linux/arch/arc/kernel/setup.c

549 lines
14 KiB
C

/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/clk-provider.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/cache.h>
#include <asm/sections.h>
#include <asm/arcregs.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/page.h>
#include <asm/irq.h>
#include <asm/unwind.h>
#include <asm/clk.h>
#include <asm/mach_desc.h>
#include <asm/smp.h>
#define FIX_PTR(x) __asm__ __volatile__(";" : "+r"(x))
unsigned int intr_to_DE_cnt;
/* Part of U-boot ABI: see head.S */
int __initdata uboot_tag;
char __initdata *uboot_arg;
const struct machine_desc *machine_desc;
struct task_struct *_current_task[NR_CPUS]; /* For stack switching */
struct cpuinfo_arc cpuinfo_arc700[NR_CPUS];
static void read_decode_ccm_bcr(struct cpuinfo_arc *cpu)
{
if (is_isa_arcompact()) {
struct bcr_iccm_arcompact iccm;
struct bcr_dccm_arcompact dccm;
READ_BCR(ARC_REG_ICCM_BUILD, iccm);
if (iccm.ver) {
cpu->iccm.sz = 4096 << iccm.sz; /* 8K to 512K */
cpu->iccm.base_addr = iccm.base << 16;
}
READ_BCR(ARC_REG_DCCM_BUILD, dccm);
if (dccm.ver) {
unsigned long base;
cpu->dccm.sz = 2048 << dccm.sz; /* 2K to 256K */
base = read_aux_reg(ARC_REG_DCCM_BASE_BUILD);
cpu->dccm.base_addr = base & ~0xF;
}
} else {
struct bcr_iccm_arcv2 iccm;
struct bcr_dccm_arcv2 dccm;
unsigned long region;
READ_BCR(ARC_REG_ICCM_BUILD, iccm);
if (iccm.ver) {
cpu->iccm.sz = 256 << iccm.sz00; /* 512B to 16M */
if (iccm.sz00 == 0xF && iccm.sz01 > 0)
cpu->iccm.sz <<= iccm.sz01;
region = read_aux_reg(ARC_REG_AUX_ICCM);
cpu->iccm.base_addr = region & 0xF0000000;
}
READ_BCR(ARC_REG_DCCM_BUILD, dccm);
if (dccm.ver) {
cpu->dccm.sz = 256 << dccm.sz0;
if (dccm.sz0 == 0xF && dccm.sz1 > 0)
cpu->dccm.sz <<= dccm.sz1;
region = read_aux_reg(ARC_REG_AUX_DCCM);
cpu->dccm.base_addr = region & 0xF0000000;
}
}
}
static void read_arc_build_cfg_regs(void)
{
struct bcr_timer timer;
struct bcr_generic bcr;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
FIX_PTR(cpu);
READ_BCR(AUX_IDENTITY, cpu->core);
READ_BCR(ARC_REG_ISA_CFG_BCR, cpu->isa);
READ_BCR(ARC_REG_TIMERS_BCR, timer);
cpu->extn.timer0 = timer.t0;
cpu->extn.timer1 = timer.t1;
cpu->extn.rtc = timer.rtc;
cpu->vec_base = read_aux_reg(AUX_INTR_VEC_BASE);
READ_BCR(ARC_REG_MUL_BCR, cpu->extn_mpy);
cpu->extn.norm = read_aux_reg(ARC_REG_NORM_BCR) > 1 ? 1 : 0; /* 2,3 */
cpu->extn.barrel = read_aux_reg(ARC_REG_BARREL_BCR) > 1 ? 1 : 0; /* 2,3 */
cpu->extn.swap = read_aux_reg(ARC_REG_SWAP_BCR) ? 1 : 0; /* 1,3 */
cpu->extn.crc = read_aux_reg(ARC_REG_CRC_BCR) ? 1 : 0;
cpu->extn.minmax = read_aux_reg(ARC_REG_MIXMAX_BCR) > 1 ? 1 : 0; /* 2 */
READ_BCR(ARC_REG_XY_MEM_BCR, cpu->extn_xymem);
