linux/drivers/infiniband/ulp/iser/iser_verbs.c

1062 lines
29 KiB
C

/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
* Copyright (c) 2013 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "iscsi_iser.h"
#define ISCSI_ISER_MAX_CONN 8
#define ISER_MAX_RX_CQ_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_TX_CQ_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
static void iser_cq_tasklet_fn(unsigned long data);
static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
static void iser_cq_event_callback(struct ib_event *cause, void *context)
{
iser_err("got cq event %d \n", cause->event);
}
static void iser_qp_event_callback(struct ib_event *cause, void *context)
{
iser_err("got qp event %d\n",cause->event);
}
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %d on device %s port %d\n", event->event,
event->device->name, event->element.port_num);
}
/**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
* the adapator.
*
* returns 0 on success, -1 on failure
*/
static int iser_create_device_ib_res(struct iser_device *device)
{
int i, j;
struct iser_cq_desc *cq_desc;
struct ib_device_attr *dev_attr;
dev_attr = kmalloc(sizeof(*dev_attr), GFP_KERNEL);
if (!dev_attr)
return -ENOMEM;
if (ib_query_device(device->ib_device, dev_attr)) {
pr_warn("Query device failed for %s\n", device->ib_device->name);
goto dev_attr_err;
}
/* Assign function handles - based on FMR support */
if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
iser_info("FMR supported, using FMR for registration\n");
device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
device->iser_free_rdma_reg_res = iser_free_fmr_pool;
device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
} else
if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
iser_info("FRWR supported, using FRWR for registration\n");
device->iser_alloc_rdma_reg_res = iser_create_frwr_pool;
device->iser_free_rdma_reg_res = iser_free_frwr_pool;
device->iser_reg_rdma_mem = iser_reg_rdma_mem_frwr;
device->iser_unreg_rdma_mem = iser_unreg_mem_frwr;
} else {
iser_err("IB device does not support FMRs nor FRWRs, can't register memory\n");
goto dev_attr_err;
}
device->cqs_used = min(ISER_MAX_CQ, device->ib_device->num_comp_vectors);
iser_info("using %d CQs, device %s supports %d vectors\n",
device->cqs_used, device->ib_device->name,
device->ib_device->num_comp_vectors);
device->cq_desc = kmalloc(sizeof(struct iser_cq_desc) * device->cqs_used,
GFP_KERNEL);
if (device->cq_desc == NULL)
goto cq_desc_err;
cq_desc = device->cq_desc;
device->pd = ib_alloc_pd(device->ib_device);
if (IS_ERR(device->pd))
goto pd_err;
for (i = 0; i < device->cqs_used; i++) {
cq_desc[i].device = device;
cq_desc[i].cq_index = i;
device->rx_cq[i] = ib_create_cq(device->ib_device,
iser_cq_callback,
iser_cq_event_callback,
(void *)&cq_desc[i],
ISER_MAX_RX_CQ_LEN, i);
if (IS_ERR(device->rx_cq[i]))
goto cq_err;
device->tx_cq[i] = ib_create_cq(device->ib_device,
NULL, iser_cq_event_callback,
(void *)&cq_desc[i],
ISER_MAX_TX_CQ_LEN, i);
if (IS_ERR(device->tx_cq[i]))
goto cq_err;
if (ib_req_notify_cq(device->rx_cq[i], IB_CQ_NEXT_COMP))
goto cq_err;
tasklet_init(&device->cq_tasklet[i],
iser_cq_tasklet_fn,
(unsigned long)&cq_desc[i]);
}
device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
if (IS_ERR(device->mr))
goto dma_mr_err;
INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
iser_event_handler);
if (ib_register_event_handler(&device->event_handler))
goto handler_err;
kfree(dev_attr);
return 0;
handler_err:
ib_dereg_mr(device->mr);
dma_mr_err:
for (j = 0; j < device->cqs_used; j++)
tasklet_kill(&device->cq_tasklet[j]);
cq_err:
for (j = 0; j < i; j++) {
if (device->tx_cq[j])
ib_destroy_cq(device->tx_cq[j]);
if (device->rx_cq[j])
ib_destroy_cq(device->rx_cq[j]);
}
ib_dealloc_pd(device->pd);
pd_err:
kfree(device->cq_desc);
cq_desc_err:
iser_err("failed to allocate an IB resource\n");
dev_attr_err:
kfree(dev_attr);
return -1;
}
/**
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
* CQ and PD created with the device associated with the adapator.
