mirror of https://gitee.com/openkylin/linux.git
8009 lines
246 KiB
C
8009 lines
246 KiB
C
/*
|
|
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
|
|
Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
|
|
Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
|
|
Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
|
|
|
|
Based on the original rt2800pci.c and rt2800usb.c.
|
|
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
|
|
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
|
|
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
|
|
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
|
|
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
|
|
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2800lib
|
|
Abstract: rt2800 generic device routines.
|
|
*/
|
|
|
|
#include <linux/crc-ccitt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2800lib.h"
|
|
#include "rt2800.h"
|
|
|
|
/*
|
|
* Register access.
|
|
* All access to the CSR registers will go through the methods
|
|
* rt2800_register_read and rt2800_register_write.
|
|
* BBP and RF register require indirect register access,
|
|
* and use the CSR registers BBPCSR and RFCSR to achieve this.
|
|
* These indirect registers work with busy bits,
|
|
* and we will try maximal REGISTER_BUSY_COUNT times to access
|
|
* the register while taking a REGISTER_BUSY_DELAY us delay
|
|
* between each attampt. When the busy bit is still set at that time,
|
|
* the access attempt is considered to have failed,
|
|
* and we will print an error.
|
|
* The _lock versions must be used if you already hold the csr_mutex
|
|
*/
|
|
#define WAIT_FOR_BBP(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
|
|
#define WAIT_FOR_RFCSR(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
|
|
#define WAIT_FOR_RF(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
|
|
#define WAIT_FOR_MCU(__dev, __reg) \
|
|
rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
|
|
H2M_MAILBOX_CSR_OWNER, (__reg))
|
|
|
|
static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/* check for rt2872 on SoC */
|
|
if (!rt2x00_is_soc(rt2x00dev) ||
|
|
!rt2x00_rt(rt2x00dev, RT2872))
|
|
return false;
|
|
|
|
/* we know for sure that these rf chipsets are used on rt305x boards */
|
|
if (rt2x00_rf(rt2x00dev, RF3020) ||
|
|
rt2x00_rf(rt2x00dev, RF3021) ||
|
|
rt2x00_rf(rt2x00dev, RF3022))
|
|
return true;
|
|
|
|
rt2x00_warn(rt2x00dev, "Unknown RF chipset on rt305x\n");
|
|
return false;
|
|
}
|
|
|
|
static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the read request into the register.
|
|
* After the data has been written, we wait until hardware
|
|
* returns the correct value, if at any time the register
|
|
* doesn't become available in time, reg will be 0xffffffff
|
|
* which means we return 0xff to the caller.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1);
|
|
rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
|
|
|
|
WAIT_FOR_BBP(rt2x00dev, ®);
|
|
}
|
|
|
|
*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RFCSR becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG_DATA, value);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, u8 *value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RFCSR becomes available, afterwards we
|
|
* can safely write the read request into the register.
|
|
* After the data has been written, we wait until hardware
|
|
* returns the correct value, if at any time the register
|
|
* doesn't become available in time, reg will be 0xffffffff
|
|
* which means we return 0xff to the caller.
|
|
*/
|
|
if (WAIT_FOR_RFCSR(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
|
|
|
|
WAIT_FOR_RFCSR(rt2x00dev, ®);
|
|
}
|
|
|
|
*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u32 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RF becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_RF(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0);
|
|
rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1);
|
|
|
|
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
|
|
rt2x00_rf_write(rt2x00dev, word, value);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static const unsigned int rt2800_eeprom_map[EEPROM_WORD_COUNT] = {
|
|
[EEPROM_CHIP_ID] = 0x0000,
|
|
[EEPROM_VERSION] = 0x0001,
|
|
[EEPROM_MAC_ADDR_0] = 0x0002,
|
|
[EEPROM_MAC_ADDR_1] = 0x0003,
|
|
[EEPROM_MAC_ADDR_2] = 0x0004,
|
|
[EEPROM_NIC_CONF0] = 0x001a,
|
|
[EEPROM_NIC_CONF1] = 0x001b,
|
|
[EEPROM_FREQ] = 0x001d,
|
|
[EEPROM_LED_AG_CONF] = 0x001e,
|
|
[EEPROM_LED_ACT_CONF] = 0x001f,
|
|
[EEPROM_LED_POLARITY] = 0x0020,
|
|
[EEPROM_NIC_CONF2] = 0x0021,
|
|
[EEPROM_LNA] = 0x0022,
|
|
[EEPROM_RSSI_BG] = 0x0023,
|
|
[EEPROM_RSSI_BG2] = 0x0024,
|
|
[EEPROM_TXMIXER_GAIN_BG] = 0x0024, /* overlaps with RSSI_BG2 */
|
|
[EEPROM_RSSI_A] = 0x0025,
|
|
[EEPROM_RSSI_A2] = 0x0026,
|
|
[EEPROM_TXMIXER_GAIN_A] = 0x0026, /* overlaps with RSSI_A2 */
|
|
[EEPROM_EIRP_MAX_TX_POWER] = 0x0027,
|
|
[EEPROM_TXPOWER_DELTA] = 0x0028,
|
|
[EEPROM_TXPOWER_BG1] = 0x0029,
|
|
[EEPROM_TXPOWER_BG2] = 0x0030,
|
|
[EEPROM_TSSI_BOUND_BG1] = 0x0037,
|
|
[EEPROM_TSSI_BOUND_BG2] = 0x0038,
|
|
[EEPROM_TSSI_BOUND_BG3] = 0x0039,
|
|
[EEPROM_TSSI_BOUND_BG4] = 0x003a,
|
|
[EEPROM_TSSI_BOUND_BG5] = 0x003b,
|
|
[EEPROM_TXPOWER_A1] = 0x003c,
|
|
[EEPROM_TXPOWER_A2] = 0x0053,
|
|
[EEPROM_TSSI_BOUND_A1] = 0x006a,
|
|
[EEPROM_TSSI_BOUND_A2] = 0x006b,
|
|
[EEPROM_TSSI_BOUND_A3] = 0x006c,
|
|
[EEPROM_TSSI_BOUND_A4] = 0x006d,
|
|
[EEPROM_TSSI_BOUND_A5] = 0x006e,
|
|
[EEPROM_TXPOWER_BYRATE] = 0x006f,
|
|
[EEPROM_BBP_START] = 0x0078,
|
|
};
|
|
|
|
static const unsigned int rt2800_eeprom_map_ext[EEPROM_WORD_COUNT] = {
|
|
[EEPROM_CHIP_ID] = 0x0000,
|
|
[EEPROM_VERSION] = 0x0001,
|
|
[EEPROM_MAC_ADDR_0] = 0x0002,
|
|
[EEPROM_MAC_ADDR_1] = 0x0003,
|
|
[EEPROM_MAC_ADDR_2] = 0x0004,
|
|
[EEPROM_NIC_CONF0] = 0x001a,
|
|
[EEPROM_NIC_CONF1] = 0x001b,
|
|
[EEPROM_NIC_CONF2] = 0x001c,
|
|
[EEPROM_EIRP_MAX_TX_POWER] = 0x0020,
|
|
[EEPROM_FREQ] = 0x0022,
|
|
[EEPROM_LED_AG_CONF] = 0x0023,
|
|
[EEPROM_LED_ACT_CONF] = 0x0024,
|
|
[EEPROM_LED_POLARITY] = 0x0025,
|
|
[EEPROM_LNA] = 0x0026,
|
|
[EEPROM_EXT_LNA2] = 0x0027,
|
|
[EEPROM_RSSI_BG] = 0x0028,
|
|
[EEPROM_RSSI_BG2] = 0x0029,
|
|
[EEPROM_RSSI_A] = 0x002a,
|
|
[EEPROM_RSSI_A2] = 0x002b,
|
|
[EEPROM_TXPOWER_BG1] = 0x0030,
|
|
[EEPROM_TXPOWER_BG2] = 0x0037,
|
|
[EEPROM_EXT_TXPOWER_BG3] = 0x003e,
|
|
[EEPROM_TSSI_BOUND_BG1] = 0x0045,
|
|
[EEPROM_TSSI_BOUND_BG2] = 0x0046,
|
|
[EEPROM_TSSI_BOUND_BG3] = 0x0047,
|
|
[EEPROM_TSSI_BOUND_BG4] = 0x0048,
|
|
[EEPROM_TSSI_BOUND_BG5] = 0x0049,
|
|
[EEPROM_TXPOWER_A1] = 0x004b,
|
|
[EEPROM_TXPOWER_A2] = 0x0065,
|
|
[EEPROM_EXT_TXPOWER_A3] = 0x007f,
|
|
[EEPROM_TSSI_BOUND_A1] = 0x009a,
|
|
[EEPROM_TSSI_BOUND_A2] = 0x009b,
|
|
[EEPROM_TSSI_BOUND_A3] = 0x009c,
|
|
[EEPROM_TSSI_BOUND_A4] = 0x009d,
|
|
[EEPROM_TSSI_BOUND_A5] = 0x009e,
|
|
[EEPROM_TXPOWER_BYRATE] = 0x00a0,
|
|
};
|
|
|
|
static unsigned int rt2800_eeprom_word_index(struct rt2x00_dev *rt2x00dev,
|
|
const enum rt2800_eeprom_word word)
|
|
{
|
|
const unsigned int *map;
|
|
unsigned int index;
|
|
|
|
if (WARN_ONCE(word >= EEPROM_WORD_COUNT,
|
|
"%s: invalid EEPROM word %d\n",
|
|
wiphy_name(rt2x00dev->hw->wiphy), word))
|
|
return 0;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
map = rt2800_eeprom_map_ext;
|
|
else
|
|
map = rt2800_eeprom_map;
|
|
|
|
index = map[word];
|
|
|
|
/* Index 0 is valid only for EEPROM_CHIP_ID.
|
|
* Otherwise it means that the offset of the
|
|
* given word is not initialized in the map,
|
|
* or that the field is not usable on the
|
|
* actual chipset.
|
|
*/
|
|
WARN_ONCE(word != EEPROM_CHIP_ID && index == 0,
|
|
"%s: invalid access of EEPROM word %d\n",
|
|
wiphy_name(rt2x00dev->hw->wiphy), word);
|
|
|
|
return index;
|
|
}
|
|
|
|
static void *rt2800_eeprom_addr(struct rt2x00_dev *rt2x00dev,
|
|
const enum rt2800_eeprom_word word)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = rt2800_eeprom_word_index(rt2x00dev, word);
|
|
return rt2x00_eeprom_addr(rt2x00dev, index);
|
|
}
|
|
|
|
static void rt2800_eeprom_read(struct rt2x00_dev *rt2x00dev,
|
|
const enum rt2800_eeprom_word word, u16 *data)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = rt2800_eeprom_word_index(rt2x00dev, word);
|
|
rt2x00_eeprom_read(rt2x00dev, index, data);
|
|
}
|
|
|
|
static void rt2800_eeprom_write(struct rt2x00_dev *rt2x00dev,
|
|
const enum rt2800_eeprom_word word, u16 data)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = rt2800_eeprom_word_index(rt2x00dev, word);
|
|
rt2x00_eeprom_write(rt2x00dev, index, data);
|
|
}
|
|
|
|
static void rt2800_eeprom_read_from_array(struct rt2x00_dev *rt2x00dev,
|
|
const enum rt2800_eeprom_word array,
|
|
unsigned int offset,
|
|
u16 *data)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = rt2800_eeprom_word_index(rt2x00dev, array);
|
|
rt2x00_eeprom_read(rt2x00dev, index + offset, data);
|
|
}
|
|
|
|
static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
int i, count;
|
|
|
|
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, ®);
|
|
if (rt2x00_get_field32(reg, WLAN_EN))
|
|
return 0;
|
|
|
|
rt2x00_set_field32(®, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
|
|
rt2x00_set_field32(®, FRC_WL_ANT_SET, 1);
|
|
rt2x00_set_field32(®, WLAN_CLK_EN, 0);
|
|
rt2x00_set_field32(®, WLAN_EN, 1);
|
|
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
|
|
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
|
|
count = 0;
|
|
do {
|
|
/*
|
|
* Check PLL_LD & XTAL_RDY.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, CMB_CTRL, ®);
|
|
if (rt2x00_get_field32(reg, PLL_LD) &&
|
|
rt2x00_get_field32(reg, XTAL_RDY))
|
|
break;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
if (i >= REGISTER_BUSY_COUNT) {
|
|
|
|
if (count >= 10)
|
|
return -EIO;
|
|
|
|
rt2800_register_write(rt2x00dev, 0x58, 0x018);
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
rt2800_register_write(rt2x00dev, 0x58, 0x418);
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
rt2800_register_write(rt2x00dev, 0x58, 0x618);
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
count++;
|
|
} else {
|
|
count = 0;
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, ®);
|
|
rt2x00_set_field32(®, PCIE_APP0_CLK_REQ, 0);
|
|
rt2x00_set_field32(®, WLAN_CLK_EN, 1);
|
|
rt2x00_set_field32(®, WLAN_RESET, 1);
|
|
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
|
|
udelay(10);
|
|
rt2x00_set_field32(®, WLAN_RESET, 0);
|
|
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
|
|
udelay(10);
|
|
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
|
|
} while (count != 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
|
|
const u8 command, const u8 token,
|
|
const u8 arg0, const u8 arg1)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* SOC devices don't support MCU requests.
|
|
*/
|
|
if (rt2x00_is_soc(rt2x00dev))
|
|
return;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the MCU becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_MCU(rt2x00dev, ®)) {
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0);
|
|
rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1);
|
|
rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
|
|
|
|
reg = 0;
|
|
rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command);
|
|
rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_mcu_request);
|
|
|
|
int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i = 0;
|
|
u32 reg;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
if (reg && reg != ~0)
|
|
return 0;
|
|
msleep(1);
|
|
}
|
|
|
|
rt2x00_err(rt2x00dev, "Unstable hardware\n");
|
|
return -EBUSY;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
|
|
|
|
int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Some devices are really slow to respond here. Wait a whole second
|
|
* before timing out.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
|
|
!rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
|
|
return 0;
|
|
|
|
msleep(10);
|
|
}
|
|
|
|
rt2x00_err(rt2x00dev, "WPDMA TX/RX busy [0x%08x]\n", reg);
|
|
return -EACCES;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
|
|
|
|
void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);
|
|
|
|
void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
|
|
unsigned short *txwi_size,
|
|
unsigned short *rxwi_size)
|
|
{
|
|
switch (rt2x00dev->chip.rt) {
|
|
case RT3593:
|
|
*txwi_size = TXWI_DESC_SIZE_4WORDS;
|
|
*rxwi_size = RXWI_DESC_SIZE_5WORDS;
|
|
break;
|
|
|
|
case RT5592:
|
|
*txwi_size = TXWI_DESC_SIZE_5WORDS;
|
|
*rxwi_size = RXWI_DESC_SIZE_6WORDS;
|
|
break;
|
|
|
|
default:
|
|
*txwi_size = TXWI_DESC_SIZE_4WORDS;
|
|
*rxwi_size = RXWI_DESC_SIZE_4WORDS;
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_get_txwi_rxwi_size);
|
|
|
|
static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
|
|
{
|
|
u16 fw_crc;
|
|
u16 crc;
|
|
|
|
/*
|
|
* The last 2 bytes in the firmware array are the crc checksum itself,
|
|
* this means that we should never pass those 2 bytes to the crc
|
|
* algorithm.
|
|
*/
|
|
fw_crc = (data[len - 2] << 8 | data[len - 1]);
|
|
|
|
/*
|
|
* Use the crc ccitt algorithm.
|
|
* This will return the same value as the legacy driver which
|
|
* used bit ordering reversion on the both the firmware bytes
|
|
* before input input as well as on the final output.
|
|
* Obviously using crc ccitt directly is much more efficient.
|
|
*/
|
|
crc = crc_ccitt(~0, data, len - 2);
|
|
|
|
/*
|
|
* There is a small difference between the crc-itu-t + bitrev and
|
|
* the crc-ccitt crc calculation. In the latter method the 2 bytes
|
|
* will be swapped, use swab16 to convert the crc to the correct
|
|
* value.
|
|
*/
|
|
crc = swab16(crc);
|
|
|
|
return fw_crc == crc;
|
|
}
|
|
|
|
int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
|
|
const u8 *data, const size_t len)
|
|
{
|
|
size_t offset = 0;
|
|
size_t fw_len;
|
|
bool multiple;
|
|
|
|
/*
|
|
* PCI(e) & SOC devices require firmware with a length
|
|
* of 8kb. USB devices require firmware files with a length
|
|
* of 4kb. Certain USB chipsets however require different firmware,
|
|
* which Ralink only provides attached to the original firmware
|
|
* file. Thus for USB devices, firmware files have a length
|
|
* which is a multiple of 4kb. The firmware for rt3290 chip also
|
|
* have a length which is a multiple of 4kb.
|
|
*/
|
|
if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
|
|
fw_len = 4096;
|
|
else
|
|
fw_len = 8192;
|
|
|
|
multiple = true;
|
|
/*
|
|
* Validate the firmware length
|
|
*/
|
|
if (len != fw_len && (!multiple || (len % fw_len) != 0))
|
|
return FW_BAD_LENGTH;
|
|
|
|
/*
|
|
* Check if the chipset requires one of the upper parts
|
|
* of the firmware.
|
|
*/
|
|
if (rt2x00_is_usb(rt2x00dev) &&
|
|
!rt2x00_rt(rt2x00dev, RT2860) &&
|
|
!rt2x00_rt(rt2x00dev, RT2872) &&
|
|
!rt2x00_rt(rt2x00dev, RT3070) &&
|
|
((len / fw_len) == 1))
|
|
return FW_BAD_VERSION;
|
|
|
|
/*
|
|
* 8kb firmware files must be checked as if it were
|
|
* 2 separate firmware files.
|
|
*/
|
|
while (offset < len) {
|
|
if (!rt2800_check_firmware_crc(data + offset, fw_len))
|
|
return FW_BAD_CRC;
|
|
|
|
offset += fw_len;
|
|
}
|
|
|
|
return FW_OK;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_check_firmware);
|
|
|
|
int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
|
|
const u8 *data, const size_t len)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
int retval;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290)) {
|
|
retval = rt2800_enable_wlan_rt3290(rt2x00dev);
|
|
if (retval)
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* If driver doesn't wake up firmware here,
|
|
* rt2800_load_firmware will hang forever when interface is up again.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
|
|
|
|
/*
|
|
* Wait for stable hardware.
|
|
*/
|
|
if (rt2800_wait_csr_ready(rt2x00dev))
|
|
return -EBUSY;
|
|
|
|
if (rt2x00_is_pci(rt2x00dev)) {
|
|
if (rt2x00_rt(rt2x00dev, RT3290) ||
|
|
rt2x00_rt(rt2x00dev, RT3572) ||
|
|
rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392)) {
|
|
rt2800_register_read(rt2x00dev, AUX_CTRL, ®);
|
|
rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
|
|
rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
|
|
rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
|
|
}
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
|
|
}
|
|
|
|
rt2800_disable_wpdma(rt2x00dev);
|
|
|
|
/*
|
|
* Write firmware to the device.
|
|
*/
|
|
rt2800_drv_write_firmware(rt2x00dev, data, len);
|
|
|
|
/*
|
|
* Wait for device to stabilize.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®);
|
|
if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (i == REGISTER_BUSY_COUNT) {
|
|
rt2x00_err(rt2x00dev, "PBF system register not ready\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Disable DMA, will be reenabled later when enabling
|
|
* the radio.
