STOP_CLK;
if(!(MMC_STATUS & STATUS_CARD_BUS_CLK_RUN)) {
/* Check twice before cut */
if(!(MMC_STATUS & STATUS_CARD_BUS_CLK_RUN))
return;
}
i++;
}
dev_dbg(mmc_dev(host->mmc), "imxmci_stop_clock blocked, no luck\n");
}
static int imxmci_start_clock(struct imxmci_host *host)
{
unsigned int trials = 0;
unsigned int delay_limit = 128;
unsigned long flags;
MMC_STR_STP_CLK &= ~STR_STP_CLK_STOP_CLK;
clear_bit(IMXMCI_PEND_STARTED_b, &host->pending_events);
/*
* Command start of the clock, this usually succeeds in less
* then 6 delay loops, but during card detection (low clockrate)
* it takes up to 5000 delay loops and sometimes fails for the first time
*/
MMC_STR_STP_CLK |= STR_STP_CLK_START_CLK;
do {
unsigned int delay = delay_limit;
while(delay--){
if(MMC_STATUS & STATUS_CARD_BUS_CLK_RUN)
/* Check twice before cut */
if(MMC_STATUS & STATUS_CARD_BUS_CLK_RUN)
return 0;
if(test_bit(IMXMCI_PEND_STARTED_b, &host->pending_events))
return 0;
}
local_irq_save(flags);
/*
* Ensure, that request is not doubled under all possible circumstances.
* It is possible, that cock running state is missed, because some other
* IRQ or schedule delays this function execution and the clocks has
* been already stopped by other means (response processing, SDHC HW)
*/
if(!test_bit(IMXMCI_PEND_STARTED_b, &host->pending_events))
MMC_STR_STP_CLK |= STR_STP_CLK_START_CLK;
local_irq_restore(flags);
} while(++trials<256);
dev_err(mmc_dev(host->mmc), "imxmci_start_clock blocked, no luck\n");
return -1;
}
static void imxmci_softreset(void)
{
/* reset sequence */
MMC_STR_STP_CLK = 0x8;
MMC_STR_STP_CLK = 0xD;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_STR_STP_CLK = 0x5;
MMC_RES_TO = 0xff;
MMC_BLK_LEN = 512;
MMC_NOB = 1;
}
static int imxmci_busy_wait_for_status(struct imxmci_host *host,
unsigned int *pstat, unsigned int stat_mask,
int timeout, const char *where)
{
int loops=0;
while(!(*pstat & stat_mask)) {
loops+=2;
if(loops >= timeout) {
dev_dbg(mmc_dev(host->mmc), "busy wait timeout in %s, STATUS = 0x%x (0x%x)\n",
where, *pstat, stat_mask);
return -1;
}
udelay(2);
*pstat |= MMC_STATUS;
}
if(!loops)
return 0;
/* The busy-wait is expected there for clock <8MHz due to SDHC hardware flaws */
if(!(stat_mask & STATUS_END_CMD_RESP) || (host->mmc->ios.clock>=8000000))
dev_info(mmc_dev(host->mmc), "busy wait for %d usec in %s, STATUS = 0x%x (0x%x)\n",
loops, where, *pstat, stat_mask);
return loops;
}
static void imxmci_setup_data(struct imxmci_host *host, struct mmc_data *data)
{
unsigned int nob = data->blocks;
unsigned int blksz = data->blksz;
unsigned int datasz = nob * blksz;
int i;
if (data->flags & MMC_DATA_STREAM)
nob = 0xffff;
host->data = data;
data->bytes_xfered = 0;
MMC_NOB = nob;
MMC_BLK_LEN = blksz;
/*
* DMA cannot be used for small block sizes, we have to use CPU driven transfers otherwise.
* We are in big troubles for non-512 byte transfers according to note in the paragraph
* 20.6.7 of User Manual anyway, but we need to be able to transfer SCR at least.
* The situation is even more complex in reality. The SDHC in not able to handle wll
* partial FIFO fills and reads. The length has to be rounded up to burst size multiple.