*/
static void iser_free_device_ib_res(struct iser_device *device)
{
int i;
BUG_ON(device->mr == NULL);
for (i = 0; i < device->cqs_used; i++) {
tasklet_kill(&device->cq_tasklet[i]);
(void)ib_destroy_cq(device->tx_cq[i]);
(void)ib_destroy_cq(device->rx_cq[i]);
device->tx_cq[i] = NULL;
device->rx_cq[i] = NULL;
}
(void)ib_unregister_event_handler(&device->event_handler);
(void)ib_dereg_mr(device->mr);
(void)ib_dealloc_pd(device->pd);
kfree(device->cq_desc);
device->mr = NULL;
device->pd = NULL;
}
/**
* iser_create_fmr_pool - Creates FMR pool and page_vector
*
* returns 0 on success, or errno code on failure
*/
int iser_create_fmr_pool(struct iser_conn *ib_conn, unsigned cmds_max)
{
struct iser_device *device = ib_conn->device;
struct ib_fmr_pool_param params;
int ret = -ENOMEM;
ib_conn->fastreg.fmr.page_vec = kmalloc(sizeof(struct iser_page_vec) +
(sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
GFP_KERNEL);
if (!ib_conn->fastreg.fmr.page_vec)
return ret;
ib_conn->fastreg.fmr.page_vec->pages = (u64 *)(ib_conn->fastreg.fmr.page_vec + 1);
params.page_shift = SHIFT_4K;
/* when the first/last SG element are not start/end *
* page aligned, the map whould be of N+1 pages */
params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
/* make the pool size twice the max number of SCSI commands *
* the ML is expected to queue, watermark for unmap at 50% */
params.pool_size = cmds_max * 2;
params.dirty_watermark = cmds_max;
params.cache = 0;
params.flush_function = NULL;
params.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
ib_conn->fastreg.fmr.pool = ib_create_fmr_pool(device->pd, &params);
if (!IS_ERR(ib_conn->fastreg.fmr.pool))
return 0;
/* no FMR => no need for page_vec */
kfree(ib_conn->fastreg.fmr.page_vec);
ib_conn->fastreg.fmr.page_vec = NULL;
ret = PTR_ERR(ib_conn->fastreg.fmr.pool);
ib_conn->fastreg.fmr.pool = NULL;
if (ret != -ENOSYS) {
iser_err("FMR allocation failed, err %d\n", ret);
return ret;
} else {
iser_warn("FMRs are not supported, using unaligned mode\n");
return 0;
}
}
/**
* iser_free_fmr_pool - releases the FMR pool and page vec
*/
void iser_free_fmr_pool(struct iser_conn *ib_conn)
{
iser_info("freeing conn %p fmr pool %p\n",
ib_conn, ib_conn->fastreg.fmr.pool);
if (ib_conn->fastreg.fmr.pool != NULL)
ib_destroy_fmr_pool(ib_conn->fastreg.fmr.pool);
ib_conn->fastreg.fmr.pool = NULL;
kfree(ib_conn->fastreg.fmr.page_vec);
ib_conn->fastreg.fmr.page_vec = NULL;
}
/**
* iser_create_frwr_pool - Creates pool of fast_reg descriptors
* for fast registration work requests.
