mirror of https://gitee.com/openkylin/linux.git
858 lines
21 KiB
C
858 lines
21 KiB
C
/* SPDX-License-Identifier: GPL-2.0 OR MIT */
|
|
/**************************************************************************
|
|
*
|
|
* Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
/*
|
|
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
|
|
*/
|
|
|
|
#include <drm/ttm/ttm_bo_driver.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <linux/io.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/reservation.h>
|
|
|
|
struct ttm_transfer_obj {
|
|
struct ttm_buffer_object base;
|
|
struct ttm_buffer_object *bo;
|
|
};
|
|
|
|
void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
|
|
{
|
|
ttm_bo_mem_put(bo, &bo->mem);
|
|
}
|
|
|
|
int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
struct ttm_mem_reg *old_mem = &bo->mem;
|
|
int ret;
|
|
|
|
if (old_mem->mem_type != TTM_PL_SYSTEM) {
|
|
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
|
|
|
|
if (unlikely(ret != 0)) {
|
|
if (ret != -ERESTARTSYS)
|
|
pr_err("Failed to expire sync object before unbinding TTM\n");
|
|
return ret;
|
|
}
|
|
|
|
ttm_tt_unbind(ttm);
|
|
ttm_bo_free_old_node(bo);
|
|
ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
|
|
TTM_PL_MASK_MEM);
|
|
old_mem->mem_type = TTM_PL_SYSTEM;
|
|
}
|
|
|
|
ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
if (new_mem->mem_type != TTM_PL_SYSTEM) {
|
|
ret = ttm_tt_bind(ttm, new_mem, ctx);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
}
|
|
|
|
*old_mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_ttm);
|
|
|
|
int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
|
|
{
|
|
if (likely(man->io_reserve_fastpath))
|
|
return 0;
|
|
|
|
if (interruptible)
|
|
return mutex_lock_interruptible(&man->io_reserve_mutex);
|
|
|
|
mutex_lock(&man->io_reserve_mutex);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_mem_io_lock);
|
|
|
|
void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
|
|
{
|
|
if (likely(man->io_reserve_fastpath))
|
|
return;
|
|
|
|
mutex_unlock(&man->io_reserve_mutex);
|
|
}
|
|
EXPORT_SYMBOL(ttm_mem_io_unlock);
|
|
|
|
static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
|
|
{
|
|
struct ttm_buffer_object *bo;
|
|
|
|
if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
|
|
return -EAGAIN;
|
|
|
|
bo = list_first_entry(&man->io_reserve_lru,
|
|
struct ttm_buffer_object,
|
|
io_reserve_lru);
|
|
list_del_init(&bo->io_reserve_lru);
|
|
ttm_bo_unmap_virtual_locked(bo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
|
|
struct ttm_mem_reg *mem)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
|
|
int ret = 0;
|
|
|
|
if (!bdev->driver->io_mem_reserve)
|
|
return 0;
|
|
if (likely(man->io_reserve_fastpath))
|
|
return bdev->driver->io_mem_reserve(bdev, mem);
|
|
|
|
if (bdev->driver->io_mem_reserve &&
|
|
mem->bus.io_reserved_count++ == 0) {
|
|
retry:
|
|
ret = bdev->driver->io_mem_reserve(bdev, mem);
|
|
if (ret == -EAGAIN) {
|
|
ret = ttm_mem_io_evict(man);
|
|
if (ret == 0)
|
|
goto retry;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ttm_mem_io_reserve);
|
|
|
|
void ttm_mem_io_free(struct ttm_bo_device *bdev,
|
|
struct ttm_mem_reg *mem)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
|
|
|
|
if (likely(man->io_reserve_fastpath))
|
|
return;
|
|
|
|
if (bdev->driver->io_mem_reserve &&
|
|
--mem->bus.io_reserved_count == 0 &&
|
|
bdev->driver->io_mem_free)
|
|
bdev->driver->io_mem_free(bdev, mem);
|
|
|
|
}
|
|
EXPORT_SYMBOL(ttm_mem_io_free);
|
|
|
|