* This is required for SCR read at least.
*/
if (datasz < 512) {
host->dma_size = datasz;
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
/* Hack to enable read SCR */
MMC_NOB = 1;
MMC_BLK_LEN = 512;
} else {
host->dma_dir = DMA_TO_DEVICE;
}
/* Convert back to virtual address */
host->data_ptr = (u16*)sg_virt(data->sg);
host->data_cnt = 0;
clear_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events);
set_bit(IMXMCI_PEND_CPU_DATA_b, &host->pending_events);
return;
}
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
host->dma_nents = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
imx_dma_setup_sg(host->dma, data->sg, data->sg_len, datasz,
host->res->start + MMC_BUFFER_ACCESS_OFS, DMA_MODE_READ);
/*imx_dma_setup_mem2dev_ccr(host->dma, DMA_MODE_READ, IMX_DMA_WIDTH_16, CCR_REN);*/
CCR(host->dma) = CCR_DMOD_LINEAR | CCR_DSIZ_32 | CCR_SMOD_FIFO | CCR_SSIZ_16 | CCR_REN;
} else {
host->dma_dir = DMA_TO_DEVICE;
host->dma_nents = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
imx_dma_setup_sg(host->dma, data->sg, data->sg_len, datasz,
host->res->start + MMC_BUFFER_ACCESS_OFS, DMA_MODE_WRITE);
/*imx_dma_setup_mem2dev_ccr(host->dma, DMA_MODE_WRITE, IMX_DMA_WIDTH_16, CCR_REN);*/
CCR(host->dma) = CCR_SMOD_LINEAR | CCR_SSIZ_32 | CCR_DMOD_FIFO | CCR_DSIZ_16 | CCR_REN;
}
#if 1 /* This code is there only for consistency checking and can be disabled in future */
host->dma_size = 0;
for(i=0; i<host->dma_nents; i++)
host->dma_size+=data->sg[i].length;
if (datasz > host->dma_size) {
dev_err(mmc_dev(host->mmc), "imxmci_setup_data datasz 0x%x > 0x%x dm_size\n",
datasz, host->dma_size);
}
#endif
host->dma_size = datasz;
wmb();
if(host->actual_bus_width == MMC_BUS_WIDTH_4)
BLR(host->dma) = 0; /* burst 64 byte read / 64 bytes write */
else
BLR(host->dma) = 16; /* burst 16 byte read / 16 bytes write */
RSSR(host->dma) = DMA_REQ_SDHC;
set_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events);
clear_bit(IMXMCI_PEND_CPU_DATA_b, &host->pending_events);
/* start DMA engine for read, write is delayed after initial response */
if (host->dma_dir == DMA_FROM_DEVICE) {
imx_dma_enable(host->dma);
}
}
static void imxmci_start_cmd(struct imxmci_host *host, struct mmc_command *cmd, unsigned int cmdat)
{
unsigned long flags;
u32 imask;
WARN_ON(host->cmd != NULL);
host->cmd = cmd;
/* Ensure, that clock are stopped else command programming and start fails */
imxmci_stop_clock(host);
if (cmd->flags & MMC_RSP_BUSY)
cmdat |= CMD_DAT_CONT_BUSY;
switch (mmc_resp_type(cmd)) {
case MMC_RSP_R1: /* short CRC, OPCODE */
case MMC_RSP_R1B:/* short CRC, OPCODE, BUSY */
cmdat |= CMD_DAT_CONT_RESPONSE_FORMAT_R1;
break;
case MMC_RSP_R2: /* long 136 bit + CRC */
cmdat |= CMD_DAT_CONT_RESPONSE_FORMAT_R2;
break;
case MMC_RSP_R3: /* short */
cmdat |= CMD_DAT_CONT_RESPONSE_FORMAT_R3;
break;
default:
break;
}
if ( test_and_clear_bit(IMXMCI_PEND_SET_INIT_b, &host->pending_events) )
cmdat |= CMD_DAT_CONT_INIT; /* This command needs init */
if ( host->actual_bus_width == MMC_BUS_WIDTH_4 )