* returns 0 on success, or errno code on failure
*/
int iser_create_frwr_pool(struct iser_conn *ib_conn, unsigned cmds_max)
{
struct iser_device *device = ib_conn->device;
struct fast_reg_descriptor *desc;
int i, ret;
INIT_LIST_HEAD(&ib_conn->fastreg.frwr.pool);
ib_conn->fastreg.frwr.pool_size = 0;
for (i = 0; i < cmds_max; i++) {
desc = kmalloc(sizeof(*desc), GFP_KERNEL);
if (!desc) {
iser_err("Failed to allocate a new fast_reg descriptor\n");
ret = -ENOMEM;
goto err;
}
desc->data_frpl = ib_alloc_fast_reg_page_list(device->ib_device,
ISCSI_ISER_SG_TABLESIZE + 1);
if (IS_ERR(desc->data_frpl)) {
ret = PTR_ERR(desc->data_frpl);
iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", ret);
goto fast_reg_page_failure;
}
desc->data_mr = ib_alloc_fast_reg_mr(device->pd,
ISCSI_ISER_SG_TABLESIZE + 1);
if (IS_ERR(desc->data_mr)) {
ret = PTR_ERR(desc->data_mr);
iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
goto fast_reg_mr_failure;
}
desc->valid = true;
list_add_tail(&desc->list, &ib_conn->fastreg.frwr.pool);
ib_conn->fastreg.frwr.pool_size++;
}
return 0;
fast_reg_mr_failure:
ib_free_fast_reg_page_list(desc->data_frpl);
fast_reg_page_failure:
kfree(desc);
err:
iser_free_frwr_pool(ib_conn);
return ret;
}
/**
* iser_free_frwr_pool - releases the pool of fast_reg descriptors
*/
void iser_free_frwr_pool(struct iser_conn *ib_conn)
{
struct fast_reg_descriptor *desc, *tmp;
int i = 0;
if (list_empty(&ib_conn->fastreg.frwr.pool))
return;
iser_info("freeing conn %p frwr pool\n", ib_conn);
list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.frwr.pool, list) {
list_del(&desc->list);
ib_free_fast_reg_page_list(desc->data_frpl);
ib_dereg_mr(desc->data_mr);
kfree(desc);
++i;
}
if (i < ib_conn->fastreg.frwr.pool_size)
iser_warn("pool still has %d regions registered\n",
ib_conn->fastreg.frwr.pool_size - i);
}
/**
* iser_create_ib_conn_res - Queue-Pair (QP)
*
* returns 0 on success, -1 on failure
*/
static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
{
struct iser_device *device;
struct ib_qp_init_attr init_attr;
int ret = -ENOMEM;
int index, min_index = 0;
BUG_ON(ib_conn->device == NULL);
device = ib_conn->device;
memset(&init_attr, 0, sizeof init_attr);
mutex_lock(&ig.connlist_mutex);
/* select the CQ with the minimal number of usages */
for (index = 0; index < device->cqs_used; index++)
if (device->cq_active_qps[index] <
device->cq_active_qps[min_index])
min_index = index;
device->cq_active_qps[min_index]++;
mutex_unlock(&ig.connlist_mutex);
iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
init_attr.event_handler = iser_qp_event_callback;
init_attr.qp_context = (void *)ib_conn;
init_attr.send_cq = device->tx_cq[min_index];
init_attr.recv_cq = device->rx_cq[min_index];
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS;
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
init_attr.cap.max_send_sge = 2;
init_attr.cap.max_recv_sge = 1;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret)
goto out_err;
ib_conn->qp = ib_conn->cma_id->qp;
iser_info("setting conn %p cma_id %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->cma_id->qp);
return ret;
out_err:
iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret;
}
/**
* releases the QP objects, returns 0 on success,
* -1 on failure
*/
static int iser_free_ib_conn_res(struct iser_conn *ib_conn)
{
int cq_index;
BUG_ON(ib_conn == NULL);
iser_info("freeing conn %p cma_id %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->qp);
/* qp is created only once both addr & route are resolved */
if (ib_conn->qp != NULL) {
cq_index = ((struct iser_cq_desc *)ib_conn->qp->recv_cq->cq_context)->cq_index;
ib_conn->device->cq_active_qps[cq_index]--;
rdma_destroy_qp(ib_conn->cma_id);
}
ib_conn->qp = NULL;
return 0;
}
/**
* based on the resolved device node GUID see if there already allocated
* device for this device. If there's no such, create one.
