linux/drivers/media/dvb-frontends/nxt200x.c

1247 lines
29 KiB
C

/*
* Support for NXT2002 and NXT2004 - VSB/QAM
*
* Copyright (C) 2005 Kirk Lapray <kirk.lapray@gmail.com>
* Copyright (C) 2006-2014 Michael Krufky <mkrufky@linuxtv.org>
* based on nxt2002 by Taylor Jacob <rtjacob@earthlink.net>
* and nxt2004 by Jean-Francois Thibert <jeanfrancois@sagetv.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* NOTES ABOUT THIS DRIVER
*
* This Linux driver supports:
* B2C2/BBTI Technisat Air2PC - ATSC (NXT2002)
* AverTVHD MCE A180 (NXT2004)
* ATI HDTV Wonder (NXT2004)
*
* This driver needs external firmware. Please use the command
* "<kerneldir>/Documentation/dvb/get_dvb_firmware nxt2002" or
* "<kerneldir>/Documentation/dvb/get_dvb_firmware nxt2004" to
* download/extract the appropriate firmware, and then copy it to
* /usr/lib/hotplug/firmware/ or /lib/firmware/
* (depending on configuration of firmware hotplug).
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 256
#define NXT2002_DEFAULT_FIRMWARE "dvb-fe-nxt2002.fw"
#define NXT2004_DEFAULT_FIRMWARE "dvb-fe-nxt2004.fw"
#define CRC_CCIT_MASK 0x1021
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "dvb_frontend.h"
#include "nxt200x.h"
struct nxt200x_state {
struct i2c_adapter* i2c;
const struct nxt200x_config* config;
struct dvb_frontend frontend;
/* demodulator private data */
nxt_chip_type demod_chip;
u8 initialised:1;
};
static int debug;
#define dprintk(args...) do { if (debug) pr_debug(args); } while (0)
static int i2c_writebytes (struct nxt200x_state* state, u8 addr, u8 *buf, u8 len)
{
int err;
struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = len };
if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
pr_warn("%s: i2c write error (addr 0x%02x, err == %i)\n",
__func__, addr, err);
return -EREMOTEIO;
}
return 0;
}
static int i2c_readbytes(struct nxt200x_state *state, u8 addr, u8 *buf, u8 len)
{
int err;
struct i2c_msg msg = { .addr = addr, .flags = I2C_M_RD, .buf = buf, .len = len };
if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
pr_warn("%s: i2c read error (addr 0x%02x, err == %i)\n",
__func__, addr, err);
return -EREMOTEIO;
}
return 0;
}
static int nxt200x_writebytes (struct nxt200x_state* state, u8 reg,
const u8 *buf, u8 len)
{
u8 buf2[MAX_XFER_SIZE];
int err;
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf2, .len = len + 1 };
if (1 + len > sizeof(buf2)) {
pr_warn("%s: i2c wr reg=%04x: len=%d is too big!\n",
__func__, reg, len);
return -EINVAL;
}
buf2[0] = reg;
memcpy(&buf2[1], buf, len);
if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
pr_warn("%s: i2c write error (addr 0x%02x, err == %i)\n",
__func__, state->config->demod_address, err);
return -EREMOTEIO;
}
return 0;
}
static int nxt200x_readbytes(struct nxt200x_state *state, u8 reg, u8 *buf, u8 len)
{
u8 reg2 [] = { reg };
struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = reg2, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = buf, .len = len } };
int err;
if ((err = i2c_transfer (state->i2c, msg, 2)) != 2) {
pr_warn("%s: i2c read error (addr 0x%02x, err == %i)\n",
__func__, state->config->demod_address, err);
return -EREMOTEIO;
}
return 0;
}
static u16 nxt200x_crc(u16 crc, u8 c)
{
u8 i;
u16 input = (u16) c & 0xFF;
input<<=8;
for(i=0; i<8; i++) {
if((crc^input) & 0x8000)
crc=(crc<<1)^CRC_CCIT_MASK;
else
crc<<=1;
input<<=1;
}
return crc;
}
static int nxt200x_writereg_multibyte (struct nxt200x_state* state, u8 reg, u8* data, u8 len)
{
u8 attr, len2, buf;
dprintk("%s\n", __func__);