/* Read CCM BCRs for boot reporting even if not enabled in Kconfig */
read_decode_ccm_bcr(cpu);
read_decode_mmu_bcr();
read_decode_cache_bcr();
if (is_isa_arcompact()) {
struct bcr_fp_arcompact sp, dp;
struct bcr_bpu_arcompact bpu;
READ_BCR(ARC_REG_FP_BCR, sp);
READ_BCR(ARC_REG_DPFP_BCR, dp);
cpu->extn.fpu_sp = sp.ver ? 1 : 0;
cpu->extn.fpu_dp = dp.ver ? 1 : 0;
READ_BCR(ARC_REG_BPU_BCR, bpu);
cpu->bpu.ver = bpu.ver;
cpu->bpu.full = bpu.fam ? 1 : 0;
if (bpu.ent) {
cpu->bpu.num_cache = 256 << (bpu.ent - 1);
cpu->bpu.num_pred = 256 << (bpu.ent - 1);
}
} else {
struct bcr_fp_arcv2 spdp;
struct bcr_bpu_arcv2 bpu;
READ_BCR(ARC_REG_FP_V2_BCR, spdp);
cpu->extn.fpu_sp = spdp.sp ? 1 : 0;
cpu->extn.fpu_dp = spdp.dp ? 1 : 0;
READ_BCR(ARC_REG_BPU_BCR, bpu);
cpu->bpu.ver = bpu.ver;
cpu->bpu.full = bpu.ft;
cpu->bpu.num_cache = 256 << bpu.bce;
cpu->bpu.num_pred = 2048 << bpu.pte;
}
READ_BCR(ARC_REG_AP_BCR, bcr);
cpu->extn.ap = bcr.ver ? 1 : 0;
READ_BCR(ARC_REG_SMART_BCR, bcr);
cpu->extn.smart = bcr.ver ? 1 : 0;
READ_BCR(ARC_REG_RTT_BCR, bcr);
cpu->extn.rtt = bcr.ver ? 1 : 0;
cpu->extn.debug = cpu->extn.ap | cpu->extn.smart | cpu->extn.rtt;
}
static const struct cpuinfo_data arc_cpu_tbl[] = {
#ifdef CONFIG_ISA_ARCOMPACT
{ {0x20, "ARC 600" }, 0x2F},
{ {0x30, "ARC 700" }, 0x33},
{ {0x34, "ARC 700 R4.10"}, 0x34},
{ {0x35, "ARC 700 R4.11"}, 0x35},
#else
{ {0x50, "ARC HS38 R2.0"}, 0x51},
{ {0x52, "ARC HS38 R2.1"}, 0x52},
#endif
{ {0x00, NULL } }
};
static char *arc_cpu_mumbojumbo(int cpu_id, char *buf, int len)
{
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
struct bcr_identity *core = &cpu->core;
const struct cpuinfo_data *tbl;
char *isa_nm;
int i, be, atomic;
int n = 0;
FIX_PTR(cpu);
if (is_isa_arcompact()) {
isa_nm = "ARCompact";
be = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN);
atomic = cpu->isa.atomic1;
if (!cpu->isa.ver) /* ISA BCR absent, use Kconfig info */
atomic = IS_ENABLED(CONFIG_ARC_HAS_LLSC);
} else {
isa_nm = "ARCv2";
be = cpu->isa.be;
atomic = cpu->isa.atomic;
}
n += scnprintf(buf + n, len - n,
"\nIDENTITY\t: ARCVER [%#02x] ARCNUM [%#02x] CHIPID [%#4x]\n",
core->family, core->cpu_id, core->chip_id);
for (tbl = &arc_cpu_tbl[0]; tbl->info.id != 0; tbl++) {
if ((core->family >= tbl->info.id) &&
(core->family <= tbl->up_range)) {
n += scnprintf(buf + n, len - n,
"processor [%d]\t: %s (%s ISA) %s\n",
cpu_id, tbl->info.str, isa_nm,
IS_AVAIL1(be, "[Big-Endian]"));
break;
}
}
if (tbl->info.id == 0)
n += scnprintf(buf + n, len - n, "UNKNOWN ARC Processor\n");
n += scnprintf(buf + n, len - n, "CPU speed\t: %u.%02u Mhz\n",
(unsigned int)(arc_get_core_freq() / 1000000),