*/
static
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
mutex_lock(&ig.device_list_mutex);
list_for_each_entry(device, &ig.device_list, ig_list)
/* find if there's a match using the node GUID */
if (device->ib_device->node_guid == cma_id->device->node_guid)
goto inc_refcnt;
device = kzalloc(sizeof *device, GFP_KERNEL);
if (device == NULL)
goto out;
/* assign this device to the device */
device->ib_device = cma_id->device;
/* init the device and link it into ig device list */
if (iser_create_device_ib_res(device)) {
kfree(device);
device = NULL;
goto out;
}
list_add(&device->ig_list, &ig.device_list);
inc_refcnt:
device->refcount++;
out:
mutex_unlock(&ig.device_list_mutex);
return device;
}
/* if there's no demand for this device, release it */
static void iser_device_try_release(struct iser_device *device)
{
mutex_lock(&ig.device_list_mutex);
device->refcount--;
iser_info("device %p refcount %d\n", device, device->refcount);
if (!device->refcount) {
iser_free_device_ib_res(device);
list_del(&device->ig_list);
kfree(device);
}
mutex_unlock(&ig.device_list_mutex);
}
static int iser_conn_state_comp_exch(struct iser_conn *ib_conn,
enum iser_ib_conn_state comp,
enum iser_ib_conn_state exch)
{
int ret;
spin_lock_bh(&ib_conn->lock);
if ((ret = (ib_conn->state == comp)))
ib_conn->state = exch;
spin_unlock_bh(&ib_conn->lock);
return ret;
}
/**
* Frees all conn objects and deallocs conn descriptor
*/
static void iser_conn_release(struct iser_conn *ib_conn, int can_destroy_id)
{
struct iser_device *device = ib_conn->device;
BUG_ON(ib_conn->state != ISER_CONN_DOWN);
mutex_lock(&ig.connlist_mutex);
list_del(&ib_conn->conn_list);
mutex_unlock(&ig.connlist_mutex);
iser_free_rx_descriptors(ib_conn);
iser_free_ib_conn_res(ib_conn);
ib_conn->device = NULL;
/* on EVENT_ADDR_ERROR there's no device yet for this conn */
if (device != NULL)
iser_device_try_release(device);
/* if cma handler context, the caller actually destroy the id */
if (ib_conn->cma_id != NULL && can_destroy_id) {
rdma_destroy_id(ib_conn->cma_id);
ib_conn->cma_id = NULL;
}
iscsi_destroy_endpoint(ib_conn->ep);
}
void iser_conn_get(struct iser_conn *ib_conn)
{
atomic_inc(&ib_conn->refcount);
}
int iser_conn_put(struct iser_conn *ib_conn, int can_destroy_id)
{
if (atomic_dec_and_test(&ib_conn->refcount)) {
iser_conn_release(ib_conn, can_destroy_id);
return 1;
}
return 0;
}
/**
* triggers start of the disconnect procedures and wait for them to be done
*/
void iser_conn_terminate(struct iser_conn *ib_conn)
{
int err = 0;
/* change the ib conn state only if the conn is UP, however always call
* rdma_disconnect since this is the only way to cause the CMA to change
* the QP state to ERROR
*/
iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP, ISER_CONN_TERMINATING);
err = rdma_disconnect(ib_conn->cma_id);
if (err)
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
ib_conn,err);
wait_event_interruptible(ib_conn->wait,
ib_conn->state == ISER_CONN_DOWN);
iser_conn_put(ib_conn, 1); /* deref ib conn deallocate */
}
static int iser_connect_error(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
return iser_conn_put(ib_conn, 0); /* deref ib conn's cma id */
}
static int iser_addr_handler(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
struct iser_conn *ib_conn;
int ret;
device = iser_device_find_by_ib_device(cma_id);
if (!device) {
iser_err("device lookup/creation failed\n");
return iser_connect_error(cma_id);
}
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->device = device;
ret = rdma_resolve_route(cma_id, 1000);
if (ret) {
iser_err("resolve route failed: %d\n", ret);
return iser_connect_error(cma_id);
}
return 0;
}
static int iser_route_handler(struct rdma_cm_id *cma_id)
{
struct rdma_conn_param conn_param;
int ret;
struct iser_cm_hdr req_hdr;
ret = iser_create_ib_conn_res((struct iser_conn *)cma_id->context);
if (ret)
goto failure;
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = 4;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 6;
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
ISER_SEND_W_INV_NOT_SUPPORTED);
conn_param.private_data = (void *)&req_hdr;
conn_param.private_data_len = sizeof(struct iser_cm_hdr);
ret = rdma_connect(cma_id, &conn_param);
if (ret) {
iser_err("failure connecting: %d\n", ret);
goto failure;
}
return 0;
failure:
return iser_connect_error(cma_id);
}
static void iser_connected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->state = ISER_CONN_UP;