|
|
*/
|
|
rt2800_disable_wpdma(rt2x00dev);
|
|
|
|
/*
|
|
* Initialize firmware.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
|
|
rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
|
|
}
|
|
msleep(1);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_load_firmware);
|
|
|
|
void rt2800_write_tx_data(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
__le32 *txwi = rt2800_drv_get_txwi(entry);
|
|
u32 word;
|
|
int i;
|
|
|
|
/*
|
|
* Initialize TX Info descriptor
|
|
*/
|
|
rt2x00_desc_read(txwi, 0, &word);
|
|
rt2x00_set_field32(&word, TXWI_W0_FRAG,
|
|
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
|
|
test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
|
|
rt2x00_set_field32(&word, TXWI_W0_TS,
|
|
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_AMPDU,
|
|
test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
|
|
txdesc->u.ht.mpdu_density);
|
|
rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
|
|
rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
|
|
rt2x00_set_field32(&word, TXWI_W0_BW,
|
|
test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
|
|
test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
|
|
rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
|
|
rt2x00_desc_write(txwi, 0, word);
|
|
|
|
rt2x00_desc_read(txwi, 1, &word);
|
|
rt2x00_set_field32(&word, TXWI_W1_ACK,
|
|
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W1_NSEQ,
|
|
test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
|
|
rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
|
|
test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
|
|
txdesc->key_idx : txdesc->u.ht.wcid);
|
|
rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
|
|
txdesc->length);
|
|
rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
|
|
rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
|
|
rt2x00_desc_write(txwi, 1, word);
|
|
|
|
/*
|
|
* Always write 0 to IV/EIV fields (word 2 and 3), hardware will insert
|
|
* the IV from the IVEIV register when TXD_W3_WIV is set to 0.
|
|
* When TXD_W3_WIV is set to 1 it will use the IV data
|
|
* from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
|
|
* crypto entry in the registers should be used to encrypt the frame.
|
|
*
|
|
* Nulify all remaining words as well, we don't know how to program them.
|
|
*/
|
|
for (i = 2; i < entry->queue->winfo_size / sizeof(__le32); i++)
|
|
_rt2x00_desc_write(txwi, i, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
|
|
|
|
static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
|
|
{
|
|
s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
|
|
s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
|
|
s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
|
|
u16 eeprom;
|
|
u8 offset0;
|
|
u8 offset1;
|
|
u8 offset2;
|
|
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
|
|
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
|
|
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
|
|
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
|
|
} else {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
|
|
offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
|
|
offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
|
|
offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
|
|
}
|
|
|
|
/*
|
|
* Convert the value from the descriptor into the RSSI value
|
|
* If the value in the descriptor is 0, it is considered invalid
|
|
* and the default (extremely low) rssi value is assumed
|
|
*/
|
|
rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
|
|
rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
|
|
rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
|
|
|
|
/*
|
|
* mac80211 only accepts a single RSSI value. Calculating the
|
|
* average doesn't deliver a fair answer either since -60:-60 would
|
|
* be considered equally good as -50:-70 while the second is the one
|
|
* which gives less energy...
|
|
*/
|
|
rssi0 = max(rssi0, rssi1);
|
|
return (int)max(rssi0, rssi2);
|
|
}
|
|
|
|
void rt2800_process_rxwi(struct queue_entry *entry,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
__le32 *rxwi = (__le32 *) entry->skb->data;
|
|
u32 word;
|
|
|
|
rt2x00_desc_read(rxwi, 0, &word);
|
|
|
|
rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
|
|
rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
|
|
|
|
rt2x00_desc_read(rxwi, 1, &word);
|
|
|
|
if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
|
|
rxdesc->flags |= RX_FLAG_SHORT_GI;
|
|
|
|
if (rt2x00_get_field32(word, RXWI_W1_BW))
|
|
rxdesc->flags |= RX_FLAG_40MHZ;
|
|
|
|
/*
|
|
* Detect RX rate, always use MCS as signal type.
|
|
*/
|
|
rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
|
|
rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
|
|
rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
|
|
|
|
/*
|
|
* Mask of 0x8 bit to remove the short preamble flag.
|
|
*/
|
|
if (rxdesc->rate_mode == RATE_MODE_CCK)
|
|
rxdesc->signal &= ~0x8;
|
|
|
|
rt2x00_desc_read(rxwi, 2, &word);
|
|
|
|
/*
|
|
* Convert descriptor AGC value to RSSI value.
|
|
*/
|
|
rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
|
|
/*
|
|
* Remove RXWI descriptor from start of the buffer.
|
|
*/
|
|
skb_pull(entry->skb, entry->queue->winfo_size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
|
|
|
|
void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
struct txdone_entry_desc txdesc;
|
|
u32 word;
|
|
u16 mcs, real_mcs;
|
|
int aggr, ampdu;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
txdesc.flags = 0;
|
|
rt2x00_desc_read(txwi, 0, &word);
|
|
|
|
mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
|
|
ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
|
|
|
|
real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
|
|
aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
|
|
|
|
/*
|
|
* If a frame was meant to be sent as a single non-aggregated MPDU
|
|
* but ended up in an aggregate the used tx rate doesn't correlate
|
|
* with the one specified in the TXWI as the whole aggregate is sent
|
|
* with the same rate.
|
|
*
|
|
* For example: two frames are sent to rt2x00, the first one sets
|
|
* AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
|
|
* and requests MCS15. If the hw aggregates both frames into one
|
|
* AMDPU the tx status for both frames will contain MCS7 although
|
|
* the frame was sent successfully.
|
|
*
|
|
* Hence, replace the requested rate with the real tx rate to not
|
|
* confuse the rate control algortihm by providing clearly wrong
|
|
* data.
|
|
*/
|
|
if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
|
|
skbdesc->tx_rate_idx = real_mcs;
|
|
mcs = real_mcs;
|
|
}
|
|
|
|
if (aggr == 1 || ampdu == 1)
|
|
__set_bit(TXDONE_AMPDU, &txdesc.flags);
|
|
|
|
/*
|
|
* Ralink has a retry mechanism using a global fallback
|
|
* table. We setup this fallback table to try the immediate
|
|
* lower rate for all rates. In the TX_STA_FIFO, the MCS field
|
|
* always contains the MCS used for the last transmission, be
|
|
* it successful or not.
|
|
*/
|
|
if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
|
|
/*
|
|
* Transmission succeeded. The number of retries is
|
|
* mcs - real_mcs
|
|
*/
|
|
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
|
|
txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
|
|
} else {
|
|
/*
|
|
* Transmission failed. The number of retries is
|
|
* always 7 in this case (for a total number of 8
|
|
* frames sent).
|
|
*/
|
|
__set_bit(TXDONE_FAILURE, &txdesc.flags);
|
|
txdesc.retry = rt2x00dev->long_retry;
|
|
}
|
|
|
|
/*
|
|
* the frame was retried at least once
|
|
* -> hw used fallback rates
|
|
*/
|
|
if (txdesc.retry)
|
|
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
|
|
|
|
rt2x00lib_txdone(entry, &txdesc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
|
|
|
|
static unsigned int rt2800_hw_beacon_base(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int index)
|
|
{
|
|
return HW_BEACON_BASE(index);
|
|
}
|
|
|
|
static inline u8 rt2800_get_beacon_offset(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int index)
|
|
{
|
|
return BEACON_BASE_TO_OFFSET(rt2800_hw_beacon_base(rt2x00dev, index));
|
|
}
|
|
|
|
void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
unsigned int beacon_base;
|
|
unsigned int padding_len;
|
|
u32 orig_reg, reg;
|
|
const int txwi_desc_size = entry->queue->winfo_size;
|
|
|
|
/*
|
|
* Disable beaconing while we are reloading the beacon data,
|
|
* otherwise we might be sending out invalid data.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
orig_reg = reg;
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
/*
|
|
* Add space for the TXWI in front of the skb.
|
|
*/
|
|
memset(skb_push(entry->skb, txwi_desc_size), 0, txwi_desc_size);
|
|
|
|
/*
|
|
* Register descriptor details in skb frame descriptor.
|
|
*/
|
|
skbdesc->flags |= SKBDESC_DESC_IN_SKB;
|
|
skbdesc->desc = entry->skb->data;
|
|
skbdesc->desc_len = txwi_desc_size;
|
|
|
|
/*
|
|
* Add the TXWI for the beacon to the skb.
|
|
*/
|
|
rt2800_write_tx_data(entry, txdesc);
|
|
|
|
/*
|
|
* Dump beacon to userspace through debugfs.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
|
|
|
|
/*
|
|
* Write entire beacon with TXWI and padding to register.
|
|
*/
|
|
padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
|
|
if (padding_len && skb_pad(entry->skb, padding_len)) {
|
|
rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
|
|
/* skb freed by skb_pad() on failure */
|
|
entry->skb = NULL;
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
|
|
return;
|
|
}
|
|
|
|
beacon_base = rt2800_hw_beacon_base(rt2x00dev, entry->entry_idx);
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
|
|
entry->skb->len + padding_len);
|
|
|
|
/*
|
|
* Enable beaconing again.
|
|
*/
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
/*
|
|
* Clean up beacon skb.
|
|
*/
|
|
dev_kfree_skb_any(entry->skb);
|
|
entry->skb = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_write_beacon);
|
|
|
|
static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int index)
|
|
{
|
|
int i;
|
|
const int txwi_desc_size = rt2x00dev->bcn->winfo_size;
|
|
unsigned int beacon_base;
|
|
|
|
beacon_base = rt2800_hw_beacon_base(rt2x00dev, index);
|
|
|
|
/*
|
|
* For the Beacon base registers we only need to clear
|
|
* the whole TXWI which (when set to 0) will invalidate
|
|
* the entire beacon.
|
|
*/
|
|
for (i = 0; i < txwi_desc_size; i += sizeof(__le32))
|
|
rt2800_register_write(rt2x00dev, beacon_base + i, 0);
|
|
}
|
|
|
|
void rt2800_clear_beacon(struct queue_entry *entry)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Disable beaconing while we are reloading the beacon data,
|
|
* otherwise we might be sending out invalid data.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
/*
|
|
* Clear beacon.
|
|
*/
|
|
rt2800_clear_beacon_register(rt2x00dev, entry->entry_idx);
|
|
|
|
/*
|
|
* Enabled beaconing again.
|
|
*/
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
const struct rt2x00debug rt2800_rt2x00debug = {
|
|
.owner = THIS_MODULE,
|
|
.csr = {
|
|
.read = rt2800_register_read,
|
|
.write = rt2800_register_write,
|
|
.flags = RT2X00DEBUGFS_OFFSET,
|
|
.word_base = CSR_REG_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = CSR_REG_SIZE / sizeof(u32),
|
|
},
|
|
.eeprom = {
|
|
/* NOTE: The local EEPROM access functions can't
|
|
* be used here, use the generic versions instead.
|
|
*/
|
|
.read = rt2x00_eeprom_read,
|
|
.write = rt2x00_eeprom_write,
|
|
.word_base = EEPROM_BASE,
|
|
.word_size = sizeof(u16),
|
|
.word_count = EEPROM_SIZE / sizeof(u16),
|
|
},
|
|
.bbp = {
|
|
.read = rt2800_bbp_read,
|
|
.write = rt2800_bbp_write,
|
|
.word_base = BBP_BASE,
|
|
.word_size = sizeof(u8),
|
|
.word_count = BBP_SIZE / sizeof(u8),
|
|
},
|
|
.rf = {
|
|
.read = rt2x00_rf_read,
|
|
.write = rt2800_rf_write,
|
|
.word_base = RF_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = RF_SIZE / sizeof(u32),
|
|
},
|
|
.rfcsr = {
|
|
.read = rt2800_rfcsr_read,
|
|
.write = rt2800_rfcsr_write,
|
|
.word_base = RFCSR_BASE,
|
|
.word_size = sizeof(u8),
|
|
.word_count = RFCSR_SIZE / sizeof(u8),
|
|
},
|
|
};
|
|
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
|
|
int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290)) {
|
|
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, ®);
|
|
return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
|
|
} else {
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
static void rt2800_brightness_set(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct rt2x00_led *led =
|
|
container_of(led_cdev, struct rt2x00_led, led_dev);
|
|
unsigned int enabled = brightness != LED_OFF;
|
|
unsigned int bg_mode =
|
|
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
|
|
unsigned int polarity =
|
|
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
|
|
EEPROM_FREQ_LED_POLARITY);
|
|
unsigned int ledmode =
|
|
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
|
|
EEPROM_FREQ_LED_MODE);
|
|
u32 reg;
|
|
|
|
/* Check for SoC (SOC devices don't support MCU requests) */
|
|
if (rt2x00_is_soc(led->rt2x00dev)) {
|
|
rt2800_register_read(led->rt2x00dev, LED_CFG, ®);
|
|
|
|
/* Set LED Polarity */
|
|
rt2x00_set_field32(®, LED_CFG_LED_POLAR, polarity);
|
|
|
|
/* Set LED Mode */
|
|
if (led->type == LED_TYPE_RADIO) {
|
|
rt2x00_set_field32(®, LED_CFG_G_LED_MODE,
|
|
enabled ? 3 : 0);
|
|
} else if (led->type == LED_TYPE_ASSOC) {
|
|
rt2x00_set_field32(®, LED_CFG_Y_LED_MODE,
|
|
enabled ? 3 : 0);
|
|
} else if (led->type == LED_TYPE_QUALITY) {
|
|
rt2x00_set_field32(®, LED_CFG_R_LED_MODE,
|
|
enabled ? 3 : 0);
|
|
}
|
|
|
|
rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
|
|
|
|
} else {
|
|
if (led->type == LED_TYPE_RADIO) {
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
|
|
enabled ? 0x20 : 0);
|
|
} else if (led->type == LED_TYPE_ASSOC) {
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
|
|
enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
|
|
} else if (led->type == LED_TYPE_QUALITY) {
|
|
/*
|
|
* The brightness is divided into 6 levels (0 - 5),
|
|
* The specs tell us the following levels:
|
|
* 0, 1 ,3, 7, 15, 31
|
|
* to determine the level in a simple way we can simply
|
|
* work with bitshifting:
|
|
* (1 << level) - 1
|
|
*/
|
|
rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
|
|
(1 << brightness / (LED_FULL / 6)) - 1,
|
|
polarity);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_led *led, enum led_type type)
|
|
{
|
|
led->rt2x00dev = rt2x00dev;
|
|
led->type = type;
|
|
led->led_dev.brightness_set = rt2800_brightness_set;
|
|
led->flags = LED_INITIALIZED;
|
|
}
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
/*
|
|
* Configuration handlers.
|
|
*/
|
|
static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
|
|
const u8 *address,
|
|
int wcid)
|
|
{
|
|
struct mac_wcid_entry wcid_entry;
|
|
u32 offset;
|
|
|
|
offset = MAC_WCID_ENTRY(wcid);
|
|
|
|
memset(&wcid_entry, 0xff, sizeof(wcid_entry));
|
|
if (address)
|
|
memcpy(wcid_entry.mac, address, ETH_ALEN);
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&wcid_entry, sizeof(wcid_entry));
|
|
}
|
|
|
|
static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
|
|
{
|
|
u32 offset;
|
|
offset = MAC_WCID_ATTR_ENTRY(wcid);
|
|
rt2800_register_write(rt2x00dev, offset, 0);
|
|
}
|
|
|
|
static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
|
|
int wcid, u32 bssidx)
|
|
{
|
|
u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
|
|
u32 reg;
|
|
|
|
/*
|
|
* The BSS Idx numbers is split in a main value of 3 bits,
|
|
* and a extended field for adding one additional bit to the value.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
|
|
(bssidx & 0x8) >> 3);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
}
|
|
|
|
static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct mac_iveiv_entry iveiv_entry;
|
|
u32 offset;
|
|
u32 reg;
|
|
|
|
offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
|
|
|
|
if (crypto->cmd == SET_KEY) {
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB,
|
|
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
|
|
/*
|
|
* Both the cipher as the BSS Idx numbers are split in a main
|
|
* value of 3 bits, and a extended field for adding one additional
|
|
* bit to the value.
|
|
*/
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER,
|
|
(crypto->cipher & 0x7));
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
|
|
(crypto->cipher & 0x8) >> 3);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
} else {
|
|
/* Delete the cipher without touching the bssidx */
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, 0);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
|
|
rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
}
|
|
|
|
offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
|
|
|
|
memset(&iveiv_entry, 0, sizeof(iveiv_entry));
|
|
if ((crypto->cipher == CIPHER_TKIP) ||
|
|
(crypto->cipher == CIPHER_TKIP_NO_MIC) ||
|
|
(crypto->cipher == CIPHER_AES))
|
|
iveiv_entry.iv[3] |= 0x20;
|
|
iveiv_entry.iv[3] |= key->keyidx << 6;
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&iveiv_entry, sizeof(iveiv_entry));
|
|
}
|
|
|
|
int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct hw_key_entry key_entry;
|
|
struct rt2x00_field32 field;
|
|
u32 offset;
|
|
u32 reg;
|
|
|
|
if (crypto->cmd == SET_KEY) {
|
|
key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
|
|
|
|
memcpy(key_entry.key, crypto->key,
|
|
sizeof(key_entry.key));
|
|
memcpy(key_entry.tx_mic, crypto->tx_mic,
|
|
sizeof(key_entry.tx_mic));
|
|
memcpy(key_entry.rx_mic, crypto->rx_mic,
|
|
sizeof(key_entry.rx_mic));
|
|
|
|
offset = SHARED_KEY_ENTRY(key->hw_key_idx);
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&key_entry, sizeof(key_entry));
|
|
}
|
|
|
|
/*
|
|
* The cipher types are stored over multiple registers
|
|
* starting with SHARED_KEY_MODE_BASE each word will have
|
|
* 32 bits and contains the cipher types for 2 bssidx each.
|
|
* Using the correct defines correctly will cause overhead,
|
|
* so just calculate the correct offset.
|
|
*/
|
|
field.bit_offset = 4 * (key->hw_key_idx % 8);
|
|
field.bit_mask = 0x7 << field.bit_offset;
|
|
|
|
offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, field,
|
|
(crypto->cmd == SET_KEY) * crypto->cipher);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
/*
|
|
* Update WCID information
|
|
*/
|
|
rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
|
|
rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
|
|
crypto->bssidx);
|
|
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
|
|
|
|
static inline int rt2800_find_wcid(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct mac_wcid_entry wcid_entry;
|
|
int idx;
|
|
u32 offset;
|
|
|
|
/*
|
|
* Search for the first free WCID entry and return the corresponding
|
|
* index.
|
|
*
|
|
* Make sure the WCID starts _after_ the last possible shared key
|
|
* entry (>32).
|
|
*
|
|
* Since parts of the pairwise key table might be shared with
|
|
* the beacon frame buffers 6 & 7 we should only write into the
|
|
* first 222 entries.
|
|
*/
|
|
for (idx = 33; idx <= 222; idx++) {
|
|
offset = MAC_WCID_ENTRY(idx);
|
|
rt2800_register_multiread(rt2x00dev, offset, &wcid_entry,
|
|
sizeof(wcid_entry));
|
|
if (is_broadcast_ether_addr(wcid_entry.mac))
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
* Use -1 to indicate that we don't have any more space in the WCID
|
|
* table.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_crypto *crypto,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct hw_key_entry key_entry;
|
|
u32 offset;
|
|
|
|
if (crypto->cmd == SET_KEY) {
|
|
/*
|
|
* Allow key configuration only for STAs that are
|
|
* known by the hw.
|
|
*/
|
|
if (crypto->wcid < 0)
|
|
return -ENOSPC;
|
|
key->hw_key_idx = crypto->wcid;
|
|
|
|
memcpy(key_entry.key, crypto->key,
|
|
sizeof(key_entry.key));
|
|
memcpy(key_entry.tx_mic, crypto->tx_mic,
|
|
sizeof(key_entry.tx_mic));
|
|
memcpy(key_entry.rx_mic, crypto->rx_mic,
|
|
sizeof(key_entry.rx_mic));
|
|
|
|
offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
|
|
rt2800_register_multiwrite(rt2x00dev, offset,
|
|
&key_entry, sizeof(key_entry));
|
|
}
|
|
|
|
/*
|
|
* Update WCID information
|
|
*/
|
|
rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
|
|
|
|
int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
int wcid;
|
|
struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
|
|
|
|
/*
|
|
* Find next free WCID.
|
|
*/
|
|
wcid = rt2800_find_wcid(rt2x00dev);
|
|
|
|
/*
|
|
* Store selected wcid even if it is invalid so that we can
|
|
* later decide if the STA is uploaded into the hw.
|
|
*/
|
|
sta_priv->wcid = wcid;
|
|
|
|
/*
|
|
* No space left in the device, however, we can still communicate
|
|
* with the STA -> No error.
|
|
*/
|
|
if (wcid < 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Clean up WCID attributes and write STA address to the device.