cmdat |= CMD_DAT_CONT_BUS_WIDTH_4;
MMC_CMD = cmd->opcode;
MMC_ARGH = cmd->arg >> 16;
MMC_ARGL = cmd->arg & 0xffff;
MMC_CMD_DAT_CONT = cmdat;
atomic_set(&host->stuck_timeout, 0);
set_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events);
imask = IMXMCI_INT_MASK_DEFAULT;
imask &= ~INT_MASK_END_CMD_RES;
if ( cmdat & CMD_DAT_CONT_DATA_ENABLE ) {
/*imask &= ~INT_MASK_BUF_READY;*/
imask &= ~INT_MASK_DATA_TRAN;
if ( cmdat & CMD_DAT_CONT_WRITE )
imask &= ~INT_MASK_WRITE_OP_DONE;
if(test_bit(IMXMCI_PEND_CPU_DATA_b, &host->pending_events))
imask &= ~INT_MASK_BUF_READY;
}
spin_lock_irqsave(&host->lock, flags);
host->imask = imask;
MMC_INT_MASK = host->imask;
spin_unlock_irqrestore(&host->lock, flags);
dev_dbg(mmc_dev(host->mmc), "CMD%02d (0x%02x) mask set to 0x%04x\n",
cmd->opcode, cmd->opcode, imask);
imxmci_start_clock(host);
}
static void imxmci_finish_request(struct imxmci_host *host, struct mmc_request *req)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->pending_events &= ~(IMXMCI_PEND_WAIT_RESP_m | IMXMCI_PEND_DMA_END_m |
IMXMCI_PEND_DMA_DATA_m | IMXMCI_PEND_CPU_DATA_m);
host->imask = IMXMCI_INT_MASK_DEFAULT;
MMC_INT_MASK = host->imask;
spin_unlock_irqrestore(&host->lock, flags);
if(req && req->cmd)
host->prev_cmd_code = req->cmd->opcode;
host->req = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, req);
}
static int imxmci_finish_data(struct imxmci_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
int data_error;
if(test_and_clear_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events)){
imx_dma_disable(host->dma);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_nents,
host->dma_dir);
}
if ( stat & STATUS_ERR_MASK ) {
dev_dbg(mmc_dev(host->mmc), "request failed. status: 0x%08x\n",stat);
if(stat & (STATUS_CRC_READ_ERR | STATUS_CRC_WRITE_ERR))
data->error = -EILSEQ;
else if(stat & STATUS_TIME_OUT_READ)
data->error = -ETIMEDOUT;
else
data->error = -EIO;
} else {
data->bytes_xfered = host->dma_size;
}
data_error = data->error;
host->data = NULL;
return data_error;
}
static int imxmci_cmd_done(struct imxmci_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int i;
u32 a,b,c;
struct mmc_data *data = host->data;
if (!cmd)
return 0;
host->cmd = NULL;
if (stat & STATUS_TIME_OUT_RESP) {
dev_dbg(mmc_dev(host->mmc), "CMD TIMEOUT\n");
cmd->error = -ETIMEDOUT;
} else if (stat & STATUS_RESP_CRC_ERR && cmd->flags & MMC_RSP_CRC) {
dev_dbg(mmc_dev(host->mmc), "cmd crc error\n");
cmd->error = -EILSEQ;
}
if(cmd->flags & MMC_RSP_PRESENT) {
if(cmd->flags & MMC_RSP_136) {
for (i = 0; i < 4; i++) {
u32 a = MMC_RES_FIFO & 0xffff;
u32 b = MMC_RES_FIFO & 0xffff;
cmd->resp[i] = a<<16 | b;
}
} else {
a = MMC_RES_FIFO & 0xffff;
b = MMC_RES_FIFO & 0xffff;
c = MMC_RES_FIFO & 0xffff;
cmd->resp[0] = a<<24 | b<<8 | c>>8;
}
}
dev_dbg(mmc_dev(host->mmc), "RESP 0x%08x, 0x%08x, 0x%08x, 0x%08x, error %d\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3], cmd->error);
if (data && !cmd->error && !(stat & STATUS_ERR_MASK)) {