wake_up_interruptible(&ib_conn->wait);
}
static int iser_disconnected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
int ret;
ib_conn = (struct iser_conn *)cma_id->context;
/* getting here when the state is UP means that the conn is being *
* terminated asynchronously from the iSCSI layer's perspective. */
if (iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
/* Complete the termination process if no posts are pending */
if (ib_conn->post_recv_buf_count == 0 &&
(atomic_read(&ib_conn->post_send_buf_count) == 0)) {
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
}
ret = iser_conn_put(ib_conn, 0); /* deref ib conn's cma id */
return ret;
}
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{
int ret = 0;
iser_info("event %d status %d conn %p id %p\n",
event->event, event->status, cma_id->context, cma_id);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
ret = iser_addr_handler(cma_id);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
ret = iser_route_handler(cma_id);
break;
case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
ret = iser_connect_error(cma_id);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_ADDR_CHANGE:
ret = iser_disconnected_handler(cma_id);
break;
default:
iser_err("Unexpected RDMA CM event (%d)\n", event->event);
break;
}
return ret;
}
void iser_conn_init(struct iser_conn *ib_conn)
{
ib_conn->state = ISER_CONN_INIT;
init_waitqueue_head(&ib_conn->wait);
ib_conn->post_recv_buf_count = 0;
atomic_set(&ib_conn->post_send_buf_count, 0);
atomic_set(&ib_conn->refcount, 1); /* ref ib conn allocation */
INIT_LIST_HEAD(&ib_conn->conn_list);
spin_lock_init(&ib_conn->lock);
}
/**
* starts the process of connecting to the target
* sleeps until the connection is established or rejected
*/
int iser_connect(struct iser_conn *ib_conn,
struct sockaddr_in *src_addr,
struct sockaddr_in *dst_addr,
int non_blocking)
{
struct sockaddr *src, *dst;
int err = 0;
sprintf(ib_conn->name, "%pI4:%d",
&dst_addr->sin_addr.s_addr, dst_addr->sin_port);
/* the device is known only --after-- address resolution */
ib_conn->device = NULL;
iser_info("connecting to: %pI4, port 0x%x\n",
&dst_addr->sin_addr, dst_addr->sin_port);
ib_conn->state = ISER_CONN_PENDING;
iser_conn_get(ib_conn); /* ref ib conn's cma id */
ib_conn->cma_id = rdma_create_id(iser_cma_handler,
(void *)ib_conn,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(ib_conn->cma_id)) {
err = PTR_ERR(ib_conn->cma_id);
iser_err("rdma_create_id failed: %d\n", err);
goto id_failure;
}
src = (struct sockaddr *)src_addr;
dst = (struct sockaddr *)dst_addr;
err = rdma_resolve_addr(ib_conn->cma_id, src, dst, 1000);
if (err) {
iser_err("rdma_resolve_addr failed: %d\n", err);
goto addr_failure;
}
if (!non_blocking) {
wait_event_interruptible(ib_conn->wait,
(ib_conn->state != ISER_CONN_PENDING));
if (ib_conn->state != ISER_CONN_UP) {
err = -EIO;
goto connect_failure;
}
}
mutex_lock(&ig.connlist_mutex);
list_add(&ib_conn->conn_list, &ig.connlist);
mutex_unlock(&ig.connlist_mutex);
return 0;
id_failure:
ib_conn->cma_id = NULL;
addr_failure:
ib_conn->state = ISER_CONN_DOWN;
iser_conn_put(ib_conn, 1); /* deref ib conn's cma id */
connect_failure:
iser_conn_put(ib_conn, 1); /* deref ib conn deallocate */
return err;
}
/**
* iser_reg_page_vec - Register physical memory
*
* returns: 0 on success, errno code on failure
*/
int iser_reg_page_vec(struct iser_conn *ib_conn,
struct iser_page_vec *page_vec,
struct iser_mem_reg *mem_reg)
{
struct ib_pool_fmr *mem;
u64 io_addr;
u64 *page_list;
int status;
page_list = page_vec->pages;
io_addr = page_list[0];
mem = ib_fmr_pool_map_phys(ib_conn->fastreg.fmr.pool,
page_list,
page_vec->length,
io_addr);
if (IS_ERR(mem)) {
status = (int)PTR_ERR(mem);
iser_err("ib_fmr_pool_map_phys failed: %d\n", status);
return status;
}
mem_reg->lkey = mem->fmr->lkey;
mem_reg->rkey = mem->fmr->rkey;
mem_reg->len = page_vec->length * SIZE_4K;
mem_reg->va = io_addr;
mem_reg->is_mr = 1;
mem_reg->mem_h = (void *)mem;
mem_reg->va += page_vec->offset;
mem_reg->len = page_vec->data_size;
iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, "
"entry[0]: (0x%08lx,%ld)] -> "
"[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n",
page_vec, page_vec->length,
(unsigned long)page_vec->pages[0],
(unsigned long)page_vec->data_size,
(unsigned int)mem_reg->lkey, mem_reg->mem_h,
(unsigned long)mem_reg->va, (unsigned long)mem_reg->len);
return 0;
}
/**
* Unregister (previosuly registered using FMR) memory.