/* set mutli register register */
nxt200x_writebytes(state, 0x35, &reg, 1);
/* send the actual data */
nxt200x_writebytes(state, 0x36, data, len);
switch (state->demod_chip) {
case NXT2002:
len2 = len;
buf = 0x02;
break;
case NXT2004:
/* probably not right, but gives correct values */
attr = 0x02;
if (reg & 0x80) {
attr = attr << 1;
if (reg & 0x04)
attr = attr >> 1;
}
/* set write bit */
len2 = ((attr << 4) | 0x10) | len;
buf = 0x80;
break;
default:
return -EINVAL;
break;
}
/* set multi register length */
nxt200x_writebytes(state, 0x34, &len2, 1);
/* toggle the multireg write bit */
nxt200x_writebytes(state, 0x21, &buf, 1);
nxt200x_readbytes(state, 0x21, &buf, 1);
switch (state->demod_chip) {
case NXT2002:
if ((buf & 0x02) == 0)
return 0;
break;
case NXT2004:
if (buf == 0)
return 0;
break;
default:
return -EINVAL;
break;
}
pr_warn("Error writing multireg register 0x%02X\n", reg);
return 0;
}
static int nxt200x_readreg_multibyte (struct nxt200x_state* state, u8 reg, u8* data, u8 len)
{
int i;
u8 buf, len2, attr;
dprintk("%s\n", __func__);
/* set mutli register register */
nxt200x_writebytes(state, 0x35, &reg, 1);
switch (state->demod_chip) {
case NXT2002:
/* set multi register length */
len2 = len & 0x80;
nxt200x_writebytes(state, 0x34, &len2, 1);
/* read the actual data */
nxt200x_readbytes(state, reg, data, len);
return 0;
break;
case NXT2004:
/* probably not right, but gives correct values */
attr = 0x02;
if (reg & 0x80) {
attr = attr << 1;
if (reg & 0x04)
attr = attr >> 1;
}
/* set multi register length */
len2 = (attr << 4) | len;
nxt200x_writebytes(state, 0x34, &len2, 1);
/* toggle the multireg bit*/
buf = 0x80;
nxt200x_writebytes(state, 0x21, &buf, 1);
/* read the actual data */
for(i = 0; i < len; i++) {
nxt200x_readbytes(state, 0x36 + i, &data[i], 1);
}
return 0;
break;
default:
return -EINVAL;
break;
}
}
static void nxt200x_microcontroller_stop (struct nxt200x_state* state)
{
u8 buf, stopval, counter = 0;
dprintk("%s\n", __func__);
/* set correct stop value */
switch (state->demod_chip) {
case NXT2002:
stopval = 0x40;
break;
case NXT2004:
stopval = 0x10;
break;
default:
stopval = 0;
break;
}
buf = 0x80;
nxt200x_writebytes(state, 0x22, &buf, 1);
while (counter < 20) {
nxt200x_readbytes(state, 0x31, &buf, 1);
if (buf & stopval)
return;
msleep(10);
counter++;
}
pr_warn("Timeout waiting for nxt200x to stop. This is ok after firmware upload.\n");
return;
}
static void nxt200x_microcontroller_start (struct nxt200x_state* state)
{
u8 buf;
dprintk("%s\n", __func__);
buf = 0x00;
nxt200x_writebytes(state, 0x22, &buf, 1);
}
static void nxt2004_microcontroller_init (struct nxt200x_state* state)
{
u8 buf[9];
u8 counter = 0;
dprintk("%s\n", __func__);
buf[0] = 0x00;
nxt200x_writebytes(state, 0x2b, buf, 1);
buf[0] = 0x70;
nxt200x_writebytes(state, 0x34, buf, 1);
buf[0] = 0x04;
nxt200x_writebytes(state, 0x35, buf, 1);
buf[0] = 0x01; buf[1] = 0x23; buf[2] = 0x45; buf[3] = 0x67; buf[4] = 0x89;
buf[5] = 0xAB; buf[6] = 0xCD; buf[7] = 0xEF; buf[8] = 0xC0;
nxt200x_writebytes(state, 0x36, buf, 9);
buf[0] = 0x80;
nxt200x_writebytes(state, 0x21, buf, 1);
while (counter < 20) {
nxt200x_readbytes(state, 0x21, buf, 1);
if (buf[0] == 0)
return;
msleep(10);
counter++;
}
pr_warn("Timeout waiting for nxt2004 to init.\n");
return;
}
static int nxt200x_writetuner (struct nxt200x_state* state, u8* data)
{
u8 buf, count = 0;
dprintk("%s\n", __func__);
dprintk("Tuner Bytes: %*ph\n", 4, data + 1);
/* if NXT2004, write directly to tuner. if NXT2002, write through NXT chip.