int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_mem_reg *mem = &bo->mem;
|
|
int ret;
|
|
|
|
if (!mem->bus.io_reserved_vm) {
|
|
struct ttm_mem_type_manager *man =
|
|
&bo->bdev->man[mem->mem_type];
|
|
|
|
ret = ttm_mem_io_reserve(bo->bdev, mem);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
mem->bus.io_reserved_vm = true;
|
|
if (man->use_io_reserve_lru)
|
|
list_add_tail(&bo->io_reserve_lru,
|
|
&man->io_reserve_lru);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_mem_reg *mem = &bo->mem;
|
|
|
|
if (mem->bus.io_reserved_vm) {
|
|
mem->bus.io_reserved_vm = false;
|
|
list_del_init(&bo->io_reserve_lru);
|
|
ttm_mem_io_free(bo->bdev, mem);
|
|
}
|
|
}
|
|
|
|
static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
|
|
void **virtual)
|
|
{
|
|
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
|
|
int ret;
|
|
void *addr;
|
|
|
|
*virtual = NULL;
|
|
(void) ttm_mem_io_lock(man, false);
|
|
ret = ttm_mem_io_reserve(bdev, mem);
|
|
ttm_mem_io_unlock(man);
|
|
if (ret || !mem->bus.is_iomem)
|
|
return ret;
|
|
|
|
if (mem->bus.addr) {
|
|
addr = mem->bus.addr;
|
|
} else {
|
|
if (mem->placement & TTM_PL_FLAG_WC)
|
|
addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
|
|
else
|
|
addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
|
|
if (!addr) {
|
|
(void) ttm_mem_io_lock(man, false);
|
|
ttm_mem_io_free(bdev, mem);
|
|
ttm_mem_io_unlock(man);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
*virtual = addr;
|
|
return 0;
|
|
}
|
|
|
|
static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
|
|
void *virtual)
|
|
{
|
|
struct ttm_mem_type_manager *man;
|
|
|
|
man = &bdev->man[mem->mem_type];
|
|
|
|
if (virtual && mem->bus.addr == NULL)
|
|
iounmap(virtual);
|
|
(void) ttm_mem_io_lock(man, false);
|
|
ttm_mem_io_free(bdev, mem);
|
|
ttm_mem_io_unlock(man);
|
|
}
|
|
|
|
static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
|
|
{
|
|
uint32_t *dstP =
|
|
(uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
|
|
uint32_t *srcP =
|
|
(uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
|
|
|
|
int i;
|
|
for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
|
|
iowrite32(ioread32(srcP++), dstP++);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
#define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
|
|
#define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
|
|
#else
|
|
#define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
|
|
#define __ttm_kunmap_atomic(__addr) vunmap(__addr)
|
|
#endif
|
|
|
|
|
|
/**
|
|
* ttm_kmap_atomic_prot - Efficient kernel map of a single page with
|
|
* specified page protection.
|
|
*
|
|
* @page: The page to map.
|
|
* @prot: The page protection.
|
|
*
|
|
* This function maps a TTM page using the kmap_atomic api if available,
|
|
* otherwise falls back to vmap. The user must make sure that the
|
|
* specified page does not have an aliased mapping with a different caching
|
|
* policy unless the architecture explicitly allows it. Also mapping and
|
|
* unmapping using this api must be correctly nested. Unmapping should
|
|
* occur in the reverse order of mapping.
|
|
*/
|
|
void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
|
|
{
|
|
if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
|
|
return kmap_atomic(page);
|
|
else
|
|
return __ttm_kmap_atomic_prot(page, prot);
|
|
}
|
|
EXPORT_SYMBOL(ttm_kmap_atomic_prot);
|
|
|
|
/**
|
|
* ttm_kunmap_atomic_prot - Unmap a page that was mapped using
|
|
* ttm_kmap_atomic_prot.
|
|
*
|
|
* @addr: The virtual address from the map.
|
|
* @prot: The page protection.