if (host->req->data->flags & MMC_DATA_WRITE) {
/* Wait for FIFO to be empty before starting DMA write */
stat = MMC_STATUS;
if(imxmci_busy_wait_for_status(host, &stat,
STATUS_APPL_BUFF_FE,
40, "imxmci_cmd_done DMA WR") < 0) {
cmd->error = -EIO;
imxmci_finish_data(host, stat);
if(host->req)
imxmci_finish_request(host, host->req);
dev_warn(mmc_dev(host->mmc), "STATUS = 0x%04x\n",
stat);
return 0;
}
if(test_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events)) {
imx_dma_enable(host->dma);
}
}
} else {
struct mmc_request *req;
imxmci_stop_clock(host);
req = host->req;
if(data)
imxmci_finish_data(host, stat);
if( req ) {
imxmci_finish_request(host, req);
} else {
dev_warn(mmc_dev(host->mmc), "imxmci_cmd_done: no request to finish\n");
}
}
return 1;
}
static int imxmci_data_done(struct imxmci_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
int data_error;
if (!data)
return 0;
data_error = imxmci_finish_data(host, stat);
if (host->req->stop) {
imxmci_stop_clock(host);
imxmci_start_cmd(host, host->req->stop, 0);
} else {
struct mmc_request *req;
req = host->req;
if( req ) {
imxmci_finish_request(host, req);
} else {
dev_warn(mmc_dev(host->mmc), "imxmci_data_done: no request to finish\n");
}
}
return 1;
}
static int imxmci_cpu_driven_data(struct imxmci_host *host, unsigned int *pstat)
{
int i;
int burst_len;
int trans_done = 0;
unsigned int stat = *pstat;
if(host->actual_bus_width != MMC_BUS_WIDTH_4)
burst_len = 16;
else
burst_len = 64;
/* This is unfortunately required */
dev_dbg(mmc_dev(host->mmc), "imxmci_cpu_driven_data running STATUS = 0x%x\n",
stat);
udelay(20); /* required for clocks < 8MHz*/
if(host->dma_dir == DMA_FROM_DEVICE) {
imxmci_busy_wait_for_status(host, &stat,
STATUS_APPL_BUFF_FF | STATUS_DATA_TRANS_DONE |
STATUS_TIME_OUT_READ,
50, "imxmci_cpu_driven_data read");
while((stat & (STATUS_APPL_BUFF_FF | STATUS_DATA_TRANS_DONE)) &&
!(stat & STATUS_TIME_OUT_READ) &&
(host->data_cnt < 512)) {
udelay(20); /* required for clocks < 8MHz*/
for(i = burst_len; i>=2 ; i-=2) {
u16 data;
data = MMC_BUFFER_ACCESS;
udelay(10); /* required for clocks < 8MHz*/
if(host->data_cnt+2 <= host->dma_size) {
*(host->data_ptr++) = data;
} else {
if(host->data_cnt < host->dma_size)
*(u8*)(host->data_ptr) = data;
}
host->data_cnt += 2;
}
stat = MMC_STATUS;
dev_dbg(mmc_dev(host->mmc), "imxmci_cpu_driven_data read %d burst %d STATUS = 0x%x\n",
host->data_cnt, burst_len, stat);
}
if((stat & STATUS_DATA_TRANS_DONE) && (host->data_cnt >= 512))
trans_done = 1;
if(host->dma_size & 0x1ff)
stat &= ~STATUS_CRC_READ_ERR;
if(stat & STATUS_TIME_OUT_READ) {
dev_dbg(mmc_dev(host->mmc), "imxmci_cpu_driven_data read timeout STATUS = 0x%x\n",
stat);
trans_done = -1;
}
} else {
imxmci_busy_wait_for_status(host, &stat,
STATUS_APPL_BUFF_FE,
20, "imxmci_cpu_driven_data write");
while((stat & STATUS_APPL_BUFF_FE) &&
(host->data_cnt < host->dma_size)) {
if(burst_len >= host->dma_size - host->data_cnt) {
burst_len = host->dma_size - host->data_cnt;
host->data_cnt = host->dma_size;