* direct write is required for Philips TUV1236D and ALPS TDHU2 */
switch (state->demod_chip) {
case NXT2004:
if (i2c_writebytes(state, data[0], data+1, 4))
pr_warn("error writing to tuner\n");
/* wait until we have a lock */
while (count < 20) {
i2c_readbytes(state, data[0], &buf, 1);
if (buf & 0x40)
return 0;
msleep(100);
count++;
}
pr_warn("timeout waiting for tuner lock\n");
break;
case NXT2002:
/* set the i2c transfer speed to the tuner */
buf = 0x03;
nxt200x_writebytes(state, 0x20, &buf, 1);
/* setup to transfer 4 bytes via i2c */
buf = 0x04;
nxt200x_writebytes(state, 0x34, &buf, 1);
/* write actual tuner bytes */
nxt200x_writebytes(state, 0x36, data+1, 4);
/* set tuner i2c address */
buf = data[0] << 1;
nxt200x_writebytes(state, 0x35, &buf, 1);
/* write UC Opmode to begin transfer */
buf = 0x80;
nxt200x_writebytes(state, 0x21, &buf, 1);
while (count < 20) {
nxt200x_readbytes(state, 0x21, &buf, 1);
if ((buf & 0x80)== 0x00)
return 0;
msleep(100);
count++;
}
pr_warn("timeout error writing to tuner\n");
break;
default:
return -EINVAL;
break;
}
return 0;
}
static void nxt200x_agc_reset(struct nxt200x_state* state)
{
u8 buf;
dprintk("%s\n", __func__);
switch (state->demod_chip) {
case NXT2002:
buf = 0x08;
nxt200x_writebytes(state, 0x08, &buf, 1);
buf = 0x00;
nxt200x_writebytes(state, 0x08, &buf, 1);
break;
case NXT2004:
nxt200x_readreg_multibyte(state, 0x08, &buf, 1);
buf = 0x08;
nxt200x_writereg_multibyte(state, 0x08, &buf, 1);
buf = 0x00;
nxt200x_writereg_multibyte(state, 0x08, &buf, 1);
break;
default:
break;
}
return;
}
static int nxt2002_load_firmware (struct dvb_frontend* fe, const struct firmware *fw)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 buf[3], written = 0, chunkpos = 0;
u16 rambase, position, crc = 0;
dprintk("%s\n", __func__);
dprintk("Firmware is %zu bytes\n", fw->size);
/* Get the RAM base for this nxt2002 */
nxt200x_readbytes(state, 0x10, buf, 1);
if (buf[0] & 0x10)
rambase = 0x1000;
else
rambase = 0x0000;
dprintk("rambase on this nxt2002 is %04X\n", rambase);
/* Hold the micro in reset while loading firmware */
buf[0] = 0x80;
nxt200x_writebytes(state, 0x2B, buf, 1);
for (position = 0; position < fw->size; position++) {
if (written == 0) {
crc = 0;
chunkpos = 0x28;
buf[0] = ((rambase + position) >> 8);
buf[1] = (rambase + position) & 0xFF;
buf[2] = 0x81;
/* write starting address */
nxt200x_writebytes(state, 0x29, buf, 3);
}
written++;
chunkpos++;
if ((written % 4) == 0)
nxt200x_writebytes(state, chunkpos, &fw->data[position-3], 4);
crc = nxt200x_crc(crc, fw->data[position]);
if ((written == 255) || (position+1 == fw->size)) {
/* write remaining bytes of firmware */
nxt200x_writebytes(state, chunkpos+4-(written %4),
&fw->data[position-(written %4) + 1],
written %4);
buf[0] = crc << 8;
buf[1] = crc & 0xFF;
/* write crc */
nxt200x_writebytes(state, 0x2C, buf, 2);
/* do a read to stop things */
nxt200x_readbytes(state, 0x2A, buf, 1);
/* set transfer mode to complete */
buf[0] = 0x80;
nxt200x_writebytes(state, 0x2B, buf, 1);
written = 0;
}
}
return 0;
};
static int nxt2004_load_firmware (struct dvb_frontend* fe, const struct firmware *fw)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 buf[3];
