linux/arch/blackfin/kernel/bfin_dma_5xx.c

749 lines
20 KiB
C

/*
* File: arch/blackfin/kernel/bfin_dma_5xx.c
* Based on:
* Author:
*
* Created:
* Description: This file contains the simple DMA Implementation for Blackfin
*
* Modified:
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <asm/blackfin.h>
#include <asm/dma.h>
#include <asm/cacheflush.h>
/* Remove unused code not exported by symbol or internally called */
#define REMOVE_DEAD_CODE
/**************************************************************************
* Global Variables
***************************************************************************/
static struct dma_channel dma_ch[MAX_BLACKFIN_DMA_CHANNEL];
/*------------------------------------------------------------------------------
* Set the Buffer Clear bit in the Configuration register of specific DMA
* channel. This will stop the descriptor based DMA operation.
*-----------------------------------------------------------------------------*/
static void clear_dma_buffer(unsigned int channel)
{
dma_ch[channel].regs->cfg |= RESTART;
SSYNC();
dma_ch[channel].regs->cfg &= ~RESTART;
SSYNC();
}
static int __init blackfin_dma_init(void)
{
int i;
printk(KERN_INFO "Blackfin DMA Controller\n");
for (i = 0; i < MAX_BLACKFIN_DMA_CHANNEL; i++) {
dma_ch[i].chan_status = DMA_CHANNEL_FREE;
dma_ch[i].regs = base_addr[i];
mutex_init(&(dma_ch[i].dmalock));
}
/* Mark MEMDMA Channel 0 as requested since we're using it internally */
dma_ch[CH_MEM_STREAM0_DEST].chan_status = DMA_CHANNEL_REQUESTED;
dma_ch[CH_MEM_STREAM0_SRC].chan_status = DMA_CHANNEL_REQUESTED;
return 0;
}
arch_initcall(blackfin_dma_init);
/*------------------------------------------------------------------------------
* Request the specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
int request_dma(unsigned int channel, char *device_id)
{
pr_debug("request_dma() : BEGIN \n");
mutex_lock(&(dma_ch[channel].dmalock));
if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED)
|| (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) {
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("DMA CHANNEL IN USE \n");
return -EBUSY;
} else {
dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
pr_debug("DMA CHANNEL IS ALLOCATED \n");
}
mutex_unlock(&(dma_ch[channel].dmalock));
dma_ch[channel].device_id = device_id;
dma_ch[channel].irq_callback = NULL;
/* This is to be enabled by putting a restriction -
* you have to request DMA, before doing any operations on
* descriptor/channel
*/
pr_debug("request_dma() : END \n");
return channel;
}
EXPORT_SYMBOL(request_dma);
int set_dma_callback(unsigned int channel, dma_interrupt_t callback, void *data)
{
int ret_irq = 0;
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
if (callback != NULL) {
int ret_val;
ret_irq = channel2irq(channel);
dma_ch[channel].data = data;
ret_val =
request_irq(ret_irq, (void *)callback, IRQF_DISABLED,
dma_ch[channel].device_id, data);
if (ret_val) {
printk(KERN_NOTICE
"Request irq in DMA engine failed.\n");
return -EPERM;
}
dma_ch[channel].irq_callback = callback;
}
return 0;
}
EXPORT_SYMBOL(set_dma_callback);
void free_dma(unsigned int channel)
{
int ret_irq;
pr_debug("freedma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
/* Halt the DMA */
disable_dma(channel);
clear_dma_buffer(channel);
if (dma_ch[channel].irq_callback != NULL) {
ret_irq = channel2irq(channel);
free_irq(ret_irq, dma_ch[channel].data);
}
/* Clear the DMA Variable in the Channel */
mutex_lock(&(dma_ch[channel].dmalock));
dma_ch[channel].chan_status = DMA_CHANNEL_FREE;
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("freedma() : END \n");
}
EXPORT_SYMBOL(free_dma);
void dma_enable_irq(unsigned int channel)
{
int ret_irq;
pr_debug("dma_enable_irq() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
ret_irq = channel2irq(channel);
enable_irq(ret_irq);
}
EXPORT_SYMBOL(dma_enable_irq);
void dma_disable_irq(unsigned int channel)
{
int ret_irq;
pr_debug("dma_disable_irq() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
ret_irq = channel2irq(channel);
disable_irq(ret_irq);
}
EXPORT_SYMBOL(dma_disable_irq);
int dma_channel_active(unsigned int channel)
{
if (dma_ch[channel].chan_status == DMA_CHANNEL_FREE) {
return 0;
} else {
return 1;
}
}
EXPORT_SYMBOL(dma_channel_active);
/*------------------------------------------------------------------------------
* stop the specific DMA channel.