trans_done = 1;
} else {
host->data_cnt += burst_len;
}
for(i = burst_len; i>0 ; i-=2)
MMC_BUFFER_ACCESS = *(host->data_ptr++);
stat = MMC_STATUS;
dev_dbg(mmc_dev(host->mmc), "imxmci_cpu_driven_data write burst %d STATUS = 0x%x\n",
burst_len, stat);
}
}
*pstat = stat;
return trans_done;
}
static void imxmci_dma_irq(int dma, void *devid)
{
struct imxmci_host *host = devid;
uint32_t stat = MMC_STATUS;
atomic_set(&host->stuck_timeout, 0);
host->status_reg = stat;
set_bit(IMXMCI_PEND_DMA_END_b, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
static irqreturn_t imxmci_irq(int irq, void *devid)
{
struct imxmci_host *host = devid;
uint32_t stat = MMC_STATUS;
int handled = 1;
MMC_INT_MASK = host->imask | INT_MASK_SDIO | INT_MASK_AUTO_CARD_DETECT;
atomic_set(&host->stuck_timeout, 0);
host->status_reg = stat;
set_bit(IMXMCI_PEND_IRQ_b, &host->pending_events);
set_bit(IMXMCI_PEND_STARTED_b, &host->pending_events);
tasklet_schedule(&host->tasklet);
return IRQ_RETVAL(handled);;
}
static void imxmci_tasklet_fnc(unsigned long data)
{
struct imxmci_host *host = (struct imxmci_host *)data;
u32 stat;
unsigned int data_dir_mask = 0; /* STATUS_WR_CRC_ERROR_CODE_MASK */
int timeout = 0;
if(atomic_read(&host->stuck_timeout) > 4) {
char *what;
timeout = 1;
stat = MMC_STATUS;
host->status_reg = stat;
if (test_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events))
if (test_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events))
what = "RESP+DMA";
else
what = "RESP";
else
if (test_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events))
if(test_bit(IMXMCI_PEND_DMA_END_b, &host->pending_events))
what = "DATA";
else
what = "DMA";
else
what = "???";
dev_err(mmc_dev(host->mmc), "%s TIMEOUT, hardware stucked STATUS = 0x%04x IMASK = 0x%04x\n",
what, stat, MMC_INT_MASK);
dev_err(mmc_dev(host->mmc), "CMD_DAT_CONT = 0x%04x, MMC_BLK_LEN = 0x%04x, MMC_NOB = 0x%04x, DMA_CCR = 0x%08x\n",
MMC_CMD_DAT_CONT, MMC_BLK_LEN, MMC_NOB, CCR(host->dma));
dev_err(mmc_dev(host->mmc), "CMD%d, prevCMD%d, bus %d-bit, dma_size = 0x%x\n",
host->cmd?host->cmd->opcode:0, host->prev_cmd_code, 1<<host->actual_bus_width, host->dma_size);
}
if(!host->present || timeout)
host->status_reg = STATUS_TIME_OUT_RESP | STATUS_TIME_OUT_READ |
STATUS_CRC_READ_ERR | STATUS_CRC_WRITE_ERR;
if(test_bit(IMXMCI_PEND_IRQ_b, &host->pending_events) || timeout) {
clear_bit(IMXMCI_PEND_IRQ_b, &host->pending_events);
stat = MMC_STATUS;
/*
* This is not required in theory, but there is chance to miss some flag
* which clears automatically by mask write, FreeScale original code keeps
* stat from IRQ time so do I
*/
stat |= host->status_reg;
if(test_bit(IMXMCI_PEND_CPU_DATA_b, &host->pending_events))
stat &= ~STATUS_CRC_READ_ERR;
if(test_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events)) {
imxmci_busy_wait_for_status(host, &stat,
STATUS_END_CMD_RESP | STATUS_ERR_MASK,
20, "imxmci_tasklet_fnc resp (ERRATUM #4)");
}
if(stat & (STATUS_END_CMD_RESP | STATUS_ERR_MASK)) {