|
|
*/
|
|
rt2800_delete_wcid_attr(rt2x00dev, wcid);
|
|
rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
|
|
rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
|
|
rt2x00lib_get_bssidx(rt2x00dev, vif));
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_sta_add);
|
|
|
|
int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid)
|
|
{
|
|
/*
|
|
* Remove WCID entry, no need to clean the attributes as they will
|
|
* get renewed when the WCID is reused.
|
|
*/
|
|
rt2800_config_wcid(rt2x00dev, NULL, wcid);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_sta_remove);
|
|
|
|
void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int filter_flags)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Start configuration steps.
|
|
* Note that the version error will always be dropped
|
|
* and broadcast frames will always be accepted since
|
|
* there is no filter for it at this time.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR,
|
|
!(filter_flags & FIF_FCSFAIL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR,
|
|
!(filter_flags & FIF_PLCPFAIL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME,
|
|
!(filter_flags & FIF_PROMISC_IN_BSS));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST,
|
|
!(filter_flags & FIF_ALLMULTI));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL,
|
|
!(filter_flags & FIF_PSPOLL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 0);
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_filter);
|
|
|
|
void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
|
|
struct rt2x00intf_conf *conf, const unsigned int flags)
|
|
{
|
|
u32 reg;
|
|
bool update_bssid = false;
|
|
|
|
if (flags & CONFIG_UPDATE_TYPE) {
|
|
/*
|
|
* Enable synchronisation.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
if (conf->sync == TSF_SYNC_AP_NONE) {
|
|
/*
|
|
* Tune beacon queue transmit parameters for AP mode
|
|
*/
|
|
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 0);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 1);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
|
|
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
|
|
} else {
|
|
rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 4);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 2);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
|
|
rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
|
|
rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
|
|
}
|
|
}
|
|
|
|
if (flags & CONFIG_UPDATE_MAC) {
|
|
if (flags & CONFIG_UPDATE_TYPE &&
|
|
conf->sync == TSF_SYNC_AP_NONE) {
|
|
/*
|
|
* The BSSID register has to be set to our own mac
|
|
* address in AP mode.
|
|
*/
|
|
memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
|
|
update_bssid = true;
|
|
}
|
|
|
|
if (!is_zero_ether_addr((const u8 *)conf->mac)) {
|
|
reg = le32_to_cpu(conf->mac[1]);
|
|
rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
|
|
conf->mac[1] = cpu_to_le32(reg);
|
|
}
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
|
|
conf->mac, sizeof(conf->mac));
|
|
}
|
|
|
|
if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
|
|
if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
|
|
reg = le32_to_cpu(conf->bssid[1]);
|
|
rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 3);
|
|
rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
|
|
conf->bssid[1] = cpu_to_le32(reg);
|
|
}
|
|
|
|
rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
|
|
conf->bssid, sizeof(conf->bssid));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_intf);
|
|
|
|
static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_erp *erp)
|
|
{
|
|
bool any_sta_nongf = !!(erp->ht_opmode &
|
|
IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
|
|
u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
|
|
u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
|
|
u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
|
|
u32 reg;
|
|
|
|
/* default protection rate for HT20: OFDM 24M */
|
|
mm20_rate = gf20_rate = 0x4004;
|
|
|
|
/* default protection rate for HT40: duplicate OFDM 24M */
|
|
mm40_rate = gf40_rate = 0x4084;
|
|
|
|
switch (protection) {
|
|
case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
|
|
/*
|
|
* All STAs in this BSS are HT20/40 but there might be
|
|
* STAs not supporting greenfield mode.
|
|
* => Disable protection for HT transmissions.
|
|
*/
|
|
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
|
|
|
|
break;
|
|
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
|
|
/*
|
|
* All STAs in this BSS are HT20 or HT20/40 but there
|
|
* might be STAs not supporting greenfield mode.
|
|
* => Protect all HT40 transmissions.
|
|
*/
|
|
mm20_mode = gf20_mode = 0;
|
|
mm40_mode = gf40_mode = 2;
|
|
|
|
break;
|
|
case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
|
|
/*
|
|
* Nonmember protection:
|
|
* According to 802.11n we _should_ protect all
|
|
* HT transmissions (but we don't have to).
|
|
*
|
|
* But if cts_protection is enabled we _shall_ protect
|
|
* all HT transmissions using a CCK rate.
|
|
*
|
|
* And if any station is non GF we _shall_ protect
|
|
* GF transmissions.
|
|
*
|
|
* We decide to protect everything
|
|
* -> fall through to mixed mode.
|
|
*/
|
|
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
|
|
/*
|
|
* Legacy STAs are present
|
|
* => Protect all HT transmissions.
|
|
*/
|
|
mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
|
|
|
|
/*
|
|
* If erp protection is needed we have to protect HT
|
|
* transmissions with CCK 11M long preamble.
|
|
*/
|
|
if (erp->cts_protection) {
|
|
/* don't duplicate RTS/CTS in CCK mode */
|
|
mm20_rate = mm40_rate = 0x0003;
|
|
gf20_rate = gf40_rate = 0x0003;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* check for STAs not supporting greenfield mode */
|
|
if (any_sta_nongf)
|
|
gf20_mode = gf40_mode = 2;
|
|
|
|
/* Update HT protection config */
|
|
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
|
|
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
|
|
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
|
|
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
|
|
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
|
|
}
|
|
|
|
void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
|
|
u32 changed)
|
|
{
|
|
u32 reg;
|
|
|
|
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
|
|
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY,
|
|
!!erp->short_preamble);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE,
|
|
!!erp->short_preamble);
|
|
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL,
|
|
erp->cts_protection ? 2 : 0);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_BASIC_RATES) {
|
|
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
|
|
erp->basic_rates);
|
|
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ERP_SLOT) {
|
|
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
|
|
rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME,
|
|
erp->slot_time);
|
|
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs);
|
|
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_BEACON_INT) {
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
|
|
erp->beacon_int * 16);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_HT)
|
|
rt2800_config_ht_opmode(rt2x00dev, erp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_erp);
|
|
|
|
static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 eeprom;
|
|
u8 led_ctrl, led_g_mode, led_r_mode;
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®);
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
|
|
rt2x00_set_field32(®, GPIO_SWITCH_0, 1);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_1, 1);
|
|
} else {
|
|
rt2x00_set_field32(®, GPIO_SWITCH_0, 0);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_1, 0);
|
|
}
|
|
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LED_CFG, ®);
|
|
led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
|
|
led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
|
|
if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
|
|
led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
|
|
led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
|
|
if (led_ctrl == 0 || led_ctrl > 0x40) {
|
|
rt2x00_set_field32(®, LED_CFG_G_LED_MODE, led_g_mode);
|
|
rt2x00_set_field32(®, LED_CFG_R_LED_MODE, led_r_mode);
|
|
rt2800_register_write(rt2x00dev, LED_CFG, reg);
|
|
} else {
|
|
rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
|
|
(led_g_mode << 2) | led_r_mode, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
|
|
enum antenna ant)
|
|
{
|
|
u32 reg;
|
|
u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
|
|
u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
|
|
|
|
if (rt2x00_is_pci(rt2x00dev)) {
|
|
rt2800_register_read(rt2x00dev, E2PROM_CSR, ®);
|
|
rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, eesk_pin);
|
|
rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
|
|
} else if (rt2x00_is_usb(rt2x00dev))
|
|
rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
|
|
eesk_pin, 0);
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR3, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL3, gpio_bit3);
|
|
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
|
|
}
|
|
|
|
void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
|
|
{
|
|
u8 r1;
|
|
u8 r3;
|
|
u16 eeprom;
|
|
|
|
rt2800_bbp_read(rt2x00dev, 1, &r1);
|
|
rt2800_bbp_read(rt2x00dev, 3, &r3);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3572) &&
|
|
rt2x00_has_cap_bt_coexist(rt2x00dev))
|
|
rt2800_config_3572bt_ant(rt2x00dev);
|
|
|
|
/*
|
|
* Configure the TX antenna.
|
|
*/
|
|
switch (ant->tx_chain_num) {
|
|
case 1:
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
|
|
break;
|
|
case 2:
|
|
if (rt2x00_rt(rt2x00dev, RT3572) &&
|
|
rt2x00_has_cap_bt_coexist(rt2x00dev))
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
|
|
else
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
|
|
break;
|
|
case 3:
|
|
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure the RX antenna.
|
|
*/
|
|
switch (ant->rx_chain_num) {
|
|
case 1:
|
|
if (rt2x00_rt(rt2x00dev, RT3070) ||
|
|
rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3352) ||
|
|
rt2x00_rt(rt2x00dev, RT3390)) {
|
|
rt2800_eeprom_read(rt2x00dev,
|
|
EEPROM_NIC_CONF1, &eeprom);
|
|
if (rt2x00_get_field16(eeprom,
|
|
EEPROM_NIC_CONF1_ANT_DIVERSITY))
|
|
rt2800_set_ant_diversity(rt2x00dev,
|
|
rt2x00dev->default_ant.rx);
|
|
}
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
|
|
break;
|
|
case 2:
|
|
if (rt2x00_rt(rt2x00dev, RT3572) &&
|
|
rt2x00_has_cap_bt_coexist(rt2x00dev)) {
|
|
rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
|
|
rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
|
|
rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
|
|
} else {
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
|
|
}
|
|
break;
|
|
case 3:
|
|
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
|
|
break;
|
|
}
|
|
|
|
rt2800_bbp_write(rt2x00dev, 3, r3);
|
|
rt2800_bbp_write(rt2x00dev, 1, r1);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
if (ant->rx_chain_num == 1)
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x46);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config_ant);
|
|
|
|
static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u16 eeprom;
|
|
short lna_gain;
|
|
|
|
if (libconf->rf.channel <= 14) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
|
|
} else if (libconf->rf.channel <= 64) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
|
|
} else if (libconf->rf.channel <= 128) {
|
|
if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom,
|
|
EEPROM_EXT_LNA2_A1);
|
|
} else {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom,
|
|
EEPROM_RSSI_BG2_LNA_A1);
|
|
}
|
|
} else {
|
|
if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom,
|
|
EEPROM_EXT_LNA2_A2);
|
|
} else {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
|
|
lna_gain = rt2x00_get_field16(eeprom,
|
|
EEPROM_RSSI_A2_LNA_A2);
|
|
}
|
|
}
|
|
|
|
rt2x00dev->lna_gain = lna_gain;
|
|
}
|
|
|
|
#define FREQ_OFFSET_BOUND 0x5f
|
|
|
|
static void rt2800_adjust_freq_offset(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 freq_offset, prev_freq_offset;
|
|
u8 rfcsr, prev_rfcsr;
|
|
|
|
freq_offset = rt2x00_get_field8(rt2x00dev->freq_offset, RFCSR17_CODE);
|
|
freq_offset = min_t(u8, freq_offset, FREQ_OFFSET_BOUND);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
|
|
prev_rfcsr = rfcsr;
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, freq_offset);
|
|
if (rfcsr == prev_rfcsr)
|
|
return;
|
|
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
rt2800_mcu_request(rt2x00dev, MCU_FREQ_OFFSET, 0xff,
|
|
freq_offset, prev_rfcsr);
|
|
return;
|
|
}
|
|
|
|
prev_freq_offset = rt2x00_get_field8(prev_rfcsr, RFCSR17_CODE);
|
|
while (prev_freq_offset != freq_offset) {
|
|
if (prev_freq_offset < freq_offset)
|
|
prev_freq_offset++;
|
|
else
|
|
prev_freq_offset--;
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR17_CODE, prev_freq_offset);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
|
|
|
|
usleep_range(1000, 1500);
|
|
}
|
|
}
|
|
|
|
static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
|
|
if (rt2x00dev->default_ant.tx_chain_num == 1)
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
|
|
|
|
if (rt2x00dev->default_ant.rx_chain_num == 1) {
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
|
|
} else if (rt2x00dev->default_ant.rx_chain_num == 2)
|
|
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
|
|
|
|
if (rf->channel > 14) {
|
|
/*
|
|
* When TX power is below 0, we should increase it by 7 to
|
|
* make it a positive value (Minimum value is -7).
|
|
* However this means that values between 0 and 7 have
|
|
* double meaning, and we should set a 7DBm boost flag.
|
|
*/
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
|
|
(info->default_power1 >= 0));
|
|
|
|
if (info->default_power1 < 0)
|
|
info->default_power1 += 7;
|
|
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
|
|
(info->default_power2 >= 0));
|
|
|
|
if (info->default_power2 < 0)
|
|
info->default_power2 += 7;
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
|
|
} else {
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
|
|
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
|
|
}
|
|
|
|
rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
udelay(200);
|
|
|
|
rt2800_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2800_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
|
|
rt2800_rf_write(rt2x00dev, 4, rf->rf4);
|
|
}
|
|
|
|
static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 rfcsr, calib_tx, calib_rx;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
|
|
rt2x00dev->default_ant.rx_chain_num <= 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
|
|
rt2x00dev->default_ant.rx_chain_num <= 2);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
|
|
rt2x00dev->default_ant.tx_chain_num <= 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
|
|
rt2x00dev->default_ant.tx_chain_num <= 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3390)) {
|
|
calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
|
|
calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
|
|
} else {
|
|
if (conf_is_ht40(conf)) {
|
|
calib_tx = drv_data->calibration_bw40;
|
|
calib_rx = drv_data->calibration_bw40;
|
|
} else {
|
|
calib_tx = drv_data->calibration_bw20;
|
|
calib_rx = drv_data->calibration_bw20;
|
|
}
|
|
}
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 24, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
msleep(1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
}
|
|
|
|
static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 rfcsr;
|
|
u32 reg;
|
|
|
|
if (rf->channel <= 14) {
|
|
rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
|
|
rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x09);
|
|
rt2800_bbp_write(rt2x00dev, 26, 0xff);
|
|
}
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
|
|
info->default_power1);
|
|
} else {
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
|
|
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
|
|
(info->default_power1 & 0x3) |
|
|
((info->default_power1 & 0xC) << 1));
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
|
|
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
|
|
info->default_power2);
|
|
} else {
|
|
rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
|
|
rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
|
|
(info->default_power2 & 0x3) |
|
|
((info->default_power2 & 0xC) << 1));
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
|
|
if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
|
|
if (rf->channel <= 14) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
|
|
}
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
|
|
} else {
|
|
switch (rt2x00dev->default_ant.tx_chain_num) {
|
|
case 1:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
|
|
case 2:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
|
|
break;
|
|
}
|
|
|
|
switch (rt2x00dev->default_ant.rx_chain_num) {
|
|
case 1:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
|
|
case 2:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
|
|
break;
|
|
}
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
|
|
|
|
if (conf_is_ht40(conf)) {
|
|
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
|
|
} else {
|
|
rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
|
|
}
|
|
|
|
if (rf->channel <= 14) {
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
|
|
rfcsr = 0x4c;
|
|
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
|
|
drv_data->txmixer_gain_24g);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
|
|
} else {
|
|
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
|
|
rfcsr = 0x7a;
|
|
rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
|
|
drv_data->txmixer_gain_5g);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
|
|
if (rf->channel <= 64) {
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
|
|
} else if (rf->channel <= 128) {
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
|
|
} else {
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR7, 0);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL7, 1);
|
|
else
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL7, 0);
|
|
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
|
|
}
|
|
|
|
static void rt2800_config_channel_rf3053(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 txrx_agc_fc;
|
|
u8 txrx_h20m;
|
|
u8 rfcsr;
|
|
u8 bbp;
|
|
const bool txbf_enabled = false; /* TODO */
|
|
|
|
/* TODO: use TX{0,1,2}FinePowerControl values from EEPROM */
|
|
rt2800_bbp_read(rt2x00dev, 109, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP109_TX0_POWER, 0);
|
|
rt2x00_set_field8(&bbp, BBP109_TX1_POWER, 0);
|
|
rt2800_bbp_write(rt2x00dev, 109, bbp);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 110, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP110_TX2_POWER, 0);
|
|
rt2800_bbp_write(rt2x00dev, 110, bbp);
|
|
|
|
if (rf->channel <= 14) {
|
|
/* Restore BBP 25 & 26 for 2.4 GHz */
|
|
rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
|
|
rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
|
|
} else {
|
|
/* Hard code BBP 25 & 26 for 5GHz */
|
|
|
|
/* Enable IQ Phase correction */
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x09);
|
|
/* Setup IQ Phase correction value */
|
|
rt2800_bbp_write(rt2x00dev, 26, 0xff);
|
|
}
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3 & 0xf);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_R, (rf->rf2 & 0x3));
|
|
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_IDOH, 1);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 1);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 53, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rfcsr = 0;
|
|
rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
|
|
info->default_power1 & 0x1f);
|
|
} else {
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rfcsr = 0x40;
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
|
|
((info->default_power1 & 0x18) << 1) |
|
|
(info->default_power1 & 7));
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 53, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 55, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rfcsr = 0;
|
|
rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
|
|
info->default_power2 & 0x1f);
|
|
} else {
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rfcsr = 0x40;
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
|
|
((info->default_power2 & 0x18) << 1) |
|
|
(info->default_power2 & 7));
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 55, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 54, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rfcsr = 0;
|
|
rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
|
|
info->default_power3 & 0x1f);
|
|
} else {
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rfcsr = 0x40;
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
|
|
((info->default_power3 & 0x18) << 1) |
|
|
(info->default_power3 & 7));
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 54, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
|
|
|
|
switch (rt2x00dev->default_ant.tx_chain_num) {
|
|
case 3:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
|
|
/* fallthrough */
|
|
case 2:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
|
|
/* fallthrough */
|
|
case 1:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
|
|
break;
|
|
}
|
|
|
|
switch (rt2x00dev->default_ant.rx_chain_num) {
|
|
case 3:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
|
|
/* fallthrough */
|
|
case 2:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
|
|
/* fallthrough */
|
|
case 1:
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
|
|
break;
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
if (conf_is_ht40(conf)) {
|
|
txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw40,
|
|
RFCSR24_TX_AGC_FC);
|
|
txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw40,
|
|
RFCSR24_TX_H20M);
|
|
} else {
|
|
txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw20,
|
|
RFCSR24_TX_AGC_FC);
|
|
txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw20,
|
|
RFCSR24_TX_H20M);
|
|
}
|
|
|
|
/* NOTE: the reference driver does not writes the new value
|
|
* back to RFCSR 32
|
|
*/
|
|
rt2800_rfcsr_read(rt2x00dev, 32, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR32_TX_AGC_FC, txrx_agc_fc);
|
|
|
|
if (rf->channel <= 14)
|
|
rfcsr = 0xa0;
|
|
else
|
|
rfcsr = 0x80;
|
|
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, txrx_h20m);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, txrx_h20m);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
|
|
/* Band selection */
|
|
rt2800_rfcsr_read(rt2x00dev, 36, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 34, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rfcsr = 0x3c;
|
|
else
|
|
rfcsr = 0x20;
|
|
rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rfcsr = 0x1a;
|
|
else
|
|
rfcsr = 0x12;
|
|
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
if (rf->channel >= 1 && rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
|
|
else if (rf->channel >= 36 && rf->channel <= 64)
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
|
|
else if (rf->channel >= 100 && rf->channel <= 128)
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
|
|
|
|
if (rf->channel <= 14) {
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
|
|
} else {
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xd8);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x23);
|
|
}
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS01, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 5);
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 3);
|
|
} else {
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 4);
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 2);
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 3);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 2);
|
|
|
|
if (txbf_enabled)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX_DIV, 1);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO1_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 57, &rfcsr);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x1b);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, rfcsr);
|
|
|
|
if (rf->channel <= 14) {
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
|
|
} else {
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
|
|
}
|
|
|
|
/* Initiate VCO calibration */
|
|
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
|
|
if (rf->channel <= 14) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
|
|
} else {
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_BIT1, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_BIT2, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_BIT3, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_BIT4, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_BIT5, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
|
|
|
|
if (rf->channel >= 1 && rf->channel <= 14) {
|
|
rfcsr = 0x23;
|
|
if (txbf_enabled)
|
|
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
|
|
} else if (rf->channel >= 36 && rf->channel <= 64) {