* If memory is non-FMR does nothing.
*/
void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir)
{
struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
int ret;
if (!reg->is_mr)
return;
iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h);
ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h);
if (ret)
iser_err("ib_fmr_pool_unmap failed %d\n", ret);
reg->mem_h = NULL;
}
void iser_unreg_mem_frwr(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir)
{
struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
struct iser_conn *ib_conn = iser_task->iser_conn->ib_conn;
struct fast_reg_descriptor *desc = reg->mem_h;
if (!reg->is_mr)
return;
reg->mem_h = NULL;
reg->is_mr = 0;
spin_lock_bh(&ib_conn->lock);
list_add_tail(&desc->list, &ib_conn->fastreg.frwr.pool);
spin_unlock_bh(&ib_conn->lock);
}
int iser_post_recvl(struct iser_conn *ib_conn)
{
struct ib_recv_wr rx_wr, *rx_wr_failed;
struct ib_sge sge;
int ib_ret;
sge.addr = ib_conn->login_resp_dma;
sge.length = ISER_RX_LOGIN_SIZE;
sge.lkey = ib_conn->device->mr->lkey;
rx_wr.wr_id = (unsigned long)ib_conn->login_resp_buf;
rx_wr.sg_list = &sge;
rx_wr.num_sge = 1;
rx_wr.next = NULL;
ib_conn->post_recv_buf_count++;
ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count--;
}
return ib_ret;
}
int iser_post_recvm(struct iser_conn *ib_conn, int count)
{
struct ib_recv_wr *rx_wr, *rx_wr_failed;
int i, ib_ret;
unsigned int my_rx_head = ib_conn->rx_desc_head;
struct iser_rx_desc *rx_desc;
for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
rx_desc = &ib_conn->rx_descs[my_rx_head];
rx_wr->wr_id = (unsigned long)rx_desc;
rx_wr->sg_list = &rx_desc->rx_sg;
rx_wr->num_sge = 1;
rx_wr->next = rx_wr + 1;
my_rx_head = (my_rx_head + 1) & ib_conn->qp_max_recv_dtos_mask;
}
rx_wr--;
rx_wr->next = NULL; /* mark end of work requests list */
ib_conn->post_recv_buf_count += count;
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count -= count;
} else
ib_conn->rx_desc_head = my_rx_head;
return ib_ret;
}
/**
* iser_start_send - Initiate a Send DTO operation
*
* returns 0 on success, -1 on failure
*/
int iser_post_send(struct iser_conn *ib_conn, struct iser_tx_desc *tx_desc)
{
int ib_ret;
struct ib_send_wr send_wr, *send_wr_failed;
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
tx_desc->dma_addr, ISER_HEADERS_LEN, DMA_TO_DEVICE);
send_wr.next = NULL;
send_wr.wr_id = (unsigned long)tx_desc;
send_wr.sg_list = tx_desc->tx_sg;
send_wr.num_sge = tx_desc->num_sge;
send_wr.opcode = IB_WR_SEND;
send_wr.send_flags = IB_SEND_SIGNALED;
atomic_inc(&ib_conn->post_send_buf_count);
ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
if (ib_ret) {
iser_err("ib_post_send failed, ret:%d\n", ib_ret);
atomic_dec(&ib_conn->post_send_buf_count);
}
return ib_ret;
}
static void iser_handle_comp_error(struct iser_tx_desc *desc,
struct iser_conn *ib_conn)
{
if (desc && desc->type == ISCSI_TX_DATAOUT)
kmem_cache_free(ig.desc_cache, desc);