*-----------------------------------------------------------------------------*/
void disable_dma(unsigned int channel)
{
pr_debug("stop_dma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg &= ~DMAEN; /* Clean the enable bit */
SSYNC();
dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
/* Needs to be enabled Later */
pr_debug("stop_dma() : END \n");
return;
}
EXPORT_SYMBOL(disable_dma);
void enable_dma(unsigned int channel)
{
pr_debug("enable_dma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].chan_status = DMA_CHANNEL_ENABLED;
dma_ch[channel].regs->curr_x_count = 0;
dma_ch[channel].regs->curr_y_count = 0;
dma_ch[channel].regs->cfg |= DMAEN; /* Set the enable bit */
SSYNC();
pr_debug("enable_dma() : END \n");
return;
}
EXPORT_SYMBOL(enable_dma);
/*------------------------------------------------------------------------------
* Set the Start Address register for the specific DMA channel
* This function can be used for register based DMA,
* to setup the start address
* addr: Starting address of the DMA Data to be transferred.
*-----------------------------------------------------------------------------*/
void set_dma_start_addr(unsigned int channel, unsigned long addr)
{
pr_debug("set_dma_start_addr() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->start_addr = addr;
SSYNC();
pr_debug("set_dma_start_addr() : END\n");
}
EXPORT_SYMBOL(set_dma_start_addr);
void set_dma_next_desc_addr(unsigned int channel, unsigned long addr)
{
pr_debug("set_dma_next_desc_addr() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->next_desc_ptr = addr;
SSYNC();
pr_debug("set_dma_start_addr() : END\n");
}
EXPORT_SYMBOL(set_dma_next_desc_addr);
void set_dma_x_count(unsigned int channel, unsigned short x_count)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->x_count = x_count;
SSYNC();
}
EXPORT_SYMBOL(set_dma_x_count);
void set_dma_y_count(unsigned int channel, unsigned short y_count)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->y_count = y_count;
SSYNC();
}
EXPORT_SYMBOL(set_dma_y_count);
void set_dma_x_modify(unsigned int channel, short x_modify)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->x_modify = x_modify;
SSYNC();
}
EXPORT_SYMBOL(set_dma_x_modify);
void set_dma_y_modify(unsigned int channel, short y_modify)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->y_modify = y_modify;
SSYNC();
}
EXPORT_SYMBOL(set_dma_y_modify);
void set_dma_config(unsigned int channel, unsigned short config)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg = config;
SSYNC();
}
EXPORT_SYMBOL(set_dma_config);
unsigned short
set_bfin_dma_config(char direction, char flow_mode,
char intr_mode, char dma_mode, char width)
{
unsigned short config;
config =
((direction << 1) | (width << 2) | (dma_mode << 4) |
(intr_mode << 6) | (flow_mode << 12) | RESTART);
return config;
}
EXPORT_SYMBOL(set_bfin_dma_config);
void set_dma_sg(unsigned int channel, struct dmasg *sg, int nr_sg)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg |= ((nr_sg & 0x0F) << 8);
dma_ch[channel].regs->next_desc_ptr = (unsigned int)sg;
SSYNC();
}
EXPORT_SYMBOL(set_dma_sg);
/*------------------------------------------------------------------------------
* Get the DMA status of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_irqstat(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->irq_status;
}
EXPORT_SYMBOL(get_dma_curr_irqstat);
/*------------------------------------------------------------------------------
* Clear the DMA_DONE bit in DMA status. Stop the DMA completion interrupt.