u16 rambase, position, crc=0;
dprintk("%s\n", __func__);
dprintk("Firmware is %zu bytes\n", fw->size);
/* set rambase */
rambase = 0x1000;
/* hold the micro in reset while loading firmware */
buf[0] = 0x80;
nxt200x_writebytes(state, 0x2B, buf,1);
/* calculate firmware CRC */
for (position = 0; position < fw->size; position++) {
crc = nxt200x_crc(crc, fw->data[position]);
}
buf[0] = rambase >> 8;
buf[1] = rambase & 0xFF;
buf[2] = 0x81;
/* write starting address */
nxt200x_writebytes(state,0x29,buf,3);
for (position = 0; position < fw->size;) {
nxt200x_writebytes(state, 0x2C, &fw->data[position],
fw->size-position > 255 ? 255 : fw->size-position);
position += (fw->size-position > 255 ? 255 : fw->size-position);
}
buf[0] = crc >> 8;
buf[1] = crc & 0xFF;
dprintk("firmware crc is 0x%02X 0x%02X\n", buf[0], buf[1]);
/* write crc */
nxt200x_writebytes(state, 0x2C, buf,2);
/* do a read to stop things */
nxt200x_readbytes(state, 0x2C, buf, 1);
/* set transfer mode to complete */
buf[0] = 0x80;
nxt200x_writebytes(state, 0x2B, buf,1);
return 0;
};
static int nxt200x_setup_frontend_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct nxt200x_state* state = fe->demodulator_priv;
u8 buf[5];
/* stop the micro first */
nxt200x_microcontroller_stop(state);
if (state->demod_chip == NXT2004) {
/* make sure demod is set to digital */
buf[0] = 0x04;
nxt200x_writebytes(state, 0x14, buf, 1);
buf[0] = 0x00;
nxt200x_writebytes(state, 0x17, buf, 1);
}
/* set additional params */
switch (p->modulation) {
case QAM_64:
case QAM_256:
/* Set punctured clock for QAM */
/* This is just a guess since I am unable to test it */
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 1);
break;
case VSB_8:
/* Set non-punctured clock for VSB */
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
break;
default:
return -EINVAL;
break;
}
if (fe->ops.tuner_ops.calc_regs) {
/* get tuning information */
fe->ops.tuner_ops.calc_regs(fe, buf, 5);
/* write frequency information */
nxt200x_writetuner(state, buf);
}
/* reset the agc now that tuning has been completed */
nxt200x_agc_reset(state);
/* set target power level */
switch (p->modulation) {
case QAM_64:
case QAM_256:
buf[0] = 0x74;
break;
case VSB_8:
buf[0] = 0x70;
break;
default:
return -EINVAL;
break;
}
nxt200x_writebytes(state, 0x42, buf, 1);
/* configure sdm */
switch (state->demod_chip) {
case NXT2002:
buf[0] = 0x87;
break;
case NXT2004:
buf[0] = 0x07;
break;
default:
return -EINVAL;
break;
}
nxt200x_writebytes(state, 0x57, buf, 1);
/* write sdm1 input */
buf[0] = 0x10;
buf[1] = 0x00;
switch (state->demod_chip) {
case NXT2002:
nxt200x_writereg_multibyte(state, 0x58, buf, 2);
break;
case NXT2004:
nxt200x_writebytes(state, 0x58, buf, 2);
break;
default:
return -EINVAL;
break;
}
/* write sdmx input */
switch (p->modulation) {
case QAM_64:
buf[0] = 0x68;
break;
case QAM_256:
buf[0] = 0x64;
break;
case VSB_8:
buf[0] = 0x60;
break;
default:
return -EINVAL;
break;
}
buf[1] = 0x00;
switch (state->demod_chip) {
case NXT2002:
nxt200x_writereg_multibyte(state, 0x5C, buf, 2);
break;
case NXT2004:
nxt200x_writebytes(state, 0x5C, buf, 2);
break;
default:
return -EINVAL;
break;
}
/* write adc power lpf fc */
buf[0] = 0x05;