|
|
*/
|
|
void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
|
|
{
|
|
if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
|
|
kunmap_atomic(addr);
|
|
else
|
|
__ttm_kunmap_atomic(addr);
|
|
}
|
|
EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
|
|
|
|
static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
|
|
unsigned long page,
|
|
pgprot_t prot)
|
|
{
|
|
struct page *d = ttm->pages[page];
|
|
void *dst;
|
|
|
|
if (!d)
|
|
return -ENOMEM;
|
|
|
|
src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
|
|
dst = ttm_kmap_atomic_prot(d, prot);
|
|
if (!dst)
|
|
return -ENOMEM;
|
|
|
|
memcpy_fromio(dst, src, PAGE_SIZE);
|
|
|
|
ttm_kunmap_atomic_prot(dst, prot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
|
|
unsigned long page,
|
|
pgprot_t prot)
|
|
{
|
|
struct page *s = ttm->pages[page];
|
|
void *src;
|
|
|
|
if (!s)
|
|
return -ENOMEM;
|
|
|
|
dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
|
|
src = ttm_kmap_atomic_prot(s, prot);
|
|
if (!src)
|
|
return -ENOMEM;
|
|
|
|
memcpy_toio(dst, src, PAGE_SIZE);
|
|
|
|
ttm_kunmap_atomic_prot(src, prot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
struct ttm_mem_reg *old_mem = &bo->mem;
|
|
struct ttm_mem_reg old_copy = *old_mem;
|
|
void *old_iomap;
|
|
void *new_iomap;
|
|
int ret;
|
|
unsigned long i;
|
|
unsigned long page;
|
|
unsigned long add = 0;
|
|
int dir;
|
|
|
|
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
|
|
if (ret)
|
|
return ret;
|
|
ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Single TTM move. NOP.
|
|
*/
|
|
if (old_iomap == NULL && new_iomap == NULL)
|
|
goto out2;
|
|
|
|
/*
|
|
* Don't move nonexistent data. Clear destination instead.
|
|
*/
|
|
if (old_iomap == NULL &&
|
|
(ttm == NULL || (ttm->state == tt_unpopulated &&
|
|
!(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
|
|
memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* TTM might be null for moves within the same region.
|
|
*/
|
|
if (ttm) {
|
|
ret = ttm_tt_populate(ttm, ctx);
|
|
if (ret)
|
|
goto out1;
|
|
}
|
|
|
|
add = 0;
|
|
dir = 1;
|
|
|
|
if ((old_mem->mem_type == new_mem->mem_type) &&
|
|
(new_mem->start < old_mem->start + old_mem->size)) {
|
|
dir = -1;
|
|
add = new_mem->num_pages - 1;
|
|
}
|
|
|
|
for (i = 0; i < new_mem->num_pages; ++i) {
|
|
page = i * dir + add;
|
|
if (old_iomap == NULL) {
|
|
pgprot_t prot = ttm_io_prot(old_mem->placement,
|
|
PAGE_KERNEL);
|
|
ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
|
|
prot);
|
|
} else if (new_iomap == NULL) {
|
|
pgprot_t prot = ttm_io_prot(new_mem->placement,
|
|
PAGE_KERNEL);
|
|
ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
|
|
prot);
|
|
} else {
|
|
ret = ttm_copy_io_page(new_iomap, old_iomap, page);
|
|
}
|
|
if (ret)
|
|
goto out1;
|
|
}
|
|
mb();
|
|
out2:
|
|
old_copy = *old_mem;
|
|
*old_mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
|
|
if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
|
|
ttm_tt_destroy(ttm);
|
|
bo->ttm = NULL;
|
|
}
|
|
|
|
out1:
|
|
ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
|
|
out:
|
|
ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
|
|
|
|
/*
|
|
* On error, keep the mm node!
|
|
*/
|
|
if (!ret)
|
|
ttm_bo_mem_put(bo, &old_copy);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_memcpy);
|
|
|
|
static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_transfer_obj *fbo;
|
|
|
|
fbo = container_of(bo, struct ttm_transfer_obj, base);
|
|
ttm_bo_unref(&fbo->bo);
|
|
kfree(fbo);
|
|
}
|
|
|
|
/**
|
|
* ttm_buffer_object_transfer
|
|
*
|
|
* @bo: A pointer to a struct ttm_buffer_object.