(unsigned int)(arc_get_core_freq() / 10000) % 100);
n += scnprintf(buf + n, len - n, "Timers\t\t: %s%s%s%s\nISA Extn\t: ",
IS_AVAIL1(cpu->extn.timer0, "Timer0 "),
IS_AVAIL1(cpu->extn.timer1, "Timer1 "),
IS_AVAIL2(cpu->extn.rtc, "Local-64-bit-Ctr ",
CONFIG_ARC_HAS_RTC));
n += i = scnprintf(buf + n, len - n, "%s%s%s%s%s",
IS_AVAIL2(atomic, "atomic ", CONFIG_ARC_HAS_LLSC),
IS_AVAIL2(cpu->isa.ldd, "ll64 ", CONFIG_ARC_HAS_LL64),
IS_AVAIL1(cpu->isa.unalign, "unalign (not used)"));
if (i)
n += scnprintf(buf + n, len - n, "\n\t\t: ");
if (cpu->extn_mpy.ver) {
if (cpu->extn_mpy.ver <= 0x2) { /* ARCompact */
n += scnprintf(buf + n, len - n, "mpy ");
} else {
int opt = 2; /* stock MPY/MPYH */
if (cpu->extn_mpy.dsp) /* OPT 7-9 */
opt = cpu->extn_mpy.dsp + 6;
n += scnprintf(buf + n, len - n, "mpy[opt %d] ", opt);
}
}
n += scnprintf(buf + n, len - n, "%s%s%s%s%s%s%s%s\n",
IS_AVAIL1(cpu->isa.div_rem, "div_rem "),
IS_AVAIL1(cpu->extn.norm, "norm "),
IS_AVAIL1(cpu->extn.barrel, "barrel-shift "),
IS_AVAIL1(cpu->extn.swap, "swap "),
IS_AVAIL1(cpu->extn.minmax, "minmax "),
IS_AVAIL1(cpu->extn.crc, "crc "),
IS_AVAIL2(1, "swape", CONFIG_ARC_HAS_SWAPE));
if (cpu->bpu.ver)
n += scnprintf(buf + n, len - n,
"BPU\t\t: %s%s match, cache:%d, Predict Table:%d\n",
IS_AVAIL1(cpu->bpu.full, "full"),
IS_AVAIL1(!cpu->bpu.full, "partial"),
cpu->bpu.num_cache, cpu->bpu.num_pred);
return buf;
}
static char *arc_extn_mumbojumbo(int cpu_id, char *buf, int len)
{
int n = 0;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
FIX_PTR(cpu);
n += scnprintf(buf + n, len - n,
"Vector Table\t: %#x\nUncached Base\t: %#lx\n",
cpu->vec_base, perip_base);
if (cpu->extn.fpu_sp || cpu->extn.fpu_dp)
n += scnprintf(buf + n, len - n, "FPU\t\t: %s%s\n",
IS_AVAIL1(cpu->extn.fpu_sp, "SP "),
IS_AVAIL1(cpu->extn.fpu_dp, "DP "));
if (cpu->extn.debug)
n += scnprintf(buf + n, len - n, "DEBUG\t\t: %s%s%s\n",
IS_AVAIL1(cpu->extn.ap, "ActionPoint "),
IS_AVAIL1(cpu->extn.smart, "smaRT "),
IS_AVAIL1(cpu->extn.rtt, "RTT "));
if (cpu->dccm.sz || cpu->iccm.sz)
n += scnprintf(buf + n, len - n, "Extn [CCM]\t: DCCM @ %x, %d KB / ICCM: @ %x, %d KB\n",
cpu->dccm.base_addr, TO_KB(cpu->dccm.sz),
cpu->iccm.base_addr, TO_KB(cpu->iccm.sz));
n += scnprintf(buf + n, len - n,
"OS ABI [v3]\t: no-legacy-syscalls\n");
return buf;
}
static void arc_chk_core_config(void)
{
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
int fpu_enabled;
if (!cpu->extn.timer0)
panic("Timer0 is not present!\n");
if (!cpu->extn.timer1)
panic("Timer1 is not present!\n");
if (IS_ENABLED(CONFIG_ARC_HAS_RTC) && !cpu->extn.rtc)
panic("RTC is not present\n");
#ifdef CONFIG_ARC_HAS_DCCM
/*
* DCCM can be arbit placed in hardware.