|
|
rfcsr = 0x36;
|
|
if (txbf_enabled)
|
|
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x36);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xeb);
|
|
} else if (rf->channel >= 100 && rf->channel <= 128) {
|
|
rfcsr = 0x32;
|
|
if (txbf_enabled)
|
|
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xb3);
|
|
} else {
|
|
rfcsr = 0x30;
|
|
if (txbf_enabled)
|
|
rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0x9b);
|
|
}
|
|
}
|
|
|
|
#define POWER_BOUND 0x27
|
|
#define POWER_BOUND_5G 0x2b
|
|
|
|
static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
|
|
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
|
|
if (info->default_power1 > POWER_BOUND)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
if (rf->channel <= 14) {
|
|
if (rf->channel == 6)
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0c);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
|
|
|
|
if (rf->channel >= 1 && rf->channel <= 6)
|
|
rt2800_bbp_write(rt2x00dev, 59, 0x0f);
|
|
else if (rf->channel >= 7 && rf->channel <= 11)
|
|
rt2800_bbp_write(rt2x00dev, 59, 0x0e);
|
|
else if (rf->channel >= 12 && rf->channel <= 14)
|
|
rt2800_bbp_write(rt2x00dev, 59, 0x0d);
|
|
}
|
|
}
|
|
|
|
static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
|
|
|
|
if (info->default_power1 > POWER_BOUND)
|
|
rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);
|
|
|
|
if (info->default_power2 > POWER_BOUND)
|
|
rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
|
|
|
|
if ( rt2x00dev->default_ant.tx_chain_num == 2 )
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
|
|
|
|
if ( rt2x00dev->default_ant.rx_chain_num == 2 )
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 80);
|
|
}
|
|
|
|
static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
|
|
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
|
|
if (info->default_power1 > POWER_BOUND)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5392)) {
|
|
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
|
|
if (info->default_power2 > POWER_BOUND)
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX,
|
|
info->default_power2);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
|
|
}
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
if (rt2x00_rt(rt2x00dev, RT5392)) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
|
|
}
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
if (rf->channel <= 14) {
|
|
int idx = rf->channel-1;
|
|
|
|
if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
|
|
/* r55/r59 value array of channel 1~14 */
|
|
static const char r55_bt_rev[] = {0x83, 0x83,
|
|
0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
|
|
0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
|
|
static const char r59_bt_rev[] = {0x0e, 0x0e,
|
|
0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
|
|
0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 55,
|
|
r55_bt_rev[idx]);
|
|
rt2800_rfcsr_write(rt2x00dev, 59,
|
|
r59_bt_rev[idx]);
|
|
} else {
|
|
static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
|
|
0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
|
|
0x88, 0x88, 0x86, 0x85, 0x84};
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
|
|
}
|
|
} else {
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
|
|
static const char r55_nonbt_rev[] = {0x23, 0x23,
|
|
0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
|
|
0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
|
|
static const char r59_nonbt_rev[] = {0x07, 0x07,
|
|
0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
|
|
0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 55,
|
|
r55_nonbt_rev[idx]);
|
|
rt2800_rfcsr_write(rt2x00dev, 59,
|
|
r59_nonbt_rev[idx]);
|
|
} else if (rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392)) {
|
|
static const char r59_non_bt[] = {0x8f, 0x8f,
|
|
0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
|
|
0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 59,
|
|
r59_non_bt[idx]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rt2800_config_channel_rf55xx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u8 rfcsr, ep_reg;
|
|
u32 reg;
|
|
int power_bound;
|
|
|
|
/* TODO */
|
|
const bool is_11b = false;
|
|
const bool is_type_ep = false;
|
|
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL,
|
|
(rf->channel > 14 || conf_is_ht40(conf)) ? 5 : 0);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
|
|
/* Order of values on rf_channel entry: N, K, mod, R */
|
|
rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1 & 0xff);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 9, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR9_K, rf->rf2 & 0xf);
|
|
rt2x00_set_field8(&rfcsr, RFCSR9_N, (rf->rf1 & 0x100) >> 8);
|
|
rt2x00_set_field8(&rfcsr, RFCSR9_MOD, ((rf->rf3 - 8) & 0x4) >> 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf4 - 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR11_MOD, (rf->rf3 - 8) & 0x3);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
|
|
|
|
if (rf->channel <= 14) {
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x90);
|
|
/* FIXME: RF11 owerwrite ? */
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x4A);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x4A);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1B);
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x0D);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0x9B);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0xD5);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x72);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x0E);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xA2);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x6B);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0x3E);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xA1);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
|
|
|
|
/* TODO RF27 <- tssi */
|
|
|
|
rfcsr = rf->channel <= 10 ? 0x07 : 0x06;
|
|
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, rfcsr);
|
|
|
|
if (is_11b) {
|
|
/* CCK */
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0xF8);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0xC0);
|
|
if (is_type_ep)
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x06);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x47);
|
|
} else {
|
|
/* OFDM */
|
|
if (is_type_ep)
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x03);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
|
|
}
|
|
|
|
power_bound = POWER_BOUND;
|
|
ep_reg = 0x2;
|
|
} else {
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x97);
|
|
/* FIMXE: RF11 overwrite */
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0xBF);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 37, 0x04);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0xBB);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0xD7);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0x41);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x77);
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x05);
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0x01);
|
|
|
|
/* TODO RF27 <- tssi */
|
|
|
|
if (rf->channel >= 36 && rf->channel <= 64) {
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x2E);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x22);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x60);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x7F);
|
|
if (rf->channel <= 50)
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x09);
|
|
else if (rf->channel >= 52)
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x07);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1C);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x5B);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0X40);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0X00);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0xFE);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x0C);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0xF8);
|
|
if (rf->channel <= 50) {
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x06),
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xD3);
|
|
} else if (rf->channel >= 52) {
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x04);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
|
|
}
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x7F);
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
|
|
|
|
} else if (rf->channel >= 100 && rf->channel <= 165) {
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x0E);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
|
|
if (rf->channel <= 153) {
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x3C);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x06);
|
|
} else if (rf->channel >= 155) {
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x38);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x05);
|
|
}
|
|
if (rf->channel <= 138) {
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1A);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x3B);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x18);
|
|
} else if (rf->channel >= 140) {
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x18);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x1B);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0X08);
|
|
}
|
|
if (rf->channel <= 124)
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0xFC);
|
|
else if (rf->channel >= 126)
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0xEC);
|
|
if (rf->channel <= 138)
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
|
|
else if (rf->channel >= 140)
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0xEB);
|
|
if (rf->channel <= 138)
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x01);
|
|
else if (rf->channel >= 140)
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x00);
|
|
if (rf->channel <= 128)
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
|
|
else if (rf->channel >= 130)
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xAB);
|
|
if (rf->channel <= 116)
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x1D);
|
|
else if (rf->channel >= 118)
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
|
|
if (rf->channel <= 138)
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x3F);
|
|
else if (rf->channel >= 140)
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x7C);
|
|
if (rf->channel <= 116)
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x1D);
|
|
else if (rf->channel >= 118)
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
|
|
}
|
|
|
|
power_bound = POWER_BOUND_5G;
|
|
ep_reg = 0x3;
|
|
}
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
|
|
if (info->default_power1 > power_bound)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, power_bound);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
|
|
if (is_type_ep)
|
|
rt2x00_set_field8(&rfcsr, RFCSR49_EP, ep_reg);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
|
|
if (info->default_power2 > power_bound)
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX, power_bound);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX, info->default_power2);
|
|
if (is_type_ep)
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_EP, ep_reg);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD,
|
|
rt2x00dev->default_ant.tx_chain_num >= 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
|
|
rt2x00dev->default_ant.tx_chain_num == 2);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD,
|
|
rt2x00dev->default_ant.rx_chain_num >= 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
|
|
rt2x00dev->default_ant.rx_chain_num == 2);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xe4);
|
|
|
|
if (conf_is_ht40(conf))
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x16);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
|
|
if (!is_11b) {
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
|
|
}
|
|
|
|
/* TODO proper frequency adjustment */
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
/* TODO merge with others */
|
|
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
|
|
|
|
/* BBP settings */
|
|
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, (rf->channel <= 14) ? 0x1C : 0x18);
|
|
rt2800_bbp_write(rt2x00dev, 80, (rf->channel <= 14) ? 0x0E : 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 81, (rf->channel <= 14) ? 0x3A : 0x38);
|
|
rt2800_bbp_write(rt2x00dev, 82, (rf->channel <= 14) ? 0x62 : 0x92);
|
|
|
|
/* GLRT band configuration */
|
|
rt2800_bbp_write(rt2x00dev, 195, 128);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0xE0 : 0xF0);
|
|
rt2800_bbp_write(rt2x00dev, 195, 129);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x1F : 0x1E);
|
|
rt2800_bbp_write(rt2x00dev, 195, 130);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x38 : 0x28);
|
|
rt2800_bbp_write(rt2x00dev, 195, 131);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x32 : 0x20);
|
|
rt2800_bbp_write(rt2x00dev, 195, 133);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x28 : 0x7F);
|
|
rt2800_bbp_write(rt2x00dev, 195, 124);
|
|
rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x19 : 0x7F);
|
|
}
|
|
|
|
static void rt2800_bbp_write_with_rx_chain(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word,
|
|
const u8 value)
|
|
{
|
|
u8 chain, reg;
|
|
|
|
for (chain = 0; chain < rt2x00dev->default_ant.rx_chain_num; chain++) {
|
|
rt2800_bbp_read(rt2x00dev, 27, ®);
|
|
rt2x00_set_field8(®, BBP27_RX_CHAIN_SEL, chain);
|
|
rt2800_bbp_write(rt2x00dev, 27, reg);
|
|
|
|
rt2800_bbp_write(rt2x00dev, word, value);
|
|
}
|
|
}
|
|
|
|
static void rt2800_iq_calibrate(struct rt2x00_dev *rt2x00dev, int channel)
|
|
{
|
|
u8 cal;
|
|
|
|
/* TX0 IQ Gain */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x2c);
|
|
if (channel <= 14)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX0_2G);
|
|
else if (channel >= 36 && channel <= 64)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G);
|
|
else if (channel >= 100 && channel <= 138)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G);
|
|
else if (channel >= 140 && channel <= 165)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G);
|
|
else
|
|
cal = 0;
|
|
rt2800_bbp_write(rt2x00dev, 159, cal);
|
|
|
|
/* TX0 IQ Phase */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x2d);
|
|
if (channel <= 14)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX0_2G);
|
|
else if (channel >= 36 && channel <= 64)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G);
|
|
else if (channel >= 100 && channel <= 138)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G);
|
|
else if (channel >= 140 && channel <= 165)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G);
|
|
else
|
|
cal = 0;
|
|
rt2800_bbp_write(rt2x00dev, 159, cal);
|
|
|
|
/* TX1 IQ Gain */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x4a);
|
|
if (channel <= 14)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX1_2G);
|
|
else if (channel >= 36 && channel <= 64)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G);
|
|
else if (channel >= 100 && channel <= 138)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G);
|
|
else if (channel >= 140 && channel <= 165)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G);
|
|
else
|
|
cal = 0;
|
|
rt2800_bbp_write(rt2x00dev, 159, cal);
|
|
|
|
/* TX1 IQ Phase */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x4b);
|
|
if (channel <= 14)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX1_2G);
|
|
else if (channel >= 36 && channel <= 64)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G);
|
|
else if (channel >= 100 && channel <= 138)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G);
|
|
else if (channel >= 140 && channel <= 165)
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G);
|
|
else
|
|
cal = 0;
|
|
rt2800_bbp_write(rt2x00dev, 159, cal);
|
|
|
|
/* FIXME: possible RX0, RX1 callibration ? */
|
|
|
|
/* RF IQ compensation control */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x04);
|
|
cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_RF_IQ_COMPENSATION_CONTROL);
|
|
rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
|
|
|
|
/* RF IQ imbalance compensation control */
|
|
rt2800_bbp_write(rt2x00dev, 158, 0x03);
|
|
cal = rt2x00_eeprom_byte(rt2x00dev,
|
|
EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL);
|
|
rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
|
|
}
|
|
|
|
static char rt2800_txpower_to_dev(struct rt2x00_dev *rt2x00dev,
|
|
unsigned int channel,
|
|
char txpower)
|
|
{
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
txpower = rt2x00_get_field8(txpower, EEPROM_TXPOWER_ALC);
|
|
|
|
if (channel <= 14)
|
|
return clamp_t(char, txpower, MIN_G_TXPOWER, MAX_G_TXPOWER);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
return clamp_t(char, txpower, MIN_A_TXPOWER_3593,
|
|
MAX_A_TXPOWER_3593);
|
|
else
|
|
return clamp_t(char, txpower, MIN_A_TXPOWER, MAX_A_TXPOWER);
|
|
}
|
|
|
|
static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_conf *conf,
|
|
struct rf_channel *rf,
|
|
struct channel_info *info)
|
|
{
|
|
u32 reg;
|
|
unsigned int tx_pin;
|
|
u8 bbp, rfcsr;
|
|
|
|
info->default_power1 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
|
|
info->default_power1);
|
|
info->default_power2 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
|
|
info->default_power2);
|
|
if (rt2x00dev->default_ant.tx_chain_num > 2)
|
|
info->default_power3 =
|
|
rt2800_txpower_to_dev(rt2x00dev, rf->channel,
|
|
info->default_power3);
|
|
|
|
switch (rt2x00dev->chip.rf) {
|
|
case RF2020:
|
|
case RF3020:
|
|
case RF3021:
|
|
case RF3022:
|
|
case RF3320:
|
|
rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF3052:
|
|
rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF3053:
|
|
rt2800_config_channel_rf3053(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF3290:
|
|
rt2800_config_channel_rf3290(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF3322:
|
|
rt2800_config_channel_rf3322(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF3070:
|
|
case RF5360:
|
|
case RF5370:
|
|
case RF5372:
|
|
case RF5390:
|
|
case RF5392:
|
|
rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
|
|
break;
|
|
case RF5592:
|
|
rt2800_config_channel_rf55xx(rt2x00dev, conf, rf, info);
|
|
break;
|
|
default:
|
|
rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
|
|
}
|
|
|
|
if (rt2x00_rf(rt2x00dev, RF3070) ||
|
|
rt2x00_rf(rt2x00dev, RF3290) ||
|
|
rt2x00_rf(rt2x00dev, RF3322) ||
|
|
rt2x00_rf(rt2x00dev, RF5360) ||
|
|
rt2x00_rf(rt2x00dev, RF5370) ||
|
|
rt2x00_rf(rt2x00dev, RF5372) ||
|
|
rt2x00_rf(rt2x00dev, RF5390) ||
|
|
rt2x00_rf(rt2x00dev, RF5392)) {
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
|
|
}
|
|
|
|
/*
|
|
* Change BBP settings
|
|
*/
|
|
if (rt2x00_rt(rt2x00dev, RT3352)) {
|
|
rt2800_bbp_write(rt2x00dev, 27, 0x0);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 27, 0x20);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
if (rf->channel > 14) {
|
|
/* Disable CCK Packet detection on 5GHz */
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x00);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
}
|
|
|
|
if (conf_is_ht40(conf))
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x04);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x34);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 77, 0x98);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
|
|
rt2800_bbp_write(rt2x00dev, 86, 0);
|
|
}
|
|
|
|
if (rf->channel <= 14) {
|
|
if (!rt2x00_rt(rt2x00dev, RT5390) &&
|
|
!rt2x00_rt(rt2x00dev, RT5392)) {
|
|
if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
} else {
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x84);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x50);
|
|
}
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x8a);
|
|
}
|
|
|
|
} else {
|
|
if (rt2x00_rt(rt2x00dev, RT3572))
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x94);
|
|
else if (rt2x00_rt(rt2x00dev, RT3593))
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x82);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 82, 0xf2);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x9a);
|
|
|
|
if (rt2x00_has_cap_external_lna_a(rt2x00dev))
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x50);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®);
|
|
rt2x00_set_field32(®, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
|
|
rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14);
|
|
rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14);
|
|
rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3572))
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0);
|
|
|
|
tx_pin = 0;
|
|
|
|
switch (rt2x00dev->default_ant.tx_chain_num) {
|
|
case 3:
|
|
/* Turn on tertiary PAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN,
|
|
rf->channel > 14);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN,
|
|
rf->channel <= 14);
|
|
/* fall-through */
|
|
case 2:
|
|
/* Turn on secondary PAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
|
|
rf->channel > 14);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
|
|
rf->channel <= 14);
|
|
/* fall-through */
|
|
case 1:
|
|
/* Turn on primary PAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN,
|
|
rf->channel > 14);
|
|
if (rt2x00_has_cap_bt_coexist(rt2x00dev))
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
|
|
else
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
|
|
rf->channel <= 14);
|
|
break;
|
|
}
|
|
|
|
switch (rt2x00dev->default_ant.rx_chain_num) {
|
|
case 3:
|
|
/* Turn on tertiary LNAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A2_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G2_EN, 1);
|
|
/* fall-through */
|
|
case 2:
|
|
/* Turn on secondary LNAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
|
|
/* fall-through */
|
|
case 1:
|
|
/* Turn on primary LNAs */
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
|
|
break;
|
|
}
|
|
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
|
|
|
|
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3572)) {
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0x80);
|
|
|
|
/* AGC init */
|
|
if (rf->channel <= 14)
|
|
reg = 0x1c + (2 * rt2x00dev->lna_gain);
|
|
else
|
|
reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
|
|
|
|
rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
|
|
}
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
|
|
/* Band selection */
|
|
if (rt2x00_is_usb(rt2x00dev) ||
|
|
rt2x00_is_pcie(rt2x00dev)) {
|
|
/* GPIO #8 controls all paths */
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR8, 0);
|
|
if (rf->channel <= 14)
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL8, 1);
|
|
else
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL8, 0);
|
|
}
|
|
|
|
/* LNA PE control. */
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
/* GPIO #4 controls PE0 and PE1,
|
|
* GPIO #7 controls PE2
|
|
*/
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR4, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR7, 0);
|
|
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL4, 1);
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL7, 1);
|
|
} else if (rt2x00_is_pcie(rt2x00dev)) {
|
|
/* GPIO #4 controls PE0, PE1 and PE2 */
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR4, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL4, 1);
|
|
}
|
|
|
|
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
|
|
|
|
/* AGC init */
|
|
if (rf->channel <= 14)
|
|
reg = 0x1c + 2 * rt2x00dev->lna_gain;
|
|
else
|
|
reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
|
|
|
|
rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
|
|
|
|
usleep_range(1000, 1500);
|
|
}
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5592)) {
|
|
rt2800_bbp_write(rt2x00dev, 195, 141);
|
|
rt2800_bbp_write(rt2x00dev, 196, conf_is_ht40(conf) ? 0x10 : 0x1a);
|
|
|
|
/* AGC init */
|
|
reg = (rf->channel <= 14 ? 0x1c : 0x24) + 2 * rt2x00dev->lna_gain;
|
|
rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
|
|
|
|
rt2800_iq_calibrate(rt2x00dev, rf->channel);
|
|
}
|
|
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 3, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
|
|
rt2800_bbp_write(rt2x00dev, 3, bbp);
|
|
|
|
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
|
|
if (conf_is_ht40(conf)) {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x1a);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x16);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x16);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x11);
|
|
}
|
|
}
|
|
|
|
msleep(1);
|
|
|
|
/*
|
|
* Clear channel statistic counters
|
|
*/
|
|
rt2800_register_read(rt2x00dev, CH_IDLE_STA, ®);
|
|
rt2800_register_read(rt2x00dev, CH_BUSY_STA, ®);
|
|
rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, ®);
|
|
|
|
/*
|
|
* Clear update flag
|
|
*/
|
|
if (rt2x00_rt(rt2x00dev, RT3352)) {
|
|
rt2800_bbp_read(rt2x00dev, 49, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP49_UPDATE_FLAG, 0);
|
|
rt2800_bbp_write(rt2x00dev, 49, bbp);
|
|
}
|
|
}
|
|
|
|
static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 tssi_bounds[9];
|
|
u8 current_tssi;
|
|
u16 eeprom;
|
|
u8 step;
|
|
int i;
|
|
|
|
/*
|
|
* First check if temperature compensation is supported.