if(test_and_clear_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events))
imxmci_cmd_done(host, stat);
if(host->data && (stat & STATUS_ERR_MASK))
imxmci_data_done(host, stat);
}
if(test_bit(IMXMCI_PEND_CPU_DATA_b, &host->pending_events)) {
stat |= MMC_STATUS;
if(imxmci_cpu_driven_data(host, &stat)){
if(test_and_clear_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events))
imxmci_cmd_done(host, stat);
atomic_clear_mask(IMXMCI_PEND_IRQ_m|IMXMCI_PEND_CPU_DATA_m,
&host->pending_events);
imxmci_data_done(host, stat);
}
}
}
if(test_bit(IMXMCI_PEND_DMA_END_b, &host->pending_events) &&
!test_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events)) {
stat = MMC_STATUS;
/* Same as above */
stat |= host->status_reg;
if(host->dma_dir == DMA_TO_DEVICE) {
data_dir_mask = STATUS_WRITE_OP_DONE;
} else {
data_dir_mask = STATUS_DATA_TRANS_DONE;
}
if(stat & data_dir_mask) {
clear_bit(IMXMCI_PEND_DMA_END_b, &host->pending_events);
imxmci_data_done(host, stat);
}
}
if(test_and_clear_bit(IMXMCI_PEND_CARD_XCHG_b, &host->pending_events)) {
if(host->cmd)
imxmci_cmd_done(host, STATUS_TIME_OUT_RESP);
if(host->data)
imxmci_data_done(host, STATUS_TIME_OUT_READ |
STATUS_CRC_READ_ERR | STATUS_CRC_WRITE_ERR);
if(host->req)
imxmci_finish_request(host, host->req);
mmc_detect_change(host->mmc, msecs_to_jiffies(100));
}
}
static void imxmci_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct imxmci_host *host = mmc_priv(mmc);
unsigned int cmdat;
WARN_ON(host->req != NULL);
host->req = req;
cmdat = 0;
if (req->data) {
imxmci_setup_data(host, req->data);
cmdat |= CMD_DAT_CONT_DATA_ENABLE;
if (req->data->flags & MMC_DATA_WRITE)
cmdat |= CMD_DAT_CONT_WRITE;
if (req->data->flags & MMC_DATA_STREAM) {
cmdat |= CMD_DAT_CONT_STREAM_BLOCK;
}
}
imxmci_start_cmd(host, req->cmd, cmdat);
}
#define CLK_RATE 19200000
static void imxmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct imxmci_host *host = mmc_priv(mmc);
int prescaler;
if( ios->bus_width==MMC_BUS_WIDTH_4 ) {
host->actual_bus_width = MMC_BUS_WIDTH_4;
imx_gpio_mode(PB11_PF_SD_DAT3);
}else{
host->actual_bus_width = MMC_BUS_WIDTH_1;
imx_gpio_mode(GPIO_PORTB | GPIO_IN | GPIO_PUEN | 11);
}
if ( host->power_mode != ios->power_mode ) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
break;
case MMC_POWER_UP:
set_bit(IMXMCI_PEND_SET_INIT_b, &host->pending_events);
break;
case MMC_POWER_ON:
break;
}
host->power_mode = ios->power_mode;
}
if ( ios->clock ) {
unsigned int clk;
/* The prescaler is 5 for PERCLK2 equal to 96MHz
* then 96MHz / 5 = 19.2 MHz
*/
clk=imx_get_perclk2();
prescaler=(clk+(CLK_RATE*7)/8)/CLK_RATE;
switch(prescaler) {
case 0:
case 1: prescaler = 0;
break;
case 2: prescaler = 1;
break;
case 3: prescaler = 2;
break;
case 4: prescaler = 4;
break;
default:
case 5: prescaler = 5;
break;
}
dev_dbg(mmc_dev(host->mmc), "PERCLK2 %d MHz -> prescaler %d\n",
clk, prescaler);
for(clk=0; clk<8; clk++) {
int x;
x = CLK_RATE / (1<<clk);
if( x <= ios->clock)
break;
}
MMC_STR_STP_CLK |= STR_STP_CLK_ENABLE; /* enable controller */
imxmci_stop_clock(host);