* Make sure it's placement/sz matches what Linux is built with
*/
if ((unsigned int)__arc_dccm_base != cpu->dccm.base_addr)
panic("Linux built with incorrect DCCM Base address\n");
if (CONFIG_ARC_DCCM_SZ != cpu->dccm.sz)
panic("Linux built with incorrect DCCM Size\n");
#endif
#ifdef CONFIG_ARC_HAS_ICCM
if (CONFIG_ARC_ICCM_SZ != cpu->iccm.sz)
panic("Linux built with incorrect ICCM Size\n");
#endif
/*
* FP hardware/software config sanity
* -If hardware contains DPFP, kernel needs to save/restore FPU state
* -If not, it will crash trying to save/restore the non-existant regs
*
* (only DPDP checked since SP has no arch visible regs)
*/
fpu_enabled = IS_ENABLED(CONFIG_ARC_FPU_SAVE_RESTORE);
if (cpu->extn.fpu_dp && !fpu_enabled)
pr_warn("CONFIG_ARC_FPU_SAVE_RESTORE needed for working apps\n");
else if (!cpu->extn.fpu_dp && fpu_enabled)
panic("FPU non-existent, disable CONFIG_ARC_FPU_SAVE_RESTORE\n");
}
/*
* Initialize and setup the processor core
* This is called by all the CPUs thus should not do special case stuff
* such as only for boot CPU etc
*/
void setup_processor(void)
{
char str[512];
int cpu_id = smp_processor_id();
read_arc_build_cfg_regs();
arc_init_IRQ();
printk(arc_cpu_mumbojumbo(cpu_id, str, sizeof(str)));
arc_mmu_init();
arc_cache_init();
printk(arc_extn_mumbojumbo(cpu_id, str, sizeof(str)));
printk(arc_platform_smp_cpuinfo());
arc_chk_core_config();
}
static inline int is_kernel(unsigned long addr)
{
if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end)
return 1;
return 0;
}
void __init setup_arch(char **cmdline_p)
{
#ifdef CONFIG_ARC_UBOOT_SUPPORT
/* make sure that uboot passed pointer to cmdline/dtb is valid */
if (uboot_tag && is_kernel((unsigned long)uboot_arg))
panic("Invalid uboot arg\n");
/* See if u-boot passed an external Device Tree blob */
machine_desc = setup_machine_fdt(uboot_arg); /* uboot_tag == 2 */
if (!machine_desc)
#endif
{
/* No, so try the embedded one */
machine_desc = setup_machine_fdt(__dtb_start);
if (!machine_desc)
panic("Embedded DT invalid\n");
/*
* If we are here, it is established that @uboot_arg didn't
* point to DT blob. Instead if u-boot says it is cmdline,
* Appent to embedded DT cmdline.
* setup_machine_fdt() would have populated @boot_command_line
*/
if (uboot_tag == 1) {
/* Ensure a whitespace between the 2 cmdlines */
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, uboot_arg,
COMMAND_LINE_SIZE);
}
}
/* Save unparsed command line copy for /proc/cmdline */
*cmdline_p = boot_command_line;
/* To force early parsing of things like mem=xxx */
parse_early_param();
/* Platform/board specific: e.g. early console registration */
if (machine_desc->init_early)
machine_desc->init_early();
smp_init_cpus();
setup_processor();
setup_arch_memory();
/* copy flat DT out of .init and then unflatten it */
unflatten_and_copy_device_tree();
/* Can be issue if someone passes cmd line arg "ro"
* But that is unlikely so keeping it as it is
*/
root_mountflags &= ~MS_RDONLY;
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
arc_unwind_init();
}
static int __init customize_machine(void)
{
of_clk_init(NULL);
/*
* Traverses flattened DeviceTree - registering platform devices
* (if any) complete with their resources
*/
of_platform_default_populate(NULL, NULL, NULL);
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
static int __init init_late_machine(void)
{
if (machine_desc->init_late)
machine_desc->init_late();
return 0;
}
late_initcall(init_late_machine);
/*
* Get CPU information for use by the procfs.
*/
#define cpu_to_ptr(c) ((void *)(0xFFFF0000 | (unsigned int)(c)))
#define ptr_to_cpu(p) (~0xFFFF0000UL & (unsigned int)(p))
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *str;
int cpu_id = ptr_to_cpu(v);
if (!cpu_online(cpu_id)) {
seq_printf(m, "processor [%d]\t: Offline\n", cpu_id);
goto done;
}
str = (char *)__get_free_page(GFP_TEMPORARY);
if (!str)
goto done;
seq_printf(m, arc_cpu_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, "Bogo MIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000 / HZ),
(loops_per_jiffy / (5000 / HZ)) % 100);
seq_printf(m, arc_mmu_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_cache_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_extn_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_platform_smp_cpuinfo());
free_page((unsigned long)str);
done:
seq_printf(m, "\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
/*
* Callback returns cpu-id to iterator for show routine, NULL to stop.
* However since NULL is also a valid cpu-id (0), we use a round-about
* way to pass it w/o having to kmalloc/free a 2 byte string.
* Encode cpu-id as 0xFFcccc, which is decoded by show routine.
*/
return *pos < num_possible_cpus() ? cpu_to_ptr(*pos) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo
};
static DEFINE_PER_CPU(struct cpu, cpu_topology);
static int __init topology_init(void)
{
int cpu;
for_each_present_cpu(cpu)
register_cpu(&per_cpu(cpu_topology, cpu), cpu);
return 0;
}
subsys_initcall(topology_init);