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
|
|
if (!rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC))
|
|
return 0;
|
|
|
|
/*
|
|
* Read TSSI boundaries for temperature compensation from
|
|
* the EEPROM.
|
|
*
|
|
* Array idx 0 1 2 3 4 5 6 7 8
|
|
* Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
|
|
* Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
|
|
*/
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom);
|
|
tssi_bounds[0] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG1_MINUS4);
|
|
tssi_bounds[1] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG1_MINUS3);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom);
|
|
tssi_bounds[2] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG2_MINUS2);
|
|
tssi_bounds[3] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG2_MINUS1);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom);
|
|
tssi_bounds[4] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG3_REF);
|
|
tssi_bounds[5] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG3_PLUS1);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom);
|
|
tssi_bounds[6] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG4_PLUS2);
|
|
tssi_bounds[7] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG4_PLUS3);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom);
|
|
tssi_bounds[8] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG5_PLUS4);
|
|
|
|
step = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_BG5_AGC_STEP);
|
|
} else {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom);
|
|
tssi_bounds[0] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A1_MINUS4);
|
|
tssi_bounds[1] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A1_MINUS3);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom);
|
|
tssi_bounds[2] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A2_MINUS2);
|
|
tssi_bounds[3] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A2_MINUS1);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom);
|
|
tssi_bounds[4] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A3_REF);
|
|
tssi_bounds[5] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A3_PLUS1);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom);
|
|
tssi_bounds[6] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A4_PLUS2);
|
|
tssi_bounds[7] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A4_PLUS3);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom);
|
|
tssi_bounds[8] = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A5_PLUS4);
|
|
|
|
step = rt2x00_get_field16(eeprom,
|
|
EEPROM_TSSI_BOUND_A5_AGC_STEP);
|
|
}
|
|
|
|
/*
|
|
* Check if temperature compensation is supported.
|
|
*/
|
|
if (tssi_bounds[4] == 0xff || step == 0xff)
|
|
return 0;
|
|
|
|
/*
|
|
* Read current TSSI (BBP 49).
|
|
*/
|
|
rt2800_bbp_read(rt2x00dev, 49, ¤t_tssi);
|
|
|
|
/*
|
|
* Compare TSSI value (BBP49) with the compensation boundaries
|
|
* from the EEPROM and increase or decrease tx power.
|
|
*/
|
|
for (i = 0; i <= 3; i++) {
|
|
if (current_tssi > tssi_bounds[i])
|
|
break;
|
|
}
|
|
|
|
if (i == 4) {
|
|
for (i = 8; i >= 5; i--) {
|
|
if (current_tssi < tssi_bounds[i])
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (i - 4) * step;
|
|
}
|
|
|
|
static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
|
|
enum ieee80211_band band)
|
|
{
|
|
u16 eeprom;
|
|
u8 comp_en;
|
|
u8 comp_type;
|
|
int comp_value = 0;
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
|
|
|
|
/*
|
|
* HT40 compensation not required.
|
|
*/
|
|
if (eeprom == 0xffff ||
|
|
!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
if (band == IEEE80211_BAND_2GHZ) {
|
|
comp_en = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_ENABLE_2G);
|
|
if (comp_en) {
|
|
comp_type = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_TYPE_2G);
|
|
comp_value = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_VALUE_2G);
|
|
if (!comp_type)
|
|
comp_value = -comp_value;
|
|
}
|
|
} else {
|
|
comp_en = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_ENABLE_5G);
|
|
if (comp_en) {
|
|
comp_type = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_TYPE_5G);
|
|
comp_value = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_DELTA_VALUE_5G);
|
|
if (!comp_type)
|
|
comp_value = -comp_value;
|
|
}
|
|
}
|
|
|
|
return comp_value;
|
|
}
|
|
|
|
static int rt2800_get_txpower_reg_delta(struct rt2x00_dev *rt2x00dev,
|
|
int power_level, int max_power)
|
|
{
|
|
int delta;
|
|
|
|
if (rt2x00_has_cap_power_limit(rt2x00dev))
|
|
return 0;
|
|
|
|
/*
|
|
* XXX: We don't know the maximum transmit power of our hardware since
|
|
* the EEPROM doesn't expose it. We only know that we are calibrated
|
|
* to 100% tx power.
|
|
*
|
|
* Hence, we assume the regulatory limit that cfg80211 calulated for
|
|
* the current channel is our maximum and if we are requested to lower
|
|
* the value we just reduce our tx power accordingly.
|
|
*/
|
|
delta = power_level - max_power;
|
|
return min(delta, 0);
|
|
}
|
|
|
|
static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
|
|
enum ieee80211_band band, int power_level,
|
|
u8 txpower, int delta)
|
|
{
|
|
u16 eeprom;
|
|
u8 criterion;
|
|
u8 eirp_txpower;
|
|
u8 eirp_txpower_criterion;
|
|
u8 reg_limit;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
return min_t(u8, txpower, 0xc);
|
|
|
|
if (rt2x00_has_cap_power_limit(rt2x00dev)) {
|
|
/*
|
|
* Check if eirp txpower exceed txpower_limit.
|
|
* We use OFDM 6M as criterion and its eirp txpower
|
|
* is stored at EEPROM_EIRP_MAX_TX_POWER.
|
|
* .11b data rate need add additional 4dbm
|
|
* when calculating eirp txpower.
|
|
*/
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
1, &eeprom);
|
|
criterion = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE0);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER,
|
|
&eeprom);
|
|
|
|
if (band == IEEE80211_BAND_2GHZ)
|
|
eirp_txpower_criterion = rt2x00_get_field16(eeprom,
|
|
EEPROM_EIRP_MAX_TX_POWER_2GHZ);
|
|
else
|
|
eirp_txpower_criterion = rt2x00_get_field16(eeprom,
|
|
EEPROM_EIRP_MAX_TX_POWER_5GHZ);
|
|
|
|
eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
|
|
(is_rate_b ? 4 : 0) + delta;
|
|
|
|
reg_limit = (eirp_txpower > power_level) ?
|
|
(eirp_txpower - power_level) : 0;
|
|
} else
|
|
reg_limit = 0;
|
|
|
|
txpower = max(0, txpower + delta - reg_limit);
|
|
return min_t(u8, txpower, 0xc);
|
|
}
|
|
|
|
|
|
enum {
|
|
TX_PWR_CFG_0_IDX,
|
|
TX_PWR_CFG_1_IDX,
|
|
TX_PWR_CFG_2_IDX,
|
|
TX_PWR_CFG_3_IDX,
|
|
TX_PWR_CFG_4_IDX,
|
|
TX_PWR_CFG_5_IDX,
|
|
TX_PWR_CFG_6_IDX,
|
|
TX_PWR_CFG_7_IDX,
|
|
TX_PWR_CFG_8_IDX,
|
|
TX_PWR_CFG_9_IDX,
|
|
TX_PWR_CFG_0_EXT_IDX,
|
|
TX_PWR_CFG_1_EXT_IDX,
|
|
TX_PWR_CFG_2_EXT_IDX,
|
|
TX_PWR_CFG_3_EXT_IDX,
|
|
TX_PWR_CFG_4_EXT_IDX,
|
|
TX_PWR_CFG_IDX_COUNT,
|
|
};
|
|
|
|
static void rt2800_config_txpower_rt3593(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_channel *chan,
|
|
int power_level)
|
|
{
|
|
u8 txpower;
|
|
u16 eeprom;
|
|
u32 regs[TX_PWR_CFG_IDX_COUNT];
|
|
unsigned int offset;
|
|
enum ieee80211_band band = chan->band;
|
|
int delta;
|
|
int i;
|
|
|
|
memset(regs, '\0', sizeof(regs));
|
|
|
|
/* TODO: adapt TX power reduction from the rt28xx code */
|
|
|
|
/* calculate temperature compensation delta */
|
|
delta = rt2800_get_gain_calibration_delta(rt2x00dev);
|
|
|
|
if (band == IEEE80211_BAND_5GHZ)
|
|
offset = 16;
|
|
else
|
|
offset = 0;
|
|
|
|
if (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
|
|
offset += 8;
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset, &eeprom);
|
|
|
|
/* CCK 1MBS,2MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_CCK1_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_CCK1_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_EXT_IDX],
|
|
TX_PWR_CFG_0_EXT_CCK1_CH2, txpower);
|
|
|
|
/* CCK 5.5MBS,11MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_CCK5_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_CCK5_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_EXT_IDX],
|
|
TX_PWR_CFG_0_EXT_CCK5_CH2, txpower);
|
|
|
|
/* OFDM 6MBS,9MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_OFDM6_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_OFDM6_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_EXT_IDX],
|
|
TX_PWR_CFG_0_EXT_OFDM6_CH2, txpower);
|
|
|
|
/* OFDM 12MBS,18MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_OFDM12_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_IDX],
|
|
TX_PWR_CFG_0_OFDM12_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_0_EXT_IDX],
|
|
TX_PWR_CFG_0_EXT_OFDM12_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 1, &eeprom);
|
|
|
|
/* OFDM 24MBS,36MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_OFDM24_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_OFDM24_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_EXT_IDX],
|
|
TX_PWR_CFG_1_EXT_OFDM24_CH2, txpower);
|
|
|
|
/* OFDM 48MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_OFDM48_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_OFDM48_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_EXT_IDX],
|
|
TX_PWR_CFG_1_EXT_OFDM48_CH2, txpower);
|
|
|
|
/* OFDM 54MBS */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_OFDM54_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_OFDM54_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_OFDM54_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 2, &eeprom);
|
|
|
|
/* MCS 0,1 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_MCS0_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_MCS0_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_EXT_IDX],
|
|
TX_PWR_CFG_1_EXT_MCS0_CH2, txpower);
|
|
|
|
/* MCS 2,3 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_MCS2_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_IDX],
|
|
TX_PWR_CFG_1_MCS2_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_1_EXT_IDX],
|
|
TX_PWR_CFG_1_EXT_MCS2_CH2, txpower);
|
|
|
|
/* MCS 4,5 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS4_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS4_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_EXT_IDX],
|
|
TX_PWR_CFG_2_EXT_MCS4_CH2, txpower);
|
|
|
|
/* MCS 6 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS6_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS6_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_EXT_IDX],
|
|
TX_PWR_CFG_2_EXT_MCS6_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 3, &eeprom);
|
|
|
|
/* MCS 7 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_MCS7_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_MCS7_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_7_IDX],
|
|
TX_PWR_CFG_7_MCS7_CH2, txpower);
|
|
|
|
/* MCS 8,9 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS8_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS8_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_EXT_IDX],
|
|
TX_PWR_CFG_2_EXT_MCS8_CH2, txpower);
|
|
|
|
/* MCS 10,11 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS10_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_IDX],
|
|
TX_PWR_CFG_2_MCS10_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_2_EXT_IDX],
|
|
TX_PWR_CFG_2_EXT_MCS10_CH2, txpower);
|
|
|
|
/* MCS 12,13 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_MCS12_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_MCS12_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_EXT_IDX],
|
|
TX_PWR_CFG_3_EXT_MCS12_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 4, &eeprom);
|
|
|
|
/* MCS 14 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_MCS14_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_MCS14_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_EXT_IDX],
|
|
TX_PWR_CFG_3_EXT_MCS14_CH2, txpower);
|
|
|
|
/* MCS 15 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS15_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS15_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS15_CH2, txpower);
|
|
|
|
/* MCS 16,17 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS16_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS16_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS16_CH2, txpower);
|
|
|
|
/* MCS 18,19 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS18_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS18_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_5_IDX],
|
|
TX_PWR_CFG_5_MCS18_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 5, &eeprom);
|
|
|
|
/* MCS 20,21 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS20_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS20_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS20_CH2, txpower);
|
|
|
|
/* MCS 22 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS22_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS22_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_6_IDX],
|
|
TX_PWR_CFG_6_MCS22_CH2, txpower);
|
|
|
|
/* MCS 23 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS23_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS23_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_8_IDX],
|
|
TX_PWR_CFG_8_MCS23_CH2, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 6, &eeprom);
|
|
|
|
/* STBC, MCS 0,1 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_STBC0_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_STBC0_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_EXT_IDX],
|
|
TX_PWR_CFG_3_EXT_STBC0_CH2, txpower);
|
|
|
|
/* STBC, MCS 2,3 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_STBC2_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_IDX],
|
|
TX_PWR_CFG_3_STBC2_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_3_EXT_IDX],
|
|
TX_PWR_CFG_3_EXT_STBC2_CH2, txpower);
|
|
|
|
/* STBC, MCS 4,5 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE0,
|
|
txpower);
|
|
|
|
/* STBC, MCS 6 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE2, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE3, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE2,
|
|
txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
offset + 7, &eeprom);
|
|
|
|
/* STBC, MCS 7 */
|
|
txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
|
|
txpower, delta);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_9_IDX],
|
|
TX_PWR_CFG_9_STBC7_CH0, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_9_IDX],
|
|
TX_PWR_CFG_9_STBC7_CH1, txpower);
|
|
rt2x00_set_field32(®s[TX_PWR_CFG_9_IDX],
|
|
TX_PWR_CFG_9_STBC7_CH2, txpower);
|
|
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, regs[TX_PWR_CFG_0_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, regs[TX_PWR_CFG_1_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, regs[TX_PWR_CFG_2_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, regs[TX_PWR_CFG_3_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, regs[TX_PWR_CFG_4_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_5, regs[TX_PWR_CFG_5_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_6, regs[TX_PWR_CFG_6_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, regs[TX_PWR_CFG_7_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, regs[TX_PWR_CFG_8_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, regs[TX_PWR_CFG_9_IDX]);
|
|
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_0_EXT,
|
|
regs[TX_PWR_CFG_0_EXT_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_1_EXT,
|
|
regs[TX_PWR_CFG_1_EXT_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_2_EXT,
|
|
regs[TX_PWR_CFG_2_EXT_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_3_EXT,
|
|
regs[TX_PWR_CFG_3_EXT_IDX]);
|
|
rt2800_register_write(rt2x00dev, TX_PWR_CFG_4_EXT,
|
|
regs[TX_PWR_CFG_4_EXT_IDX]);
|
|
|
|
for (i = 0; i < TX_PWR_CFG_IDX_COUNT; i++)
|
|
rt2x00_dbg(rt2x00dev,
|
|
"band:%cGHz, BW:%c0MHz, TX_PWR_CFG_%d%s = %08lx\n",
|
|
(band == IEEE80211_BAND_5GHZ) ? '5' : '2',
|
|
(test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) ?
|
|
'4' : '2',
|
|
(i > TX_PWR_CFG_9_IDX) ?
|
|
(i - TX_PWR_CFG_9_IDX - 1) : i,
|
|
(i > TX_PWR_CFG_9_IDX) ? "_EXT" : "",
|
|
(unsigned long) regs[i]);
|
|
}
|
|
|
|
/*
|
|
* We configure transmit power using MAC TX_PWR_CFG_{0,...,N} registers and
|
|
* BBP R1 register. TX_PWR_CFG_X allow to configure per rate TX power values,
|
|
* 4 bits for each rate (tune from 0 to 15 dBm). BBP_R1 controls transmit power
|
|
* for all rates, but allow to set only 4 discrete values: -12, -6, 0 and 6 dBm.
|
|
* Reference per rate transmit power values are located in the EEPROM at
|
|
* EEPROM_TXPOWER_BYRATE offset. We adjust them and BBP R1 settings according to
|
|
* current conditions (i.e. band, bandwidth, temperature, user settings).
|
|
*/
|
|
static void rt2800_config_txpower_rt28xx(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_channel *chan,
|
|
int power_level)
|
|
{
|
|
u8 txpower, r1;
|
|
u16 eeprom;
|
|
u32 reg, offset;
|
|
int i, is_rate_b, delta, power_ctrl;
|
|
enum ieee80211_band band = chan->band;
|
|
|
|
/*
|
|
* Calculate HT40 compensation. For 40MHz we need to add or subtract
|
|
* value read from EEPROM (different for 2GHz and for 5GHz).
|
|
*/
|
|
delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
|
|
|
|
/*
|
|
* Calculate temperature compensation. Depends on measurement of current
|
|
* TSSI (Transmitter Signal Strength Indication) we know TX power (due
|
|
* to temperature or maybe other factors) is smaller or bigger than
|
|
* expected. We adjust it, based on TSSI reference and boundaries values
|
|
* provided in EEPROM.
|
|
*/
|
|
delta += rt2800_get_gain_calibration_delta(rt2x00dev);
|
|
|
|
/*
|
|
* Decrease power according to user settings, on devices with unknown
|
|
* maximum tx power. For other devices we take user power_level into
|
|
* consideration on rt2800_compensate_txpower().
|
|
*/
|
|
delta += rt2800_get_txpower_reg_delta(rt2x00dev, power_level,
|
|
chan->max_power);
|
|
|
|
/*
|
|
* BBP_R1 controls TX power for all rates, it allow to set the following
|
|
* gains -12, -6, 0, +6 dBm by setting values 2, 1, 0, 3 respectively.
|
|
*
|
|
* TODO: we do not use +6 dBm option to do not increase power beyond
|
|
* regulatory limit, however this could be utilized for devices with
|
|
* CAPABILITY_POWER_LIMIT.
|
|
*
|
|
* TODO: add different temperature compensation code for RT3290 & RT5390
|
|
* to allow to use BBP_R1 for those chips.
|
|
*/
|
|
if (!rt2x00_rt(rt2x00dev, RT3290) &&
|
|
!rt2x00_rt(rt2x00dev, RT5390)) {
|
|
rt2800_bbp_read(rt2x00dev, 1, &r1);
|
|
if (delta <= -12) {
|
|
power_ctrl = 2;
|
|
delta += 12;
|
|
} else if (delta <= -6) {
|
|
power_ctrl = 1;
|
|
delta += 6;
|
|
} else {
|
|
power_ctrl = 0;
|
|
}
|
|
rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, power_ctrl);
|
|
rt2800_bbp_write(rt2x00dev, 1, r1);
|
|
}
|
|
|
|
offset = TX_PWR_CFG_0;
|
|
|
|
for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
|
|
/* just to be safe */
|
|
if (offset > TX_PWR_CFG_4)
|
|
break;
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
i, &eeprom);
|
|
|
|
is_rate_b = i ? 0 : 1;
|
|
/*
|
|
* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
|
|
* TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE0, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
|
|
* TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE1, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
|
|
* TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE2, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
|
|
* TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE3, txpower);
|
|
|
|
/* read the next four txpower values */
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
|
|
i + 1, &eeprom);
|
|
|
|
is_rate_b = 0;
|
|
/*
|
|
* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
|
|
* TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE0);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE4, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
|
|
* TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE1);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE5, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
|
|
* TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE2);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE6, txpower);
|
|
|
|
/*
|
|
* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
|
|
* TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
|
|
* TX_PWR_CFG_4: unknown
|
|
*/
|
|
txpower = rt2x00_get_field16(eeprom,
|
|
EEPROM_TXPOWER_BYRATE_RATE3);
|
|
txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
|
|
power_level, txpower, delta);
|
|
rt2x00_set_field32(®, TX_PWR_CFG_RATE7, txpower);
|
|
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
/* next TX_PWR_CFG register */
|
|
offset += 4;
|
|
}
|
|
}
|
|
|
|
static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_channel *chan,
|
|
int power_level)
|
|
{
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
rt2800_config_txpower_rt3593(rt2x00dev, chan, power_level);
|
|
else
|
|
rt2800_config_txpower_rt28xx(rt2x00dev, chan, power_level);
|
|
}
|
|
|
|
void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_config_txpower(rt2x00dev, rt2x00dev->hw->conf.chandef.chan,
|
|
rt2x00dev->tx_power);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
|
|
|
|
void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 tx_pin;
|
|
u8 rfcsr;
|
|
|
|
/*
|
|
* A voltage-controlled oscillator(VCO) is an electronic oscillator
|
|
* designed to be controlled in oscillation frequency by a voltage
|
|
* input. Maybe the temperature will affect the frequency of
|
|
* oscillation to be shifted. The VCO calibration will be called
|
|
* periodically to adjust the frequency to be precision.