MMC_CLK_RATE = (prescaler<<3) | clk;
/*
* Under my understanding, clock should not be started there, because it would
* initiate SDHC sequencer and send last or random command into card
*/
/*imxmci_start_clock(host);*/
dev_dbg(mmc_dev(host->mmc), "MMC_CLK_RATE: 0x%08x\n", MMC_CLK_RATE);
} else {
imxmci_stop_clock(host);
}
}
static int imxmci_get_ro(struct mmc_host *mmc)
{
struct imxmci_host *host = mmc_priv(mmc);
if (host->pdata && host->pdata->get_ro)
return host->pdata->get_ro(mmc_dev(mmc));
/* Host doesn't support read only detection so assume writeable */
return 0;
}
static const struct mmc_host_ops imxmci_ops = {
.request = imxmci_request,
.set_ios = imxmci_set_ios,
.get_ro = imxmci_get_ro,
};
static struct resource *platform_device_resource(struct platform_device *dev, unsigned int mask, int nr)
{
int i;
for (i = 0; i < dev->num_resources; i++)
if (dev->resource[i].flags == mask && nr-- == 0)
return &dev->resource[i];
return NULL;
}
static int platform_device_irq(struct platform_device *dev, int nr)
{
int i;
for (i = 0; i < dev->num_resources; i++)
if (dev->resource[i].flags == IORESOURCE_IRQ && nr-- == 0)
return dev->resource[i].start;
return NO_IRQ;
}
static void imxmci_check_status(unsigned long data)
{
struct imxmci_host *host = (struct imxmci_host *)data;
if( host->pdata->card_present(mmc_dev(host->mmc)) != host->present ) {
host->present ^= 1;
dev_info(mmc_dev(host->mmc), "card %s\n",
host->present ? "inserted" : "removed");
set_bit(IMXMCI_PEND_CARD_XCHG_b, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
if(test_bit(IMXMCI_PEND_WAIT_RESP_b, &host->pending_events) ||
test_bit(IMXMCI_PEND_DMA_DATA_b, &host->pending_events)) {
atomic_inc(&host->stuck_timeout);
if(atomic_read(&host->stuck_timeout) > 4)
tasklet_schedule(&host->tasklet);
} else {
atomic_set(&host->stuck_timeout, 0);
}
mod_timer(&host->timer, jiffies + (HZ>>1));
}
static int imxmci_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct imxmci_host *host = NULL;
struct resource *r;
int ret = 0, irq;
printk(KERN_INFO "i.MX mmc driver\n");
r = platform_device_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_device_irq(pdev, 0);
if (!r || irq == NO_IRQ)
return -ENXIO;
r = request_mem_region(r->start, 0x100, "IMXMCI");
if (!r)
return -EBUSY;
mmc = mmc_alloc_host(sizeof(struct imxmci_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
mmc->ops = &imxmci_ops;
mmc->f_min = 150000;
mmc->f_max = CLK_RATE/2;
mmc->ocr_avail = MMC_VDD_32_33;
mmc->caps = MMC_CAP_4_BIT_DATA;
/* MMC core transfer sizes tunable parameters */
mmc->max_hw_segs = 64;
mmc->max_phys_segs = 64;
mmc->max_seg_size = 64*512; /* default PAGE_CACHE_SIZE */
mmc->max_req_size = 64*512; /* default PAGE_CACHE_SIZE */
mmc->max_blk_size = 2048;
mmc->max_blk_count = 65535;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dma_allocated = 0;
host->pdata = pdev->dev.platform_data;
spin_lock_init(&host->lock);
host->res = r;
host->irq = irq;
imx_gpio_mode(PB8_PF_SD_DAT0);
imx_gpio_mode(PB9_PF_SD_DAT1);