|
|
* @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
|
|
* holding the data of @bo with the old placement.
|
|
*
|
|
* This is a utility function that may be called after an accelerated move
|
|
* has been scheduled. A new buffer object is created as a placeholder for
|
|
* the old data while it's being copied. When that buffer object is idle,
|
|
* it can be destroyed, releasing the space of the old placement.
|
|
* Returns:
|
|
* !0: Failure.
|
|
*/
|
|
|
|
static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
|
|
struct ttm_buffer_object **new_obj)
|
|
{
|
|
struct ttm_transfer_obj *fbo;
|
|
int ret;
|
|
|
|
fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
|
|
if (!fbo)
|
|
return -ENOMEM;
|
|
|
|
fbo->base = *bo;
|
|
fbo->bo = ttm_bo_reference(bo);
|
|
|
|
/**
|
|
* Fix up members that we shouldn't copy directly:
|
|
* TODO: Explicit member copy would probably be better here.
|
|
*/
|
|
|
|
atomic_inc(&bo->bdev->glob->bo_count);
|
|
INIT_LIST_HEAD(&fbo->base.ddestroy);
|
|
INIT_LIST_HEAD(&fbo->base.lru);
|
|
INIT_LIST_HEAD(&fbo->base.swap);
|
|
INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
|
|
mutex_init(&fbo->base.wu_mutex);
|
|
fbo->base.moving = NULL;
|
|
drm_vma_node_reset(&fbo->base.vma_node);
|
|
atomic_set(&fbo->base.cpu_writers, 0);
|
|
|
|
kref_init(&fbo->base.list_kref);
|
|
kref_init(&fbo->base.kref);
|
|
fbo->base.destroy = &ttm_transfered_destroy;
|
|
fbo->base.acc_size = 0;
|
|
fbo->base.resv = &fbo->base.ttm_resv;
|
|
reservation_object_init(fbo->base.resv);
|
|
ret = reservation_object_trylock(fbo->base.resv);
|
|
WARN_ON(!ret);
|
|
|
|
*new_obj = &fbo->base;
|
|
return 0;
|
|
}
|
|
|
|
pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
|
|
{
|
|
/* Cached mappings need no adjustment */
|
|
if (caching_flags & TTM_PL_FLAG_CACHED)
|
|
return tmp;
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
if (caching_flags & TTM_PL_FLAG_WC)
|
|
tmp = pgprot_writecombine(tmp);
|
|
else if (boot_cpu_data.x86 > 3)
|
|
tmp = pgprot_noncached(tmp);
|
|
#endif
|
|
#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
|
|
defined(__powerpc__)
|
|
if (caching_flags & TTM_PL_FLAG_WC)
|
|
tmp = pgprot_writecombine(tmp);
|
|
else
|
|
tmp = pgprot_noncached(tmp);
|
|
#endif
|
|
#if defined(__sparc__) || defined(__mips__)
|
|
tmp = pgprot_noncached(tmp);
|
|
#endif
|
|
return tmp;
|
|
}
|
|
EXPORT_SYMBOL(ttm_io_prot);
|
|
|
|
static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
|
|
unsigned long offset,
|
|
unsigned long size,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_mem_reg *mem = &bo->mem;
|
|
|
|
if (bo->mem.bus.addr) {
|
|
map->bo_kmap_type = ttm_bo_map_premapped;
|
|
map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
|
|
} else {
|
|
map->bo_kmap_type = ttm_bo_map_iomap;
|
|
if (mem->placement & TTM_PL_FLAG_WC)
|
|
map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
|
|
size);
|
|
else
|
|
map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
|
|
size);
|
|
}
|
|
return (!map->virtual) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
|
|
unsigned long start_page,
|
|
unsigned long num_pages,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_mem_reg *mem = &bo->mem;
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
.no_wait_gpu = false
|
|
};
|
|
struct ttm_tt *ttm = bo->ttm;
|
|
pgprot_t prot;
|
|
int ret;
|
|
|
|
BUG_ON(!ttm);
|
|
|
|
ret = ttm_tt_populate(ttm, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
|
|
/*
|
|
* We're mapping a single page, and the desired
|
|
* page protection is consistent with the bo.