*-----------------------------------------------------------------------------*/
void clear_dma_irqstat(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->irq_status |= 3;
}
EXPORT_SYMBOL(clear_dma_irqstat);
/*------------------------------------------------------------------------------
* Get current DMA xcount of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_xcount(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->curr_x_count;
}
EXPORT_SYMBOL(get_dma_curr_xcount);
/*------------------------------------------------------------------------------
* Get current DMA ycount of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_ycount(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->curr_y_count;
}
EXPORT_SYMBOL(get_dma_curr_ycount);
static void *__dma_memcpy(void *dest, const void *src, size_t size)
{
int direction; /* 1 - address decrease, 0 - address increase */
int flag_align; /* 1 - address aligned, 0 - address unaligned */
int flag_2D; /* 1 - 2D DMA needed, 0 - 1D DMA needed */
unsigned long flags;
if (size <= 0)
return NULL;
local_irq_save(flags);
if ((unsigned long)src < memory_end)
blackfin_dcache_flush_range((unsigned int)src,
(unsigned int)(src + size));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
if ((unsigned long)src < (unsigned long)dest)
direction = 1;
else
direction = 0;
if ((((unsigned long)dest % 2) == 0) && (((unsigned long)src % 2) == 0)
&& ((size % 2) == 0))
flag_align = 1;
else
flag_align = 0;
if (size > 0x10000) /* size > 64K */
flag_2D = 1;
else
flag_2D = 0;
/* Setup destination and source start address */
if (direction) {
if (flag_align) {
bfin_write_MDMA_D0_START_ADDR(dest + size - 2);
bfin_write_MDMA_S0_START_ADDR(src + size - 2);
} else {
bfin_write_MDMA_D0_START_ADDR(dest + size - 1);
bfin_write_MDMA_S0_START_ADDR(src + size - 1);
}
} else {
bfin_write_MDMA_D0_START_ADDR(dest);
bfin_write_MDMA_S0_START_ADDR(src);
}
/* Setup destination and source xcount */
if (flag_2D) {
if (flag_align) {
bfin_write_MDMA_D0_X_COUNT(1024 / 2);
bfin_write_MDMA_S0_X_COUNT(1024 / 2);
} else {
bfin_write_MDMA_D0_X_COUNT(1024);
bfin_write_MDMA_S0_X_COUNT(1024);
}
bfin_write_MDMA_D0_Y_COUNT(size >> 10);
bfin_write_MDMA_S0_Y_COUNT(size >> 10);
} else {
if (flag_align) {
bfin_write_MDMA_D0_X_COUNT(size / 2);
bfin_write_MDMA_S0_X_COUNT(size / 2);
} else {
bfin_write_MDMA_D0_X_COUNT(size);
bfin_write_MDMA_S0_X_COUNT(size);
}
}
/* Setup destination and source xmodify and ymodify */
if (direction) {
if (flag_align) {
bfin_write_MDMA_D0_X_MODIFY(-2);
bfin_write_MDMA_S0_X_MODIFY(-2);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(-2);
bfin_write_MDMA_S0_Y_MODIFY(-2);
}
} else {
bfin_write_MDMA_D0_X_MODIFY(-1);
bfin_write_MDMA_S0_X_MODIFY(-1);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(-1);
bfin_write_MDMA_S0_Y_MODIFY(-1);
}
}
} else {
if (flag_align) {
bfin_write_MDMA_D0_X_MODIFY(2);
bfin_write_MDMA_S0_X_MODIFY(2);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(2);
bfin_write_MDMA_S0_Y_MODIFY(2);
}
} else {
bfin_write_MDMA_D0_X_MODIFY(1);
bfin_write_MDMA_S0_X_MODIFY(1);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(1);
bfin_write_MDMA_S0_Y_MODIFY(1);
}
}
}
/* Enable source DMA */
if (flag_2D) {
if (flag_align) {
bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D | WDSIZE_16);
} else {
bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D);
}
} else {
if (flag_align) {
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
} else {
bfin_write_MDMA_S0_CONFIG(DMAEN);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN);
}
}
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
;
bfin_write_MDMA_D0_IRQ_STATUS(bfin_read_MDMA_D0_IRQ_STATUS() |
(DMA_DONE | DMA_ERR));
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
if ((unsigned long)dest < memory_end)
blackfin_dcache_invalidate_range((unsigned int)dest,
(unsigned int)(dest + size));
local_irq_restore(flags);
return dest;
}
void *dma_memcpy(void *dest, const void *src, size_t size)
{
size_t bulk;
size_t rest;
void * addr;
bulk = (size >> 16) << 16;
rest = size - bulk;
if (bulk)
__dma_memcpy(dest, src, bulk);
addr = __dma_memcpy(dest+bulk, src+bulk, rest);
return addr;
}
EXPORT_SYMBOL(dma_memcpy);
void *safe_dma_memcpy(void *dest, const void *src, size_t size)
{
void *addr;
addr = dma_memcpy(dest, src, size);
return addr;
}
EXPORT_SYMBOL(safe_dma_memcpy);
void dma_outsb(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf, (unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(1);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsb);
void dma_insb(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(1);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insb);
void dma_outsw(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf, (unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(2);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsw);
void dma_insw(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(2);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insw);
void dma_outsl(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf, (unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(4);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsl);
void dma_insl(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(4);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insl);