nxt200x_writebytes(state, 0x43, buf, 1);
if (state->demod_chip == NXT2004) {
/* write ??? */
buf[0] = 0x00;
buf[1] = 0x00;
nxt200x_writebytes(state, 0x46, buf, 2);
}
/* write accumulator2 input */
buf[0] = 0x80;
buf[1] = 0x00;
switch (state->demod_chip) {
case NXT2002:
nxt200x_writereg_multibyte(state, 0x4B, buf, 2);
break;
case NXT2004:
nxt200x_writebytes(state, 0x4B, buf, 2);
break;
default:
return -EINVAL;
break;
}
/* write kg1 */
buf[0] = 0x00;
nxt200x_writebytes(state, 0x4D, buf, 1);
/* write sdm12 lpf fc */
buf[0] = 0x44;
nxt200x_writebytes(state, 0x55, buf, 1);
/* write agc control reg */
buf[0] = 0x04;
nxt200x_writebytes(state, 0x41, buf, 1);
if (state->demod_chip == NXT2004) {
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x24;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
/* soft reset? */
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x10;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x04;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x81, buf, 1);
buf[0] = 0x80; buf[1] = 0x00; buf[2] = 0x00;
nxt200x_writereg_multibyte(state, 0x82, buf, 3);
nxt200x_readreg_multibyte(state, 0x88, buf, 1);
buf[0] = 0x11;
nxt200x_writereg_multibyte(state, 0x88, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x44;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
}
/* write agc ucgp0 */
switch (p->modulation) {
case QAM_64:
buf[0] = 0x02;
break;
case QAM_256:
buf[0] = 0x03;
break;
case VSB_8:
buf[0] = 0x00;
break;
default:
return -EINVAL;
break;
}
nxt200x_writebytes(state, 0x30, buf, 1);
/* write agc control reg */
buf[0] = 0x00;
nxt200x_writebytes(state, 0x41, buf, 1);
/* write accumulator2 input */
buf[0] = 0x80;
buf[1] = 0x00;
switch (state->demod_chip) {
case NXT2002:
nxt200x_writereg_multibyte(state, 0x49, buf, 2);
nxt200x_writereg_multibyte(state, 0x4B, buf, 2);
break;
case NXT2004:
nxt200x_writebytes(state, 0x49, buf, 2);
nxt200x_writebytes(state, 0x4B, buf, 2);
break;
default:
return -EINVAL;
break;
}
/* write agc control reg */
buf[0] = 0x04;
nxt200x_writebytes(state, 0x41, buf, 1);
nxt200x_microcontroller_start(state);
if (state->demod_chip == NXT2004) {
nxt2004_microcontroller_init(state);
/* ???? */
buf[0] = 0xF0;
buf[1] = 0x00;
nxt200x_writebytes(state, 0x5C, buf, 2);
}
/* adjacent channel detection should be done here, but I don't
have any stations with this need so I cannot test it */
return 0;
}
static int nxt200x_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 lock;
nxt200x_readbytes(state, 0x31, &lock, 1);
*status = 0;
if (lock & 0x20) {
*status |= FE_HAS_SIGNAL;
*status |= FE_HAS_CARRIER;
*status |= FE_HAS_VITERBI;
*status |= FE_HAS_SYNC;
*status |= FE_HAS_LOCK;
}
return 0;
}
static int nxt200x_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 b[3];
nxt200x_readreg_multibyte(state, 0xE6, b, 3);
*ber = ((b[0] << 8) + b[1]) * 8;
return 0;
}
static int nxt200x_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 b[2];
u16 temp = 0;
/* setup to read cluster variance */
b[0] = 0x00;
nxt200x_writebytes(state, 0xA1, b, 1);
/* get multreg val */
nxt200x_readreg_multibyte(state, 0xA6, b, 2);
temp = (b[0] << 8) | b[1];
*strength = ((0x7FFF - temp) & 0x0FFF) * 16;
return 0;
}