|
|
*/
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
|
|
tx_pin &= TX_PIN_CFG_PA_PE_DISABLE;
|
|
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
|
|
|
|
switch (rt2x00dev->chip.rf) {
|
|
case RF2020:
|
|
case RF3020:
|
|
case RF3021:
|
|
case RF3022:
|
|
case RF3320:
|
|
case RF3052:
|
|
rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
|
|
break;
|
|
case RF3053:
|
|
case RF3070:
|
|
case RF3290:
|
|
case RF5360:
|
|
case RF5370:
|
|
case RF5372:
|
|
case RF5390:
|
|
case RF5392:
|
|
rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
mdelay(1);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
|
|
if (rt2x00dev->rf_channel <= 14) {
|
|
switch (rt2x00dev->default_ant.tx_chain_num) {
|
|
case 3:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN, 1);
|
|
/* fall through */
|
|
case 2:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
|
|
/* fall through */
|
|
case 1:
|
|
default:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (rt2x00dev->default_ant.tx_chain_num) {
|
|
case 3:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN, 1);
|
|
/* fall through */
|
|
case 2:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
|
|
/* fall through */
|
|
case 1:
|
|
default:
|
|
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
|
|
break;
|
|
}
|
|
}
|
|
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_vco_calibration);
|
|
|
|
static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT,
|
|
libconf->conf->short_frame_max_tx_count);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT,
|
|
libconf->conf->long_frame_max_tx_count);
|
|
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
|
|
}
|
|
|
|
static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
enum dev_state state =
|
|
(libconf->conf->flags & IEEE80211_CONF_PS) ?
|
|
STATE_SLEEP : STATE_AWAKE;
|
|
u32 reg;
|
|
|
|
if (state == STATE_SLEEP) {
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
|
|
libconf->conf->listen_interval - 1);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1);
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
} else {
|
|
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
|
|
rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0);
|
|
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
}
|
|
}
|
|
|
|
void rt2800_config(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf,
|
|
const unsigned int flags)
|
|
{
|
|
/* Always recalculate LNA gain before changing configuration */
|
|
rt2800_config_lna_gain(rt2x00dev, libconf);
|
|
|
|
if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
|
|
rt2800_config_channel(rt2x00dev, libconf->conf,
|
|
&libconf->rf, &libconf->channel);
|
|
rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
|
|
libconf->conf->power_level);
|
|
}
|
|
if (flags & IEEE80211_CONF_CHANGE_POWER)
|
|
rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
|
|
libconf->conf->power_level);
|
|
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
|
|
rt2800_config_retry_limit(rt2x00dev, libconf);
|
|
if (flags & IEEE80211_CONF_CHANGE_PS)
|
|
rt2800_config_ps(rt2x00dev, libconf);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_config);
|
|
|
|
/*
|
|
* Link tuning
|
|
*/
|
|
void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Update FCS error count from register.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
|
|
qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_link_stats);
|
|
|
|
static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 vgc;
|
|
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
|
|
if (rt2x00_rt(rt2x00dev, RT3070) ||
|
|
rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3290) ||
|
|
rt2x00_rt(rt2x00dev, RT3390) ||
|
|
rt2x00_rt(rt2x00dev, RT3572) ||
|
|
rt2x00_rt(rt2x00dev, RT3593) ||
|
|
rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392) ||
|
|
rt2x00_rt(rt2x00dev, RT5592))
|
|
vgc = 0x1c + (2 * rt2x00dev->lna_gain);
|
|
else
|
|
vgc = 0x2e + rt2x00dev->lna_gain;
|
|
} else { /* 5GHZ band */
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
vgc = 0x20 + (rt2x00dev->lna_gain * 5) / 3;
|
|
else if (rt2x00_rt(rt2x00dev, RT5592))
|
|
vgc = 0x24 + (2 * rt2x00dev->lna_gain);
|
|
else {
|
|
if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
|
|
vgc = 0x32 + (rt2x00dev->lna_gain * 5) / 3;
|
|
else
|
|
vgc = 0x3a + (rt2x00dev->lna_gain * 5) / 3;
|
|
}
|
|
}
|
|
|
|
return vgc;
|
|
}
|
|
|
|
static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual, u8 vgc_level)
|
|
{
|
|
if (qual->vgc_level != vgc_level) {
|
|
if (rt2x00_rt(rt2x00dev, RT3572) ||
|
|
rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_bbp_write_with_rx_chain(rt2x00dev, 66,
|
|
vgc_level);
|
|
} else if (rt2x00_rt(rt2x00dev, RT5592)) {
|
|
rt2800_bbp_write(rt2x00dev, 83, qual->rssi > -65 ? 0x4a : 0x7a);
|
|
rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, vgc_level);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 66, vgc_level);
|
|
}
|
|
|
|
qual->vgc_level = vgc_level;
|
|
qual->vgc_level_reg = vgc_level;
|
|
}
|
|
}
|
|
|
|
void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
|
|
{
|
|
rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
|
|
|
|
void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
|
|
const u32 count)
|
|
{
|
|
u8 vgc;
|
|
|
|
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
|
|
return;
|
|
|
|
/* When RSSI is better than a certain threshold, increase VGC
|
|
* with a chip specific value in order to improve the balance
|
|
* between sensibility and noise isolation.
|
|
*/
|
|
|
|
vgc = rt2800_get_default_vgc(rt2x00dev);
|
|
|
|
switch (rt2x00dev->chip.rt) {
|
|
case RT3572:
|
|
case RT3593:
|
|
if (qual->rssi > -65) {
|
|
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)
|
|
vgc += 0x20;
|
|
else
|
|
vgc += 0x10;
|
|
}
|
|
break;
|
|
|
|
case RT5592:
|
|
if (qual->rssi > -65)
|
|
vgc += 0x20;
|
|
break;
|
|
|
|
default:
|
|
if (qual->rssi > -80)
|
|
vgc += 0x10;
|
|
break;
|
|
}
|
|
|
|
rt2800_set_vgc(rt2x00dev, qual, vgc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_link_tuner);
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 eeprom;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
rt2800_disable_wpdma(rt2x00dev);
|
|
|
|
ret = rt2800_drv_init_registers(rt2x00dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®);
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN0,
|
|
rt2800_get_beacon_offset(rt2x00dev, 0));
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN1,
|
|
rt2800_get_beacon_offset(rt2x00dev, 1));
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN2,
|
|
rt2800_get_beacon_offset(rt2x00dev, 2));
|
|
rt2x00_set_field32(®, BCN_OFFSET0_BCN3,
|
|
rt2800_get_beacon_offset(rt2x00dev, 3));
|
|
rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®);
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN4,
|
|
rt2800_get_beacon_offset(rt2x00dev, 4));
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN5,
|
|
rt2800_get_beacon_offset(rt2x00dev, 5));
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN6,
|
|
rt2800_get_beacon_offset(rt2x00dev, 6));
|
|
rt2x00_set_field32(®, BCN_OFFSET1_BCN7,
|
|
rt2800_get_beacon_offset(rt2x00dev, 7));
|
|
rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
|
|
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
|
|
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
|
|
|
|
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
|
|
rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
|
|
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
|
|
|
|
rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
|
|
|
|
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®);
|
|
rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, 9);
|
|
rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
|
|
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290)) {
|
|
rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, ®);
|
|
if (rt2x00_get_field32(reg, WLAN_EN) == 1) {
|
|
rt2x00_set_field32(®, PCIE_APP0_CLK_REQ, 1);
|
|
rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, CMB_CTRL, ®);
|
|
if (!(rt2x00_get_field32(reg, LDO0_EN) == 1)) {
|
|
rt2x00_set_field32(®, LDO0_EN, 1);
|
|
rt2x00_set_field32(®, LDO_BGSEL, 3);
|
|
rt2800_register_write(rt2x00dev, CMB_CTRL, reg);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, OSC_CTRL, ®);
|
|
rt2x00_set_field32(®, OSC_ROSC_EN, 1);
|
|
rt2x00_set_field32(®, OSC_CAL_REQ, 1);
|
|
rt2x00_set_field32(®, OSC_REF_CYCLE, 0x27);
|
|
rt2800_register_write(rt2x00dev, OSC_CTRL, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, COEX_CFG0, ®);
|
|
rt2x00_set_field32(®, COEX_CFG_ANT, 0x5e);
|
|
rt2800_register_write(rt2x00dev, COEX_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, COEX_CFG2, ®);
|
|
rt2x00_set_field32(®, BT_COEX_CFG1, 0x00);
|
|
rt2x00_set_field32(®, BT_COEX_CFG0, 0x17);
|
|
rt2x00_set_field32(®, WL_COEX_CFG1, 0x93);
|
|
rt2x00_set_field32(®, WL_COEX_CFG0, 0x7f);
|
|
rt2800_register_write(rt2x00dev, COEX_CFG2, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, PLL_CTRL, ®);
|
|
rt2x00_set_field32(®, PLL_CONTROL, 1);
|
|
rt2800_register_write(rt2x00dev, PLL_CTRL, reg);
|
|
}
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3290) ||
|
|
rt2x00_rt(rt2x00dev, RT3390)) {
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290))
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0,
|
|
0x00000404);
|
|
else
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0,
|
|
0x00000400);
|
|
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
|
|
&eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
|
|
0x0000002c);
|
|
else
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
|
|
0x0000000f);
|
|
} else {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
|
|
}
|
|
} else if (rt2x00_rt(rt2x00dev, RT3070)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
|
|
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
|
|
} else {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
|
|
}
|
|
} else if (rt2800_is_305x_soc(rt2x00dev)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3352)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3572)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3593, REV_RT3593E)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
|
|
&eeprom);
|
|
if (rt2x00_get_field16(eeprom,
|
|
EEPROM_NIC_CONF1_DAC_TEST))
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
|
|
0x0000001f);
|
|
else
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
|
|
0x0000000f);
|
|
} else {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2,
|
|
0x00000000);
|
|
}
|
|
} else if (rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392) ||
|
|
rt2x00_rt(rt2x00dev, RT5592)) {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
|
|
} else {
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
|
|
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0);
|
|
rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0);
|
|
rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
|
|
rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
|
|
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
|
|
rt2x00_rt(rt2x00dev, RT2883) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2);
|
|
else
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0);
|
|
rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0);
|
|
rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LED_CFG, ®);
|
|
rt2x00_set_field32(®, LED_CFG_ON_PERIOD, 70);
|
|
rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, 30);
|
|
rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3);
|
|
rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3);
|
|
rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3);
|
|
rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3);
|
|
rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1);
|
|
rt2800_register_write(rt2x00dev, LED_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0);
|
|
rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
|
|
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, 1);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
|
|
rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
|
|
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, 1);
|
|
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, 1);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, 0);
|
|
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, 0);
|
|
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, 0);
|
|
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, 0);
|
|
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
|
|
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
}
|
|
|
|
/*
|
|
* The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
|
|
* although it is reserved.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, ®);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
|
|
rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CWMIN, 0);
|
|
rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
|
|
|
|
reg = rt2x00_rt(rt2x00dev, RT5592) ? 0x00000082 : 0x00000002;
|
|
rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES,
|
|
IEEE80211_MAX_RTS_THRESHOLD);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0);
|
|
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
|
|
|
|
/*
|
|
* Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
|
|
* time should be set to 16. However, the original Ralink driver uses
|
|
* 16 for both and indeed using a value of 10 for CCK SIFS results in
|
|
* connection problems with 11g + CTS protection. Hence, use the same
|
|
* defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, 314);
|
|
rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
|
|
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
|
|
|
|
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
|
|
|
|
/*
|
|
* ASIC will keep garbage value after boot, clear encryption keys.
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
rt2800_register_write(rt2x00dev,
|
|
SHARED_KEY_MODE_ENTRY(i), 0);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
rt2800_config_wcid(rt2x00dev, NULL, i);
|
|
rt2800_delete_wcid_attr(rt2x00dev, i);
|
|
rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
|
|
}
|
|
|
|
/*
|
|
* Clear all beacons
|
|
*/
|
|
for (i = 0; i < 8; i++)
|
|
rt2800_clear_beacon_register(rt2x00dev, i);
|
|
|
|
if (rt2x00_is_usb(rt2x00dev)) {
|
|
rt2800_register_read(rt2x00dev, US_CYC_CNT, ®);
|
|
rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 30);
|
|
rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
|
|
} else if (rt2x00_is_pcie(rt2x00dev)) {
|
|
rt2800_register_read(rt2x00dev, US_CYC_CNT, ®);
|
|
rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 125);
|
|
rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
|
|
}
|
|
|
|
rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5);
|
|
rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6);
|
|
rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13);
|
|
rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14);
|
|
rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14);
|
|
rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1);
|
|
rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2);
|
|
rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
|
|
|
|
/*
|
|
* Do not force the BA window size, we use the TXWI to set it
|
|
*/
|
|
rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, ®);
|
|
rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
|
|
rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
|
|
rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
|
|
|
|
/*
|
|
* We must clear the error counters.
|
|
* These registers are cleared on read,
|
|
* so we may pass a useless variable to store the value.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®);
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®);
|
|
rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®);
|
|
rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®);
|
|
|
|
/*
|
|
* Setup leadtime for pre tbtt interrupt to 6ms
|
|
*/
|
|
rt2800_register_read(rt2x00dev, INT_TIMER_CFG, ®);
|
|
rt2x00_set_field32(®, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
|
|
rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
|
|
|
|
/*
|
|
* Set up channel statistics timer
|
|
*/
|
|
rt2800_register_read(rt2x00dev, CH_TIME_CFG, ®);
|
|
rt2x00_set_field32(®, CH_TIME_CFG_EIFS_BUSY, 1);
|
|
rt2x00_set_field32(®, CH_TIME_CFG_NAV_BUSY, 1);
|
|
rt2x00_set_field32(®, CH_TIME_CFG_RX_BUSY, 1);
|
|
rt2x00_set_field32(®, CH_TIME_CFG_TX_BUSY, 1);
|
|
rt2x00_set_field32(®, CH_TIME_CFG_TMR_EN, 1);
|
|
rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®);
|
|
if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
|
|
return 0;
|
|
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
rt2x00_err(rt2x00dev, "BBP/RF register access failed, aborting\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u8 value;
|
|
|
|
/*
|
|
* BBP was enabled after firmware was loaded,
|
|
* but we need to reactivate it now.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
msleep(1);
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
rt2800_bbp_read(rt2x00dev, 0, &value);
|
|
if ((value != 0xff) && (value != 0x00))
|
|
return 0;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
static void rt2800_bbp4_mac_if_ctrl(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 value;
|
|
|
|
rt2800_bbp_read(rt2x00dev, 4, &value);
|
|
rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
|
|
rt2800_bbp_write(rt2x00dev, 4, value);
|
|
}
|
|
|
|
static void rt2800_init_freq_calibration(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 142, 1);
|
|
rt2800_bbp_write(rt2x00dev, 143, 57);
|
|
}
|
|
|
|
static void rt2800_init_bbp_5592_glrt(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
const u8 glrt_table[] = {
|
|
0xE0, 0x1F, 0X38, 0x32, 0x08, 0x28, 0x19, 0x0A, 0xFF, 0x00, /* 128 ~ 137 */
|
|
0x16, 0x10, 0x10, 0x0B, 0x36, 0x2C, 0x26, 0x24, 0x42, 0x36, /* 138 ~ 147 */
|
|
0x30, 0x2D, 0x4C, 0x46, 0x3D, 0x40, 0x3E, 0x42, 0x3D, 0x40, /* 148 ~ 157 */
|
|
0X3C, 0x34, 0x2C, 0x2F, 0x3C, 0x35, 0x2E, 0x2A, 0x49, 0x41, /* 158 ~ 167 */
|
|
0x36, 0x31, 0x30, 0x30, 0x0E, 0x0D, 0x28, 0x21, 0x1C, 0x16, /* 168 ~ 177 */
|
|
0x50, 0x4A, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00, /* 178 ~ 187 */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 188 ~ 197 */
|
|
0x00, 0x00, 0x7D, 0x14, 0x32, 0x2C, 0x36, 0x4C, 0x43, 0x2C, /* 198 ~ 207 */
|
|
0x2E, 0x36, 0x30, 0x6E, /* 208 ~ 211 */
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(glrt_table); i++) {
|
|
rt2800_bbp_write(rt2x00dev, 195, 128 + i);
|
|
rt2800_bbp_write(rt2x00dev, 196, glrt_table[i]);
|
|
}
|
|
};
|
|
|
|
static void rt2800_init_bbp_early(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2C);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0B);
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x37);
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6A);
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 103, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
}
|
|
|
|
static void rt2800_disable_unused_dac_adc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 eeprom;
|
|
u8 value;
|
|
|
|
rt2800_bbp_read(rt2x00dev, 138, &value);
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
|
|
value |= 0x20;
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
|
|
value &= ~0x02;
|
|
rt2800_bbp_write(rt2x00dev, 138, value);
|
|
}
|
|
|
|
static void rt2800_init_bbp_305x_soc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x01);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
}
|
|
|
|
static void rt2800_init_bbp_28xx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x16);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x12);
|
|
} else {
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
}
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x37);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x19);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
}
|
|
|
|
static void rt2800_init_bbp_30xx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
|
|
rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
|
|
rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E))
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 103, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3090))
|
|
rt2800_disable_unused_dac_adc(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_bbp_3290(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 value;
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
rt2800_bbp_write(rt2x00dev, 76, 0x28);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 77, 0x58);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 74, 0x0b);
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x18);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x09);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x7a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x9a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x02);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 104, 0x92);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x1c);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x03);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 128, 0x12);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 67, 0x24);
|
|
rt2800_bbp_write(rt2x00dev, 143, 0x04);
|
|
rt2800_bbp_write(rt2x00dev, 142, 0x99);
|
|
rt2800_bbp_write(rt2x00dev, 150, 0x30);
|
|
rt2800_bbp_write(rt2x00dev, 151, 0x2e);
|
|
rt2800_bbp_write(rt2x00dev, 152, 0x20);
|
|
rt2800_bbp_write(rt2x00dev, 153, 0x34);
|
|
rt2800_bbp_write(rt2x00dev, 154, 0x40);
|
|
rt2800_bbp_write(rt2x00dev, 155, 0x3b);
|
|
rt2800_bbp_write(rt2x00dev, 253, 0x04);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 47, &value);
|
|
rt2x00_set_field8(&value, BBP47_TSSI_ADC6, 1);
|
|
rt2800_bbp_write(rt2x00dev, 47, value);
|
|
|
|
/* Use 5-bit ADC for Acquisition and 8-bit ADC for data */
|
|
rt2800_bbp_read(rt2x00dev, 3, &value);
|
|
rt2x00_set_field8(&value, BBP3_ADC_MODE_SWITCH, 1);
|
|
rt2x00_set_field8(&value, BBP3_ADC_INIT_MODE, 1);
|
|
rt2800_bbp_write(rt2x00dev, 3, value);
|
|
}
|
|
|
|
static void rt2800_init_bbp_3352(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 3, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 4, 0x50);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 47, 0x48);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
rt2800_bbp_write(rt2x00dev, 76, 0x28);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 77, 0x59);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x37);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 88, 0x90);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x02);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 104, 0x92);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x34);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x05);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 120, 0x50);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 137, 0x0f);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 163, 0xbd);
|
|
/* Set ITxBF timeout to 0x9c40=1000msec */
|
|
rt2800_bbp_write(rt2x00dev, 179, 0x02);
|
|
rt2800_bbp_write(rt2x00dev, 180, 0x00);
|
|
rt2800_bbp_write(rt2x00dev, 182, 0x40);
|
|
rt2800_bbp_write(rt2x00dev, 180, 0x01);
|
|
rt2800_bbp_write(rt2x00dev, 182, 0x9c);
|
|
rt2800_bbp_write(rt2x00dev, 179, 0x00);
|
|
/* Reprogram the inband interface to put right values in RXWI */
|
|
rt2800_bbp_write(rt2x00dev, 142, 0x04);
|
|
rt2800_bbp_write(rt2x00dev, 143, 0x3b);
|
|
rt2800_bbp_write(rt2x00dev, 142, 0x06);
|
|
rt2800_bbp_write(rt2x00dev, 143, 0xa0);
|
|
rt2800_bbp_write(rt2x00dev, 142, 0x07);
|
|
rt2800_bbp_write(rt2x00dev, 143, 0xa1);
|
|
rt2800_bbp_write(rt2x00dev, 142, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 143, 0xa2);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 148, 0xc8);
|
|
}
|
|
|
|
static void rt2800_init_bbp_3390(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E))
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 103, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
|
|
rt2800_disable_unused_dac_adc(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_bbp_3572(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x10);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x99);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x00);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x05);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
|
|
rt2800_disable_unused_dac_adc(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_bbp_3593(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_init_bbp_early(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
rt2800_bbp_write(rt2x00dev, 137, 0x0f);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x19);
|
|
|
|
/* Enable DC filter */
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT3593, REV_RT3593E))
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
}
|
|
|
|
static void rt2800_init_bbp_53xx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int ant, div_mode;
|
|
u16 eeprom;
|
|
u8 value;
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
|
|
rt2800_bbp_write(rt2x00dev, 66, 0x38);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x46);
|
|
rt2800_bbp_write(rt2x00dev, 76, 0x28);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 77, 0x59);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 79, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 80, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 81, 0x33);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x62);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 83, 0x7a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x9a);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x38);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5392))
|
|
rt2800_bbp_write(rt2x00dev, 88, 0x90);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x02);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5392)) {
|
|
rt2800_bbp_write(rt2x00dev, 95, 0x9a);
|
|
rt2800_bbp_write(rt2x00dev, 98, 0x12);
|
|
}
|
|