|
|
*/
|
|
|
|
map->bo_kmap_type = ttm_bo_map_kmap;
|
|
map->page = ttm->pages[start_page];
|
|
map->virtual = kmap(map->page);
|
|
} else {
|
|
/*
|
|
* We need to use vmap to get the desired page protection
|
|
* or to make the buffer object look contiguous.
|
|
*/
|
|
prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
|
|
map->bo_kmap_type = ttm_bo_map_vmap;
|
|
map->virtual = vmap(ttm->pages + start_page, num_pages,
|
|
0, prot);
|
|
}
|
|
return (!map->virtual) ? -ENOMEM : 0;
|
|
}
|
|
|
|
int ttm_bo_kmap(struct ttm_buffer_object *bo,
|
|
unsigned long start_page, unsigned long num_pages,
|
|
struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_mem_type_manager *man =
|
|
&bo->bdev->man[bo->mem.mem_type];
|
|
unsigned long offset, size;
|
|
int ret;
|
|
|
|
map->virtual = NULL;
|
|
map->bo = bo;
|
|
if (num_pages > bo->num_pages)
|
|
return -EINVAL;
|
|
if (start_page > bo->num_pages)
|
|
return -EINVAL;
|
|
#if 0
|
|
if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
#endif
|
|
(void) ttm_mem_io_lock(man, false);
|
|
ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
|
|
ttm_mem_io_unlock(man);
|
|
if (ret)
|
|
return ret;
|
|
if (!bo->mem.bus.is_iomem) {
|
|
return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
|
|
} else {
|
|
offset = start_page << PAGE_SHIFT;
|
|
size = num_pages << PAGE_SHIFT;
|
|
return ttm_bo_ioremap(bo, offset, size, map);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_kmap);
|
|
|
|
void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
|
|
{
|
|
struct ttm_buffer_object *bo = map->bo;
|
|
struct ttm_mem_type_manager *man =
|
|
&bo->bdev->man[bo->mem.mem_type];
|
|
|
|
if (!map->virtual)
|
|
return;
|
|
switch (map->bo_kmap_type) {
|
|
case ttm_bo_map_iomap:
|
|
iounmap(map->virtual);
|
|
break;
|
|
case ttm_bo_map_vmap:
|
|
vunmap(map->virtual);
|
|
break;
|
|
case ttm_bo_map_kmap:
|
|
kunmap(map->page);
|
|
break;
|
|
case ttm_bo_map_premapped:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
(void) ttm_mem_io_lock(man, false);
|
|
ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
|
|
ttm_mem_io_unlock(man);
|
|
map->virtual = NULL;
|
|
map->page = NULL;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_kunmap);
|
|
|
|
int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence,
|
|
bool evict,
|
|
struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
|
|
struct ttm_mem_reg *old_mem = &bo->mem;
|
|
int ret;
|
|
struct ttm_buffer_object *ghost_obj;
|
|
|
|
reservation_object_add_excl_fence(bo->resv, fence);
|
|
if (evict) {
|
|
ret = ttm_bo_wait(bo, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
|
|
ttm_tt_destroy(bo->ttm);
|
|
bo->ttm = NULL;
|
|
}
|
|
ttm_bo_free_old_node(bo);
|
|
} else {
|
|
/**
|
|
* This should help pipeline ordinary buffer moves.
|
|
*
|
|
* Hang old buffer memory on a new buffer object,
|
|
* and leave it to be released when the GPU
|
|
* operation has completed.
|
|
*/
|
|
|
|
dma_fence_put(bo->moving);
|
|
bo->moving = dma_fence_get(fence);
|
|
|
|
ret = ttm_buffer_object_transfer(bo, &ghost_obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reservation_object_add_excl_fence(ghost_obj->resv, fence);
|
|
|
|
/**
|
|
* If we're not moving to fixed memory, the TTM object
|
|
* needs to stay alive. Otherwhise hang it on the ghost
|
|
* bo to be unbound and destroyed.