static int nxt200x_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 b[2];
u16 temp = 0, temp2;
u32 snrdb = 0;
/* setup to read cluster variance */
b[0] = 0x00;
nxt200x_writebytes(state, 0xA1, b, 1);
/* get multreg val from 0xA6 */
nxt200x_readreg_multibyte(state, 0xA6, b, 2);
temp = (b[0] << 8) | b[1];
temp2 = 0x7FFF - temp;
/* snr will be in db */
if (temp2 > 0x7F00)
snrdb = 1000*24 + ( 1000*(30-24) * ( temp2 - 0x7F00 ) / ( 0x7FFF - 0x7F00 ) );
else if (temp2 > 0x7EC0)
snrdb = 1000*18 + ( 1000*(24-18) * ( temp2 - 0x7EC0 ) / ( 0x7F00 - 0x7EC0 ) );
else if (temp2 > 0x7C00)
snrdb = 1000*12 + ( 1000*(18-12) * ( temp2 - 0x7C00 ) / ( 0x7EC0 - 0x7C00 ) );
else
snrdb = 1000*0 + ( 1000*(12-0) * ( temp2 - 0 ) / ( 0x7C00 - 0 ) );
/* the value reported back from the frontend will be FFFF=32db 0000=0db */
*snr = snrdb * (0xFFFF/32000);
return 0;
}
static int nxt200x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct nxt200x_state* state = fe->demodulator_priv;
u8 b[3];
nxt200x_readreg_multibyte(state, 0xE6, b, 3);
*ucblocks = b[2];
return 0;
}
static int nxt200x_sleep(struct dvb_frontend* fe)
{
return 0;
}
static int nxt2002_init(struct dvb_frontend* fe)
{
struct nxt200x_state* state = fe->demodulator_priv;
const struct firmware *fw;
int ret;
u8 buf[2];
/* request the firmware, this will block until someone uploads it */
pr_debug("%s: Waiting for firmware upload (%s)...\n",
__func__, NXT2002_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, NXT2002_DEFAULT_FIRMWARE,
state->i2c->dev.parent);
pr_debug("%s: Waiting for firmware upload(2)...\n", __func__);
if (ret) {
pr_err("%s: No firmware uploaded (timeout or file not found?)\n",
__func__);
return ret;
}
ret = nxt2002_load_firmware(fe, fw);
release_firmware(fw);
if (ret) {
pr_err("%s: Writing firmware to device failed\n", __func__);
return ret;
}
pr_info("%s: Firmware upload complete\n", __func__);
/* Put the micro into reset */
nxt200x_microcontroller_stop(state);
/* ensure transfer is complete */
buf[0]=0x00;
nxt200x_writebytes(state, 0x2B, buf, 1);
/* Put the micro into reset for real this time */
nxt200x_microcontroller_stop(state);
/* soft reset everything (agc,frontend,eq,fec)*/
buf[0] = 0x0F;
nxt200x_writebytes(state, 0x08, buf, 1);
buf[0] = 0x00;
nxt200x_writebytes(state, 0x08, buf, 1);
/* write agc sdm configure */
buf[0] = 0xF1;
nxt200x_writebytes(state, 0x57, buf, 1);
/* write mod output format */
buf[0] = 0x20;
nxt200x_writebytes(state, 0x09, buf, 1);
/* write fec mpeg mode */
buf[0] = 0x7E;
buf[1] = 0x00;
nxt200x_writebytes(state, 0xE9, buf, 2);
/* write mux selection */
buf[0] = 0x00;
nxt200x_writebytes(state, 0xCC, buf, 1);
return 0;
}
static int nxt2004_init(struct dvb_frontend* fe)
{
struct nxt200x_state* state = fe->demodulator_priv;
const struct firmware *fw;
int ret;
u8 buf[3];
/* ??? */
buf[0]=0x00;
nxt200x_writebytes(state, 0x1E, buf, 1);
/* request the firmware, this will block until someone uploads it */
pr_debug("%s: Waiting for firmware upload (%s)...\n",
__func__, NXT2004_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, NXT2004_DEFAULT_FIRMWARE,
state->i2c->dev.parent);
pr_debug("%s: Waiting for firmware upload(2)...\n", __func__);
if (ret) {
pr_err("%s: No firmware uploaded (timeout or file not found?)\n",