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 104, 0x92);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x3c);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5390))
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x03);
|
|
else if (rt2x00_rt(rt2x00dev, RT5392))
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x12);
|
|
else
|
|
WARN_ON(1);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 128, 0x12);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT5392)) {
|
|
rt2800_bbp_write(rt2x00dev, 134, 0xd0);
|
|
rt2800_bbp_write(rt2x00dev, 135, 0xf6);
|
|
}
|
|
|
|
rt2800_disable_unused_dac_adc(rt2x00dev);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
|
|
div_mode = rt2x00_get_field16(eeprom,
|
|
EEPROM_NIC_CONF1_ANT_DIVERSITY);
|
|
ant = (div_mode == 3) ? 1 : 0;
|
|
|
|
/* check if this is a Bluetooth combo card */
|
|
if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR3, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR6, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL3, 0);
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL6, 0);
|
|
if (ant == 0)
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL3, 1);
|
|
else if (ant == 1)
|
|
rt2x00_set_field32(®, GPIO_CTRL_VAL6, 1);
|
|
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
|
|
}
|
|
|
|
/* This chip has hardware antenna diversity*/
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
|
|
rt2800_bbp_write(rt2x00dev, 150, 0); /* Disable Antenna Software OFDM */
|
|
rt2800_bbp_write(rt2x00dev, 151, 0); /* Disable Antenna Software CCK */
|
|
rt2800_bbp_write(rt2x00dev, 154, 0); /* Clear previously selected antenna */
|
|
}
|
|
|
|
rt2800_bbp_read(rt2x00dev, 152, &value);
|
|
if (ant == 0)
|
|
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
|
|
else
|
|
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
|
|
rt2800_bbp_write(rt2x00dev, 152, value);
|
|
|
|
rt2800_init_freq_calibration(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_bbp_5592(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int ant, div_mode;
|
|
u16 eeprom;
|
|
u8 value;
|
|
|
|
rt2800_init_bbp_early(rt2x00dev);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 105, &value);
|
|
rt2x00_set_field8(&value, BBP105_MLD,
|
|
rt2x00dev->default_ant.rx_chain_num == 2);
|
|
rt2800_bbp_write(rt2x00dev, 105, value);
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 20, 0x06);
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
rt2800_bbp_write(rt2x00dev, 65, 0x2C);
|
|
rt2800_bbp_write(rt2x00dev, 68, 0xDD);
|
|
rt2800_bbp_write(rt2x00dev, 69, 0x1A);
|
|
rt2800_bbp_write(rt2x00dev, 70, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 73, 0x13);
|
|
rt2800_bbp_write(rt2x00dev, 74, 0x0F);
|
|
rt2800_bbp_write(rt2x00dev, 75, 0x4F);
|
|
rt2800_bbp_write(rt2x00dev, 76, 0x28);
|
|
rt2800_bbp_write(rt2x00dev, 77, 0x59);
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x9A);
|
|
rt2800_bbp_write(rt2x00dev, 86, 0x38);
|
|
rt2800_bbp_write(rt2x00dev, 88, 0x90);
|
|
rt2800_bbp_write(rt2x00dev, 91, 0x04);
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x02);
|
|
rt2800_bbp_write(rt2x00dev, 95, 0x9a);
|
|
rt2800_bbp_write(rt2x00dev, 98, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xC0);
|
|
rt2800_bbp_write(rt2x00dev, 104, 0x92);
|
|
/* FIXME BBP105 owerwrite */
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x3C);
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x35);
|
|
rt2800_bbp_write(rt2x00dev, 128, 0x12);
|
|
rt2800_bbp_write(rt2x00dev, 134, 0xD0);
|
|
rt2800_bbp_write(rt2x00dev, 135, 0xF6);
|
|
rt2800_bbp_write(rt2x00dev, 137, 0x0F);
|
|
|
|
/* Initialize GLRT (Generalized Likehood Radio Test) */
|
|
rt2800_init_bbp_5592_glrt(rt2x00dev);
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
|
|
div_mode = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_ANT_DIVERSITY);
|
|
ant = (div_mode == 3) ? 1 : 0;
|
|
rt2800_bbp_read(rt2x00dev, 152, &value);
|
|
if (ant == 0) {
|
|
/* Main antenna */
|
|
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
|
|
} else {
|
|
/* Auxiliary antenna */
|
|
rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
|
|
}
|
|
rt2800_bbp_write(rt2x00dev, 152, value);
|
|
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C)) {
|
|
rt2800_bbp_read(rt2x00dev, 254, &value);
|
|
rt2x00_set_field8(&value, BBP254_BIT7, 1);
|
|
rt2800_bbp_write(rt2x00dev, 254, value);
|
|
}
|
|
|
|
rt2800_init_freq_calibration(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 84, 0x19);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
}
|
|
|
|
static void rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
u8 reg_id;
|
|
u8 value;
|
|
|
|
if (rt2800_is_305x_soc(rt2x00dev))
|
|
rt2800_init_bbp_305x_soc(rt2x00dev);
|
|
|
|
switch (rt2x00dev->chip.rt) {
|
|
case RT2860:
|
|
case RT2872:
|
|
case RT2883:
|
|
rt2800_init_bbp_28xx(rt2x00dev);
|
|
break;
|
|
case RT3070:
|
|
case RT3071:
|
|
case RT3090:
|
|
rt2800_init_bbp_30xx(rt2x00dev);
|
|
break;
|
|
case RT3290:
|
|
rt2800_init_bbp_3290(rt2x00dev);
|
|
break;
|
|
case RT3352:
|
|
rt2800_init_bbp_3352(rt2x00dev);
|
|
break;
|
|
case RT3390:
|
|
rt2800_init_bbp_3390(rt2x00dev);
|
|
break;
|
|
case RT3572:
|
|
rt2800_init_bbp_3572(rt2x00dev);
|
|
break;
|
|
case RT3593:
|
|
rt2800_init_bbp_3593(rt2x00dev);
|
|
return;
|
|
case RT5390:
|
|
case RT5392:
|
|
rt2800_init_bbp_53xx(rt2x00dev);
|
|
break;
|
|
case RT5592:
|
|
rt2800_init_bbp_5592(rt2x00dev);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
|
|
rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_BBP_START, i,
|
|
&eeprom);
|
|
|
|
if (eeprom != 0xffff && eeprom != 0x0000) {
|
|
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
|
|
rt2800_bbp_write(rt2x00dev, reg_id, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rt2800_led_open_drain_enable(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, OPT_14_CSR, ®);
|
|
rt2x00_set_field32(®, OPT_14_CSR_BIT0, 1);
|
|
rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
|
|
}
|
|
|
|
static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, bool bw40,
|
|
u8 filter_target)
|
|
{
|
|
unsigned int i;
|
|
u8 bbp;
|
|
u8 rfcsr;
|
|
u8 passband;
|
|
u8 stopband;
|
|
u8 overtuned = 0;
|
|
u8 rfcsr24 = (bw40) ? 0x27 : 0x07;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
|
|
|
|
/*
|
|
* Set power & frequency of passband test tone
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x90);
|
|
msleep(1);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 55, &passband);
|
|
if (passband)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set power & frequency of stopband test tone
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0x06);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
rt2800_bbp_write(rt2x00dev, 25, 0x90);
|
|
msleep(1);
|
|
|
|
rt2800_bbp_read(rt2x00dev, 55, &stopband);
|
|
|
|
if ((passband - stopband) <= filter_target) {
|
|
rfcsr24++;
|
|
overtuned += ((passband - stopband) == filter_target);
|
|
} else
|
|
break;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
}
|
|
|
|
rfcsr24 -= !!overtuned;
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
|
|
return rfcsr24;
|
|
}
|
|
|
|
static void rt2800_rf_init_calibration(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int rf_reg)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, rf_reg, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, FIELD8(0x80), 1);
|
|
rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
|
|
msleep(1);
|
|
rt2x00_set_field8(&rfcsr, FIELD8(0x80), 0);
|
|
rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
|
|
}
|
|
|
|
static void rt2800_rx_filter_calibration(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 filter_tgt_bw20;
|
|
u8 filter_tgt_bw40;
|
|
u8 rfcsr, bbp;
|
|
|
|
/*
|
|
* TODO: sync filter_tgt values with vendor driver
|
|
*/
|
|
if (rt2x00_rt(rt2x00dev, RT3070)) {
|
|
filter_tgt_bw20 = 0x16;
|
|
filter_tgt_bw40 = 0x19;
|
|
} else {
|
|
filter_tgt_bw20 = 0x13;
|
|
filter_tgt_bw40 = 0x15;
|
|
}
|
|
|
|
drv_data->calibration_bw20 =
|
|
rt2800_init_rx_filter(rt2x00dev, false, filter_tgt_bw20);
|
|
drv_data->calibration_bw40 =
|
|
rt2800_init_rx_filter(rt2x00dev, true, filter_tgt_bw40);
|
|
|
|
/*
|
|
* Save BBP 25 & 26 values for later use in channel switching (for 3052)
|
|
*/
|
|
rt2800_bbp_read(rt2x00dev, 25, &drv_data->bbp25);
|
|
rt2800_bbp_read(rt2x00dev, 26, &drv_data->bbp26);
|
|
|
|
/*
|
|
* Set back to initial state
|
|
*/
|
|
rt2800_bbp_write(rt2x00dev, 24, 0);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
|
|
|
|
/*
|
|
* Set BBP back to BW20
|
|
*/
|
|
rt2800_bbp_read(rt2x00dev, 4, &bbp);
|
|
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
|
|
rt2800_bbp_write(rt2x00dev, 4, bbp);
|
|
}
|
|
|
|
static void rt2800_normal_mode_setup_3xxx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 min_gain, rfcsr, bbp;
|
|
u16 eeprom;
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
|
|
|
|
rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
|
|
if (rt2x00_rt(rt2x00dev, RT3070) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
|
|
if (!rt2x00_has_cap_external_lna_bg(rt2x00dev))
|
|
rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
|
|
}
|
|
|
|
min_gain = rt2x00_rt(rt2x00dev, RT3070) ? 1 : 2;
|
|
if (drv_data->txmixer_gain_24g >= min_gain) {
|
|
rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
|
|
drv_data->txmixer_gain_24g);
|
|
}
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3090)) {
|
|
/* Turn off unused DAC1 and ADC1 to reduce power consumption */
|
|
rt2800_bbp_read(rt2x00dev, 138, &bbp);
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
|
|
rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
|
|
rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
|
|
rt2800_bbp_write(rt2x00dev, 138, bbp);
|
|
}
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3070)) {
|
|
rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
|
|
rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
|
|
else
|
|
rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3390)) {
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
|
|
}
|
|
}
|
|
|
|
static void rt2800_normal_mode_setup_3593(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u8 rfcsr;
|
|
u8 tx_gain;
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO2_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
|
|
tx_gain = rt2x00_get_field8(drv_data->txmixer_gain_24g,
|
|
RFCSR17_TXMIXER_GAIN);
|
|
rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, tx_gain);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
|
|
rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
|
|
|
|
/* TODO: enable stream mode */
|
|
}
|
|
|
|
static void rt2800_normal_mode_setup_5xxx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 reg;
|
|
u16 eeprom;
|
|
|
|
/* Turn off unused DAC1 and ADC1 to reduce power consumption */
|
|
rt2800_bbp_read(rt2x00dev, 138, ®);
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
|
|
rt2x00_set_field8(®, BBP138_RX_ADC1, 0);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
|
|
rt2x00_set_field8(®, BBP138_TX_DAC1, 1);
|
|
rt2800_bbp_write(rt2x00dev, 138, reg);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 38, ®);
|
|
rt2x00_set_field8(®, RFCSR38_RX_LO1_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, reg);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 39, ®);
|
|
rt2x00_set_field8(®, RFCSR39_RX_LO2_EN, 0);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, reg);
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 30, ®);
|
|
rt2x00_set_field8(®, RFCSR30_RX_VCM, 2);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, reg);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_305x_soc(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_30xx(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 rfcsr;
|
|
u16 eeprom;
|
|
u32 reg;
|
|
|
|
/* XXX vendor driver do this only for 3070 */
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
|
|
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
} else if (rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3090)) {
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
|
|
&eeprom);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
|
|
else
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0);
|
|
}
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_5, 0);
|
|
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
|
|
}
|
|
|
|
rt2800_rx_filter_calibration(rt2x00dev);
|
|
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
|
|
rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E))
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3xxx(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_3290(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 rfcsr;
|
|
|
|
rt2800_rf_init_calibration(rt2x00dev, 2);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0xf3);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x83);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x05);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x7b);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
|
|
rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, 0x98);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x09);
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0xc1);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 29, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR29_RSSI_GAIN, 3);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, rfcsr);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3xxx(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_3352(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 0, 0xf0);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x18);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x33);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xd2);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x5a);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x45);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x01);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0xbd);
|
|
rt2800_rfcsr_write(rt2x00dev, 37, 0x3c);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x5f);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0xc5);
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x33);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0x5b);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0x5b);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0xdd);
|
|
rt2800_rfcsr_write(rt2x00dev, 47, 0x0d);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x14);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, 0x2d);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0x7f);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x52);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x1b);
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x7f);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x52);
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x1b);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
|
|
|
|
rt2800_rx_filter_calibration(rt2x00dev);
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3xxx(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_3390(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
|
|
|
|
rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_5, 0);
|
|
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
|
|
|
|
rt2800_rx_filter_calibration(rt2x00dev);
|
|
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3xxx(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_3572(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 rfcsr;
|
|
u32 reg;
|
|
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 0, 0x70);
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x81);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 4, 0x4c);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x05);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x4a);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x70);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x65);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0xa0);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
|
|
rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0xac);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0xd0);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x3c);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x09);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x10);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
|
|
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
|
|
rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
msleep(1);
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0);
|
|
rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
|
|
rt2800_rx_filter_calibration(rt2x00dev);
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3xxx(rt2x00dev);
|
|
}
|
|
|
|
static void rt3593_post_bbp_init(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u8 bbp;
|
|
bool txbf_enabled = false; /* FIXME */
|
|
|
|
rt2800_bbp_read(rt2x00dev, 105, &bbp);
|
|
if (rt2x00dev->default_ant.rx_chain_num == 1)
|
|
rt2x00_set_field8(&bbp, BBP105_MLD, 0);
|
|
else
|
|
rt2x00_set_field8(&bbp, BBP105_MLD, 1);
|
|
rt2800_bbp_write(rt2x00dev, 105, bbp);
|
|
|
|
rt2800_bbp4_mac_if_ctrl(rt2x00dev);
|
|
|
|
rt2800_bbp_write(rt2x00dev, 92, 0x02);
|
|
rt2800_bbp_write(rt2x00dev, 82, 0x82);
|
|
rt2800_bbp_write(rt2x00dev, 106, 0x05);
|
|
rt2800_bbp_write(rt2x00dev, 104, 0x92);
|
|
rt2800_bbp_write(rt2x00dev, 88, 0x90);
|
|
rt2800_bbp_write(rt2x00dev, 148, 0xc8);
|
|
rt2800_bbp_write(rt2x00dev, 47, 0x48);
|
|
rt2800_bbp_write(rt2x00dev, 120, 0x50);
|
|
|
|
if (txbf_enabled)
|
|
rt2800_bbp_write(rt2x00dev, 163, 0xbd);
|
|
else
|
|
rt2800_bbp_write(rt2x00dev, 163, 0x9d);
|
|
|
|
/* SNR mapping */
|
|
rt2800_bbp_write(rt2x00dev, 142, 6);
|
|
rt2800_bbp_write(rt2x00dev, 143, 160);
|
|
rt2800_bbp_write(rt2x00dev, 142, 7);
|
|
rt2800_bbp_write(rt2x00dev, 143, 161);
|
|
rt2800_bbp_write(rt2x00dev, 142, 8);
|
|
rt2800_bbp_write(rt2x00dev, 143, 162);
|
|
|
|
/* ADC/DAC control */
|
|
rt2800_bbp_write(rt2x00dev, 31, 0x08);
|
|
|
|
/* RX AGC energy lower bound in log2 */
|
|
rt2800_bbp_write(rt2x00dev, 68, 0x0b);
|
|
|
|
/* FIXME: BBP 105 owerwrite? */
|
|
rt2800_bbp_write(rt2x00dev, 105, 0x04);
|
|
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_3593(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u32 reg;
|
|
u8 rfcsr;
|
|
|
|
/* Disable GPIO #4 and #7 function for LAN PE control */
|
|
rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_4, 0);
|
|
rt2x00_set_field32(®, GPIO_SWITCH_7, 0);
|
|
rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
|
|
|
|
/* Initialize default register values */
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
|
|
rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x4e);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x40);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x78);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0x3b);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x3c);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0xe0);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x86);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x23);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0xd3);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, 0x8e);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, 0x86);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0x75);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x18);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x18);
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x18);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xdb);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x6e);
|
|
|
|
/* Initiate calibration */
|
|
/* TODO: use rt2800_rf_init_calibration ? */
|
|
rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
rt2800_rfcsr_read(rt2x00dev, 18, &rfcsr);
|
|
rt2x00_set_field8(&rfcsr, RFCSR18_XO_TUNE_BYPASS, 1);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, rfcsr);
|
|
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3);
|
|
rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
usleep_range(1000, 1500);
|
|
rt2800_register_read(rt2x00dev, LDO_CFG0, ®);
|
|
rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0);
|
|
rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
|
|
|
|
/* Set initial values for RX filter calibration */
|
|
drv_data->calibration_bw20 = 0x1f;
|
|
drv_data->calibration_bw40 = 0x2f;
|
|
|
|
/* Save BBP 25 & 26 values for later use in channel switching */
|
|
rt2800_bbp_read(rt2x00dev, 25, &drv_data->bbp25);
|
|
rt2800_bbp_read(rt2x00dev, 26, &drv_data->bbp26);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
rt2800_normal_mode_setup_3593(rt2x00dev);
|
|
|
|
rt3593_post_bbp_init(rt2x00dev);
|
|
|
|
/* TODO: enable stream mode support */
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_5390(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_rf_init_calibration(rt2x00dev, 2);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
|
|
if (rt2x00_is_usb(rt2x00dev) &&
|
|
rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
|
|
rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0x42);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x8f);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0xd5);
|
|
} else {
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
|
|
else
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0xb5);
|
|
}
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
|
|
|
|
rt2800_normal_mode_setup_5xxx(rt2x00dev);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_5392(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_rf_init_calibration(rt2x00dev, 2);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x17);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
|
|
rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
|
|
rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
|
|
rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x4d);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0x8d);
|
|
rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 23, 0x0b);
|
|
rt2800_rfcsr_write(rt2x00dev, 24, 0x44);
|
|
rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
|
|
rt2800_rfcsr_write(rt2x00dev, 32, 0x20);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
|
|
rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
|
|
rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
|
|
rt2800_rfcsr_write(rt2x00dev, 40, 0x0f);
|
|
rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
|
|
rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
|
|
rt2800_rfcsr_write(rt2x00dev, 43, 0x9b);
|
|
rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
|
|
rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
|
|
rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
|
|
rt2800_rfcsr_write(rt2x00dev, 47, 0x0c);
|
|
rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
|
|
rt2800_rfcsr_write(rt2x00dev, 50, 0x94);
|
|
rt2800_rfcsr_write(rt2x00dev, 51, 0x3a);
|
|
rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x44);
|
|
rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
|
|
rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
|
|
rt2800_rfcsr_write(rt2x00dev, 56, 0xa1);
|
|
rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
|
|
rt2800_rfcsr_write(rt2x00dev, 59, 0x07);
|
|
rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
|
|
rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
|
|
rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
|
|
rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
|
|
|
|
rt2800_normal_mode_setup_5xxx(rt2x00dev);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr_5592(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
rt2800_rf_init_calibration(rt2x00dev, 30);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 1, 0x3F);
|
|
rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
|
|
rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 6, 0xE4);
|
|
rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
|
|
rt2800_rfcsr_write(rt2x00dev, 19, 0x4D);
|
|
rt2800_rfcsr_write(rt2x00dev, 20, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 21, 0x8D);
|
|
rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
|
|
rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
|
|
rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
|
|
rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
|
|
rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
|
|
rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
|
|
rt2800_rfcsr_write(rt2x00dev, 47, 0x0C);
|
|
rt2800_rfcsr_write(rt2x00dev, 53, 0x22);
|
|
rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
|
|
|
|
rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
|
|
msleep(1);
|
|
|
|
rt2800_adjust_freq_offset(rt2x00dev);
|
|
|
|
/* Enable DC filter */
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
|
|
rt2800_bbp_write(rt2x00dev, 103, 0xc0);
|
|
|
|
rt2800_normal_mode_setup_5xxx(rt2x00dev);
|
|
|
|
if (rt2x00_rt_rev_lt(rt2x00dev, RT5592, REV_RT5592C))
|
|
rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
|
|
|
|
rt2800_led_open_drain_enable(rt2x00dev);
|
|
}
|
|
|
|
static void rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (rt2800_is_305x_soc(rt2x00dev)) {
|
|
rt2800_init_rfcsr_305x_soc(rt2x00dev);
|
|
return;
|
|
}
|
|
|
|
switch (rt2x00dev->chip.rt) {
|
|
case RT3070:
|
|
case RT3071:
|
|
case RT3090:
|
|
rt2800_init_rfcsr_30xx(rt2x00dev);
|
|
break;
|
|
case RT3290:
|
|
rt2800_init_rfcsr_3290(rt2x00dev);
|
|
break;
|
|
case RT3352:
|
|
rt2800_init_rfcsr_3352(rt2x00dev);
|
|
break;
|
|
case RT3390:
|
|
rt2800_init_rfcsr_3390(rt2x00dev);
|
|
break;
|
|
case RT3572:
|
|
rt2800_init_rfcsr_3572(rt2x00dev);
|
|
break;
|
|
case RT3593:
|
|
rt2800_init_rfcsr_3593(rt2x00dev);
|
|
break;
|
|
case RT5390:
|
|
rt2800_init_rfcsr_5390(rt2x00dev);
|
|
break;
|
|
case RT5392:
|
|
rt2800_init_rfcsr_5392(rt2x00dev);
|
|
break;
|
|
case RT5592:
|
|
rt2800_init_rfcsr_5592(rt2x00dev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 word;
|
|
|
|
/*
|
|
* Initialize MAC registers.