imx_gpio_mode(PB10_PF_SD_DAT2);
/* Configured as GPIO with pull-up to ensure right MCC card mode */
/* Switched to PB11_PF_SD_DAT3 if 4 bit bus is configured */
imx_gpio_mode(GPIO_PORTB | GPIO_IN | GPIO_PUEN | 11);
/* imx_gpio_mode(PB11_PF_SD_DAT3); */
imx_gpio_mode(PB12_PF_SD_CLK);
imx_gpio_mode(PB13_PF_SD_CMD);
imxmci_softreset();
if ( MMC_REV_NO != 0x390 ) {
dev_err(mmc_dev(host->mmc), "wrong rev.no. 0x%08x. aborting.\n",
MMC_REV_NO);
goto out;
}
MMC_READ_TO = 0x2db4; /* recommended in data sheet */
host->imask = IMXMCI_INT_MASK_DEFAULT;
MMC_INT_MASK = host->imask;
if(imx_dma_request_by_prio(&host->dma, DRIVER_NAME, DMA_PRIO_LOW)<0){
dev_err(mmc_dev(host->mmc), "imx_dma_request_by_prio failed\n");
ret = -EBUSY;
goto out;
}
host->dma_allocated=1;
imx_dma_setup_handlers(host->dma, imxmci_dma_irq, NULL, host);
tasklet_init(&host->tasklet, imxmci_tasklet_fnc, (unsigned long)host);
host->status_reg=0;
host->pending_events=0;
ret = request_irq(host->irq, imxmci_irq, 0, DRIVER_NAME, host);
if (ret)
goto out;
host->present = host->pdata->card_present(mmc_dev(mmc));
init_timer(&host->timer);
host->timer.data = (unsigned long)host;
host->timer.function = imxmci_check_status;
add_timer(&host->timer);
mod_timer(&host->timer, jiffies + (HZ>>1));
platform_set_drvdata(pdev, mmc);
mmc_add_host(mmc);
return 0;
out:
if (host) {
if(host->dma_allocated){
imx_dma_free(host->dma);
host->dma_allocated=0;
}
}
if (mmc)
mmc_free_host(mmc);
release_resource(r);
return ret;
}
static int imxmci_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (mmc) {
struct imxmci_host *host = mmc_priv(mmc);
tasklet_disable(&host->tasklet);
del_timer_sync(&host->timer);
mmc_remove_host(mmc);
free_irq(host->irq, host);
if(host->dma_allocated){
imx_dma_free(host->dma);
host->dma_allocated=0;
}
tasklet_kill(&host->tasklet);
release_resource(host->res);
mmc_free_host(mmc);
}
return 0;
}
#ifdef CONFIG_PM
static int imxmci_suspend(struct platform_device *dev, pm_message_t state)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
int ret = 0;
if (mmc)
ret = mmc_suspend_host(mmc, state);
return ret;
}
static int imxmci_resume(struct platform_device *dev)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct imxmci_host *host;
int ret = 0;
if (mmc) {
host = mmc_priv(mmc);
if(host)
set_bit(IMXMCI_PEND_SET_INIT_b, &host->pending_events);
ret = mmc_resume_host(mmc);
}
return ret;
}
#else
#define imxmci_suspend NULL
#define imxmci_resume NULL
#endif /* CONFIG_PM */
static struct platform_driver imxmci_driver = {
.probe = imxmci_probe,
.remove = imxmci_remove,
.suspend = imxmci_suspend,
.resume = imxmci_resume,
.driver = {
.name = DRIVER_NAME,
}
};
static int __init imxmci_init(void)
{
return platform_driver_register(&imxmci_driver);
}
static void __exit imxmci_exit(void)
{
platform_driver_unregister(&imxmci_driver);
}
module_init(imxmci_init);
module_exit(imxmci_exit);
MODULE_DESCRIPTION("i.MX Multimedia Card Interface Driver");
MODULE_AUTHOR("Sascha Hauer, Pengutronix");
MODULE_LICENSE("GPL");