|
|
*/
|
|
|
|
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
|
|
ghost_obj->ttm = NULL;
|
|
else
|
|
bo->ttm = NULL;
|
|
|
|
ttm_bo_unreserve(ghost_obj);
|
|
ttm_bo_unref(&ghost_obj);
|
|
}
|
|
|
|
*old_mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
|
|
|
|
int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
|
|
struct dma_fence *fence, bool evict,
|
|
struct ttm_mem_reg *new_mem)
|
|
{
|
|
struct ttm_bo_device *bdev = bo->bdev;
|
|
struct ttm_mem_reg *old_mem = &bo->mem;
|
|
|
|
struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
|
|
struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
|
|
|
|
int ret;
|
|
|
|
reservation_object_add_excl_fence(bo->resv, fence);
|
|
|
|
if (!evict) {
|
|
struct ttm_buffer_object *ghost_obj;
|
|
|
|
/**
|
|
* This should help pipeline ordinary buffer moves.
|
|
*
|
|
* Hang old buffer memory on a new buffer object,
|
|
* and leave it to be released when the GPU
|
|
* operation has completed.
|
|
*/
|
|
|
|
dma_fence_put(bo->moving);
|
|
bo->moving = dma_fence_get(fence);
|
|
|
|
ret = ttm_buffer_object_transfer(bo, &ghost_obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reservation_object_add_excl_fence(ghost_obj->resv, fence);
|
|
|
|
/**
|
|
* If we're not moving to fixed memory, the TTM object
|
|
* needs to stay alive. Otherwhise hang it on the ghost
|
|
* bo to be unbound and destroyed.
|
|
*/
|
|
|
|
if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
|
|
ghost_obj->ttm = NULL;
|
|
else
|
|
bo->ttm = NULL;
|
|
|
|
ttm_bo_unreserve(ghost_obj);
|
|
ttm_bo_unref(&ghost_obj);
|
|
|
|
} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
|
|
|
|
/**
|
|
* BO doesn't have a TTM we need to bind/unbind. Just remember
|
|
* this eviction and free up the allocation
|
|
*/
|
|
|
|
spin_lock(&from->move_lock);
|
|
if (!from->move || dma_fence_is_later(fence, from->move)) {
|
|
dma_fence_put(from->move);
|
|
from->move = dma_fence_get(fence);
|
|
}
|
|
spin_unlock(&from->move_lock);
|
|
|
|
ttm_bo_free_old_node(bo);
|
|
|
|
dma_fence_put(bo->moving);
|
|
bo->moving = dma_fence_get(fence);
|
|
|
|
} else {
|
|
/**
|
|
* Last resort, wait for the move to be completed.
|
|
*
|
|
* Should never happen in pratice.
|
|
*/
|
|
|
|
ret = ttm_bo_wait(bo, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
|
|
ttm_tt_destroy(bo->ttm);
|
|
bo->ttm = NULL;
|
|
}
|
|
ttm_bo_free_old_node(bo);
|
|
}
|
|
|
|
*old_mem = *new_mem;
|
|
new_mem->mm_node = NULL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ttm_bo_pipeline_move);
|
|
|
|
int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
|
|
{
|
|
struct ttm_buffer_object *ghost;
|
|
int ret;
|
|
|
|
ret = ttm_buffer_object_transfer(bo, &ghost);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = reservation_object_copy_fences(ghost->resv, bo->resv);
|
|
/* Last resort, wait for the BO to be idle when we are OOM */
|
|
if (ret)
|
|
ttm_bo_wait(bo, false, false);
|
|
|
|
memset(&bo->mem, 0, sizeof(bo->mem));
|
|
bo->mem.mem_type = TTM_PL_SYSTEM;
|
|
bo->ttm = NULL;
|
|
|
|
ttm_bo_unreserve(ghost);
|
|
ttm_bo_unref(&ghost);
|
|
|
|
return 0;
|
|
}
|