if (ib_conn->post_recv_buf_count == 0 &&
atomic_read(&ib_conn->post_send_buf_count) == 0) {
/* getting here when the state is UP means that the conn is *
* being terminated asynchronously from the iSCSI layer's *
* perspective. */
if (iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
/* no more non completed posts to the QP, complete the
* termination process w.o worrying on disconnect event */
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
}
}
static int iser_drain_tx_cq(struct iser_device *device, int cq_index)
{
struct ib_cq *cq = device->tx_cq[cq_index];
struct ib_wc wc;
struct iser_tx_desc *tx_desc;
struct iser_conn *ib_conn;
int completed_tx = 0;
while (ib_poll_cq(cq, 1, &wc) == 1) {
tx_desc = (struct iser_tx_desc *) (unsigned long) wc.wr_id;
ib_conn = wc.qp->qp_context;
if (wc.status == IB_WC_SUCCESS) {
if (wc.opcode == IB_WC_SEND)
iser_snd_completion(tx_desc, ib_conn);
else if (wc.opcode == IB_WC_LOCAL_INV ||
wc.opcode == IB_WC_FAST_REG_MR) {
atomic_dec(&ib_conn->post_send_buf_count);
continue;
} else
iser_err("expected opcode %d got %d\n",
IB_WC_SEND, wc.opcode);
} else {
iser_err("tx id %llx status %d vend_err %x\n",
wc.wr_id, wc.status, wc.vendor_err);
atomic_dec(&ib_conn->post_send_buf_count);
iser_handle_comp_error(tx_desc, ib_conn);
}
completed_tx++;
}
return completed_tx;
}
static void iser_cq_tasklet_fn(unsigned long data)
{
struct iser_cq_desc *cq_desc = (struct iser_cq_desc *)data;
struct iser_device *device = cq_desc->device;
int cq_index = cq_desc->cq_index;
struct ib_cq *cq = device->rx_cq[cq_index];
struct ib_wc wc;
struct iser_rx_desc *desc;
unsigned long xfer_len;
struct iser_conn *ib_conn;
int completed_tx, completed_rx;
completed_tx = completed_rx = 0;
while (ib_poll_cq(cq, 1, &wc) == 1) {
desc = (struct iser_rx_desc *) (unsigned long) wc.wr_id;
BUG_ON(desc == NULL);
ib_conn = wc.qp->qp_context;
if (wc.status == IB_WC_SUCCESS) {
if (wc.opcode == IB_WC_RECV) {
xfer_len = (unsigned long)wc.byte_len;
iser_rcv_completion(desc, xfer_len, ib_conn);
} else
iser_err("expected opcode %d got %d\n",
IB_WC_RECV, wc.opcode);
} else {
if (wc.status != IB_WC_WR_FLUSH_ERR)
iser_err("rx id %llx status %d vend_err %x\n",
wc.wr_id, wc.status, wc.vendor_err);
ib_conn->post_recv_buf_count--;
iser_handle_comp_error(NULL, ib_conn);
}
completed_rx++;
if (!(completed_rx & 63))
completed_tx += iser_drain_tx_cq(device, cq_index);
}
/* #warning "it is assumed here that arming CQ only once its empty" *
* " would not cause interrupts to be missed" */
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
completed_tx += iser_drain_tx_cq(device, cq_index);
iser_dbg("got %d rx %d tx completions\n", completed_rx, completed_tx);
}
static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
{
struct iser_cq_desc *cq_desc = (struct iser_cq_desc *)cq_context;
struct iser_device *device = cq_desc->device;
int cq_index = cq_desc->cq_index;
tasklet_schedule(&device->cq_tasklet[cq_index]);
}