__func__);
return ret;
}
ret = nxt2004_load_firmware(fe, fw);
release_firmware(fw);
if (ret) {
pr_err("%s: Writing firmware to device failed\n", __func__);
return ret;
}
pr_info("%s: Firmware upload complete\n", __func__);
/* ensure transfer is complete */
buf[0] = 0x01;
nxt200x_writebytes(state, 0x19, buf, 1);
nxt2004_microcontroller_init(state);
nxt200x_microcontroller_stop(state);
nxt200x_microcontroller_stop(state);
nxt2004_microcontroller_init(state);
nxt200x_microcontroller_stop(state);
/* soft reset everything (agc,frontend,eq,fec)*/
buf[0] = 0xFF;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
/* write agc sdm configure */
buf[0] = 0xD7;
nxt200x_writebytes(state, 0x57, buf, 1);
/* ???*/
buf[0] = 0x07;
buf[1] = 0xfe;
nxt200x_writebytes(state, 0x35, buf, 2);
buf[0] = 0x12;
nxt200x_writebytes(state, 0x34, buf, 1);
buf[0] = 0x80;
nxt200x_writebytes(state, 0x21, buf, 1);
/* ???*/
buf[0] = 0x21;
nxt200x_writebytes(state, 0x0A, buf, 1);
/* ???*/
buf[0] = 0x01;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
/* write fec mpeg mode */
buf[0] = 0x7E;
buf[1] = 0x00;
nxt200x_writebytes(state, 0xE9, buf, 2);
/* write mux selection */
buf[0] = 0x00;
nxt200x_writebytes(state, 0xCC, buf, 1);
/* ???*/
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
/* soft reset? */
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x10;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
/* ???*/
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x01;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x70;
nxt200x_writereg_multibyte(state, 0x81, buf, 1);
buf[0] = 0x31; buf[1] = 0x5E; buf[2] = 0x66;
nxt200x_writereg_multibyte(state, 0x82, buf, 3);
nxt200x_readreg_multibyte(state, 0x88, buf, 1);
buf[0] = 0x11;
nxt200x_writereg_multibyte(state, 0x88, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x40;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
nxt200x_readbytes(state, 0x10, buf, 1);
buf[0] = 0x10;
nxt200x_writebytes(state, 0x10, buf, 1);
nxt200x_readbytes(state, 0x0A, buf, 1);
buf[0] = 0x21;
nxt200x_writebytes(state, 0x0A, buf, 1);
nxt2004_microcontroller_init(state);
buf[0] = 0x21;
nxt200x_writebytes(state, 0x0A, buf, 1);
buf[0] = 0x7E;
nxt200x_writebytes(state, 0xE9, buf, 1);
buf[0] = 0x00;
nxt200x_writebytes(state, 0xEA, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
/* soft reset? */
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x10;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
nxt200x_readreg_multibyte(state, 0x08, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x08, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x04;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x00;
nxt200x_writereg_multibyte(state, 0x81, buf, 1);
buf[0] = 0x80; buf[1] = 0x00; buf[2] = 0x00;
nxt200x_writereg_multibyte(state, 0x82, buf, 3);
nxt200x_readreg_multibyte(state, 0x88, buf, 1);
buf[0] = 0x11;
nxt200x_writereg_multibyte(state, 0x88, buf, 1);
nxt200x_readreg_multibyte(state, 0x80, buf, 1);
buf[0] = 0x44;
nxt200x_writereg_multibyte(state, 0x80, buf, 1);
/* initialize tuner */
nxt200x_readbytes(state, 0x10, buf, 1);
buf[0] = 0x12;
nxt200x_writebytes(state, 0x10, buf, 1);
buf[0] = 0x04;
nxt200x_writebytes(state, 0x13, buf, 1);
buf[0] = 0x00;
nxt200x_writebytes(state, 0x16, buf, 1);
buf[0] = 0x04;
nxt200x_writebytes(state, 0x14, buf, 1);
buf[0] = 0x00;
nxt200x_writebytes(state, 0x14, buf, 1);
nxt200x_writebytes(state, 0x17, buf, 1);
nxt200x_writebytes(state, 0x14, buf, 1);
nxt200x_writebytes(state, 0x17, buf, 1);
return 0;
}
static int nxt200x_init(struct dvb_frontend* fe)
{
struct nxt200x_state* state = fe->demodulator_priv;
int ret = 0;
if (!state->initialised) {
switch (state->demod_chip) {
case NXT2002:
ret = nxt2002_init(fe);
break;
case NXT2004:
ret = nxt2004_init(fe);
break;
default:
return -EINVAL;
break;
}
state->initialised = 1;
}
return ret;
}
static int nxt200x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 500;
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static void nxt200x_release(struct dvb_frontend* fe)
{
struct nxt200x_state* state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops nxt200x_ops;
struct dvb_frontend* nxt200x_attach(const struct nxt200x_config* config,
struct i2c_adapter* i2c)
{
struct nxt200x_state* state = NULL;
u8 buf [] = {0,0,0,0,0};
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct nxt200x_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->initialised = 0;
/* read card id */
nxt200x_readbytes(state, 0x00, buf, 5);
dprintk("NXT info: %*ph\n", 5, buf);
/* set demod chip */
switch (buf[0]) {
case 0x04:
state->demod_chip = NXT2002;
pr_info("NXT2002 Detected\n");
break;
case 0x05:
state->demod_chip = NXT2004;
pr_info("NXT2004 Detected\n");
break;
default:
goto error;
}
/* make sure demod chip is supported */
switch (state->demod_chip) {
case NXT2002:
if (buf[0] != 0x04) goto error; /* device id */
if (buf[1] != 0x02) goto error; /* fab id */
if (buf[2] != 0x11) goto error; /* month */
if (buf[3] != 0x20) goto error; /* year msb */
if (buf[4] != 0x00) goto error; /* year lsb */
break;
case NXT2004:
if (buf[0] != 0x05) goto error; /* device id */
break;
default:
goto error;
}
/* create dvb_frontend */
memcpy(&state->frontend.ops, &nxt200x_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
pr_err("Unknown/Unsupported NXT chip: %*ph\n", 5, buf);
return NULL;
}
static const struct dvb_frontend_ops nxt200x_ops = {
.delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
.info = {
.name = "Nextwave NXT200X VSB/QAM frontend",
.frequency_min = 54000000,
.frequency_max = 860000000,
.frequency_stepsize = 166666, /* stepsize is just a guess */
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_8VSB | FE_CAN_QAM_64 | FE_CAN_QAM_256
},
.release = nxt200x_release,
.init = nxt200x_init,
.sleep = nxt200x_sleep,
.set_frontend = nxt200x_setup_frontend_parameters,
.get_tune_settings = nxt200x_get_tune_settings,
.read_status = nxt200x_read_status,
.read_ber = nxt200x_read_ber,
.read_signal_strength = nxt200x_read_signal_strength,
.read_snr = nxt200x_read_snr,
.read_ucblocks = nxt200x_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("NXT200X (ATSC 8VSB & ITU-T J.83 AnnexB 64/256 QAM) Demodulator Driver");
MODULE_AUTHOR("Kirk Lapray, Michael Krufky, Jean-Francois Thibert, and Taylor Jacob");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(nxt200x_attach);