|
|
*/
|
|
if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
|
|
rt2800_init_registers(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Wait BBP/RF to wake up.
|
|
*/
|
|
if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Send signal during boot time to initialize firmware.
|
|
*/
|
|
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
|
|
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
|
|
rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
|
|
msleep(1);
|
|
|
|
/*
|
|
* Make sure BBP is up and running.
|
|
*/
|
|
if (unlikely(rt2800_wait_bbp_ready(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Initialize BBP/RF registers.
|
|
*/
|
|
rt2800_init_bbp(rt2x00dev);
|
|
rt2800_init_rfcsr(rt2x00dev);
|
|
|
|
if (rt2x00_is_usb(rt2x00dev) &&
|
|
(rt2x00_rt(rt2x00dev, RT3070) ||
|
|
rt2x00_rt(rt2x00dev, RT3071) ||
|
|
rt2x00_rt(rt2x00dev, RT3572))) {
|
|
udelay(200);
|
|
rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
udelay(50);
|
|
|
|
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
|
|
rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
|
|
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
|
|
/*
|
|
* Initialize LED control
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
|
|
rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
|
|
word & 0xff, (word >> 8) & 0xff);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_enable_radio);
|
|
|
|
void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2800_disable_wpdma(rt2x00dev);
|
|
|
|
/* Wait for DMA, ignore error */
|
|
rt2800_wait_wpdma_ready(rt2x00dev);
|
|
|
|
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 0);
|
|
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
|
|
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_disable_radio);
|
|
|
|
int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 efuse_ctrl_reg;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290))
|
|
efuse_ctrl_reg = EFUSE_CTRL_3290;
|
|
else
|
|
efuse_ctrl_reg = EFUSE_CTRL;
|
|
|
|
rt2800_register_read(rt2x00dev, efuse_ctrl_reg, ®);
|
|
return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
|
|
|
|
static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
|
|
{
|
|
u32 reg;
|
|
u16 efuse_ctrl_reg;
|
|
u16 efuse_data0_reg;
|
|
u16 efuse_data1_reg;
|
|
u16 efuse_data2_reg;
|
|
u16 efuse_data3_reg;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290)) {
|
|
efuse_ctrl_reg = EFUSE_CTRL_3290;
|
|
efuse_data0_reg = EFUSE_DATA0_3290;
|
|
efuse_data1_reg = EFUSE_DATA1_3290;
|
|
efuse_data2_reg = EFUSE_DATA2_3290;
|
|
efuse_data3_reg = EFUSE_DATA3_3290;
|
|
} else {
|
|
efuse_ctrl_reg = EFUSE_CTRL;
|
|
efuse_data0_reg = EFUSE_DATA0;
|
|
efuse_data1_reg = EFUSE_DATA1;
|
|
efuse_data2_reg = EFUSE_DATA2;
|
|
efuse_data3_reg = EFUSE_DATA3;
|
|
}
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
rt2800_register_read_lock(rt2x00dev, efuse_ctrl_reg, ®);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0);
|
|
rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1);
|
|
rt2800_register_write_lock(rt2x00dev, efuse_ctrl_reg, reg);
|
|
|
|
/* Wait until the EEPROM has been loaded */
|
|
rt2800_regbusy_read(rt2x00dev, efuse_ctrl_reg, EFUSE_CTRL_KICK, ®);
|
|
/* Apparently the data is read from end to start */
|
|
rt2800_register_read_lock(rt2x00dev, efuse_data3_reg, ®);
|
|
/* The returned value is in CPU order, but eeprom is le */
|
|
*(u32 *)&rt2x00dev->eeprom[i] = cpu_to_le32(reg);
|
|
rt2800_register_read_lock(rt2x00dev, efuse_data2_reg, ®);
|
|
*(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg);
|
|
rt2800_register_read_lock(rt2x00dev, efuse_data1_reg, ®);
|
|
*(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg);
|
|
rt2800_register_read_lock(rt2x00dev, efuse_data0_reg, ®);
|
|
*(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
int rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
|
|
rt2800_efuse_read(rt2x00dev, i);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
|
|
|
|
static u8 rt2800_get_txmixer_gain_24g(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 word;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
return 0;
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &word);
|
|
if ((word & 0x00ff) != 0x00ff)
|
|
return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_BG_VAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 rt2800_get_txmixer_gain_5g(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 word;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593))
|
|
return 0;
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_A, &word);
|
|
if ((word & 0x00ff) != 0x00ff)
|
|
return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_A_VAL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
|
|
u16 word;
|
|
u8 *mac;
|
|
u8 default_lna_gain;
|
|
int retval;
|
|
|
|
/*
|
|
* Read the EEPROM.
|
|
*/
|
|
retval = rt2800_read_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Start validation of the data that has been read.
|
|
*/
|
|
mac = rt2800_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
|
|
if (!is_valid_ether_addr(mac)) {
|
|
eth_random_addr(mac);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
|
|
}
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
|
|
} else if (rt2x00_rt(rt2x00dev, RT2860) ||
|
|
rt2x00_rt(rt2x00dev, RT2872)) {
|
|
/*
|
|
* There is a max of 2 RX streams for RT28x0 series
|
|
*/
|
|
if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
|
|
}
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
|
|
}
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
|
|
if ((word & 0x00ff) == 0x00ff) {
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
|
|
}
|
|
if ((word & 0xff00) == 0xff00) {
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
|
|
LED_MODE_TXRX_ACTIVITY);
|
|
rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "Led Mode: 0x%04x\n", word);
|
|
}
|
|
|
|
/*
|
|
* During the LNA validation we are going to use
|
|
* lna0 as correct value. Note that EEPROM_LNA
|
|
* is never validated.
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
|
|
default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
|
|
|
|
drv_data->txmixer_gain_24g = rt2800_get_txmixer_gain_24g(rt2x00dev);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
|
|
if (!rt2x00_rt(rt2x00dev, RT3593)) {
|
|
if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
|
|
default_lna_gain);
|
|
}
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
|
|
|
|
drv_data->txmixer_gain_5g = rt2800_get_txmixer_gain_5g(rt2x00dev);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
|
|
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
|
|
if (!rt2x00_rt(rt2x00dev, RT3593)) {
|
|
if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
|
|
default_lna_gain);
|
|
}
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3593)) {
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &word);
|
|
if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
|
|
default_lna_gain);
|
|
if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0x00 ||
|
|
rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0xff)
|
|
rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
|
|
default_lna_gain);
|
|
rt2800_eeprom_write(rt2x00dev, EEPROM_EXT_LNA2, word);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u16 value;
|
|
u16 eeprom;
|
|
u16 rf;
|
|
|
|
/*
|
|
* Read EEPROM word for configuration.
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
|
|
|
|
/*
|
|
* Identify RF chipset by EEPROM value
|
|
* RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
|
|
* RT53xx: defined in "EEPROM_CHIP_ID" field
|
|
*/
|
|
if (rt2x00_rt(rt2x00dev, RT3290) ||
|
|
rt2x00_rt(rt2x00dev, RT5390) ||
|
|
rt2x00_rt(rt2x00dev, RT5392))
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &rf);
|
|
else
|
|
rf = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
|
|
|
|
switch (rf) {
|
|
case RF2820:
|
|
case RF2850:
|
|
case RF2720:
|
|
case RF2750:
|
|
case RF3020:
|
|
case RF2020:
|
|
case RF3021:
|
|
case RF3022:
|
|
case RF3052:
|
|
case RF3053:
|
|
case RF3070:
|
|
case RF3290:
|
|
case RF3320:
|
|
case RF3322:
|
|
case RF5360:
|
|
case RF5370:
|
|
case RF5372:
|
|
case RF5390:
|
|
case RF5392:
|
|
case RF5592:
|
|
break;
|
|
default:
|
|
rt2x00_err(rt2x00dev, "Invalid RF chipset 0x%04x detected\n",
|
|
rf);
|
|
return -ENODEV;
|
|
}
|
|
|
|
rt2x00_set_rf(rt2x00dev, rf);
|
|
|
|
/*
|
|
* Identify default antenna configuration.
|
|
*/
|
|
rt2x00dev->default_ant.tx_chain_num =
|
|
rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
|
|
rt2x00dev->default_ant.rx_chain_num =
|
|
rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
|
|
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3070) ||
|
|
rt2x00_rt(rt2x00dev, RT3090) ||
|
|
rt2x00_rt(rt2x00dev, RT3352) ||
|
|
rt2x00_rt(rt2x00dev, RT3390)) {
|
|
value = rt2x00_get_field16(eeprom,
|
|
EEPROM_NIC_CONF1_ANT_DIVERSITY);
|
|
switch (value) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
rt2x00dev->default_ant.tx = ANTENNA_A;
|
|
rt2x00dev->default_ant.rx = ANTENNA_A;
|
|
break;
|
|
case 3:
|
|
rt2x00dev->default_ant.tx = ANTENNA_A;
|
|
rt2x00dev->default_ant.rx = ANTENNA_B;
|
|
break;
|
|
}
|
|
} else {
|
|
rt2x00dev->default_ant.tx = ANTENNA_A;
|
|
rt2x00dev->default_ant.rx = ANTENNA_A;
|
|
}
|
|
|
|
if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
|
|
rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; /* Unused */
|
|
rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; /* Unused */
|
|
}
|
|
|
|
/*
|
|
* Determine external LNA informations.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
|
|
__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
|
|
__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Detect if this device has an hardware controlled radio.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
|
|
__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Detect if this device has Bluetooth co-existence.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
|
|
__set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Read frequency offset and RF programming sequence.
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
|
|
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
|
|
|
|
/*
|
|
* Store led settings, for correct led behaviour.
|
|
*/
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
|
|
rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
|
|
|
|
rt2x00dev->led_mcu_reg = eeprom;
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
/*
|
|
* Check if support EIRP tx power limit feature.
|
|
*/
|
|
rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
|
|
|
|
if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
|
|
EIRP_MAX_TX_POWER_LIMIT)
|
|
__set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RF value list for rt28xx
|
|
* Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
|
|
*/
|
|
static const struct rf_channel rf_vals[] = {
|
|
{ 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
|
|
{ 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
|
|
{ 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
|
|
{ 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
|
|
{ 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
|
|
{ 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
|
|
{ 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
|
|
{ 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
|
|
{ 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
|
|
{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
|
|
{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
|
|
{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
|
|
{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
|
|
{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
|
|
{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
|
|
{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
|
|
{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
|
|
{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
|
|
{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
|
|
{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
|
|
{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
|
|
{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
|
|
{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
|
|
{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
|
|
{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
|
|
{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
|
|
{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
|
|
{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
|
|
{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
|
|
{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
|
|
{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
|
|
{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
|
|
{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
|
|
{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
|
|
{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
|
|
{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
|
|
{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
|
|
{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
|
|
{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
|
|
{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
|
|
|
|
/* 802.11 UNII */
|
|
{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
|
|
{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
|
|
{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
|
|
{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
|
|
{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
|
|
{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
|
|
{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
|
|
{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
|
|
{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
|
|
{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
|
|
{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
|
|
|
|
/* 802.11 Japan */
|
|
{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
|
|
{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
|
|
{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
|
|
{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
|
|
{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
|
|
{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
|
|
{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for rt3xxx
|
|
* Supports: 2.4 GHz (all) & 5.2 GHz (RF3052 & RF3053)
|
|
*/
|
|
static const struct rf_channel rf_vals_3x[] = {
|
|
{1, 241, 2, 2 },
|
|
{2, 241, 2, 7 },
|
|
{3, 242, 2, 2 },
|
|
{4, 242, 2, 7 },
|
|
{5, 243, 2, 2 },
|
|
{6, 243, 2, 7 },
|
|
{7, 244, 2, 2 },
|
|
{8, 244, 2, 7 },
|
|
{9, 245, 2, 2 },
|
|
{10, 245, 2, 7 },
|
|
{11, 246, 2, 2 },
|
|
{12, 246, 2, 7 },
|
|
{13, 247, 2, 2 },
|
|
{14, 248, 2, 4 },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{36, 0x56, 0, 4},
|
|
{38, 0x56, 0, 6},
|
|
{40, 0x56, 0, 8},
|
|
{44, 0x57, 0, 0},
|
|
{46, 0x57, 0, 2},
|
|
{48, 0x57, 0, 4},
|
|
{52, 0x57, 0, 8},
|
|
{54, 0x57, 0, 10},
|
|
{56, 0x58, 0, 0},
|
|
{60, 0x58, 0, 4},
|
|
{62, 0x58, 0, 6},
|
|
{64, 0x58, 0, 8},
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{100, 0x5b, 0, 8},
|
|
{102, 0x5b, 0, 10},
|
|
{104, 0x5c, 0, 0},
|
|
{108, 0x5c, 0, 4},
|
|
{110, 0x5c, 0, 6},
|
|
{112, 0x5c, 0, 8},
|
|
{116, 0x5d, 0, 0},
|
|
{118, 0x5d, 0, 2},
|
|
{120, 0x5d, 0, 4},
|
|
{124, 0x5d, 0, 8},
|
|
{126, 0x5d, 0, 10},
|
|
{128, 0x5e, 0, 0},
|
|
{132, 0x5e, 0, 4},
|
|
{134, 0x5e, 0, 6},
|
|
{136, 0x5e, 0, 8},
|
|
{140, 0x5f, 0, 0},
|
|
|
|
/* 802.11 UNII */
|
|
{149, 0x5f, 0, 9},
|
|
{151, 0x5f, 0, 11},
|
|
{153, 0x60, 0, 1},
|
|
{157, 0x60, 0, 5},
|
|
{159, 0x60, 0, 7},
|
|
{161, 0x60, 0, 9},
|
|
{165, 0x61, 0, 1},
|
|
{167, 0x61, 0, 3},
|
|
{169, 0x61, 0, 5},
|
|
{171, 0x61, 0, 7},
|
|
{173, 0x61, 0, 9},
|
|
};
|
|
|
|
static const struct rf_channel rf_vals_5592_xtal20[] = {
|
|
/* Channel, N, K, mod, R */
|
|
{1, 482, 4, 10, 3},
|
|
{2, 483, 4, 10, 3},
|
|
{3, 484, 4, 10, 3},
|
|
{4, 485, 4, 10, 3},
|
|
{5, 486, 4, 10, 3},
|
|
{6, 487, 4, 10, 3},
|
|
{7, 488, 4, 10, 3},
|
|
{8, 489, 4, 10, 3},
|
|
{9, 490, 4, 10, 3},
|
|
{10, 491, 4, 10, 3},
|
|
{11, 492, 4, 10, 3},
|
|
{12, 493, 4, 10, 3},
|
|
{13, 494, 4, 10, 3},
|
|
{14, 496, 8, 10, 3},
|
|
{36, 172, 8, 12, 1},
|
|
{38, 173, 0, 12, 1},
|
|
{40, 173, 4, 12, 1},
|
|
{42, 173, 8, 12, 1},
|
|
{44, 174, 0, 12, 1},
|
|
{46, 174, 4, 12, 1},
|
|
{48, 174, 8, 12, 1},
|
|
{50, 175, 0, 12, 1},
|
|
{52, 175, 4, 12, 1},
|
|
{54, 175, 8, 12, 1},
|
|
{56, 176, 0, 12, 1},
|
|
{58, 176, 4, 12, 1},
|
|
{60, 176, 8, 12, 1},
|
|
{62, 177, 0, 12, 1},
|
|
{64, 177, 4, 12, 1},
|
|
{100, 183, 4, 12, 1},
|
|
{102, 183, 8, 12, 1},
|
|
{104, 184, 0, 12, 1},
|
|
{106, 184, 4, 12, 1},
|
|
{108, 184, 8, 12, 1},
|
|
{110, 185, 0, 12, 1},
|
|
{112, 185, 4, 12, 1},
|
|
{114, 185, 8, 12, 1},
|
|
{116, 186, 0, 12, 1},
|
|
{118, 186, 4, 12, 1},
|
|
{120, 186, 8, 12, 1},
|
|
{122, 187, 0, 12, 1},
|
|
{124, 187, 4, 12, 1},
|
|
{126, 187, 8, 12, 1},
|
|
{128, 188, 0, 12, 1},
|
|
{130, 188, 4, 12, 1},
|
|
{132, 188, 8, 12, 1},
|
|
{134, 189, 0, 12, 1},
|
|
{136, 189, 4, 12, 1},
|
|
{138, 189, 8, 12, 1},
|
|
{140, 190, 0, 12, 1},
|
|
{149, 191, 6, 12, 1},
|
|
{151, 191, 10, 12, 1},
|
|
{153, 192, 2, 12, 1},
|
|
{155, 192, 6, 12, 1},
|
|
{157, 192, 10, 12, 1},
|
|
{159, 193, 2, 12, 1},
|
|
{161, 193, 6, 12, 1},
|
|
{165, 194, 2, 12, 1},
|
|
{184, 164, 0, 12, 1},
|
|
{188, 164, 4, 12, 1},
|
|
{192, 165, 8, 12, 1},
|
|
{196, 166, 0, 12, 1},
|
|
};
|
|
|
|
static const struct rf_channel rf_vals_5592_xtal40[] = {
|
|
/* Channel, N, K, mod, R */
|
|
{1, 241, 2, 10, 3},
|
|
{2, 241, 7, 10, 3},
|
|
{3, 242, 2, 10, 3},
|
|
{4, 242, 7, 10, 3},
|
|
{5, 243, 2, 10, 3},
|
|
{6, 243, 7, 10, 3},
|
|
{7, 244, 2, 10, 3},
|
|
{8, 244, 7, 10, 3},
|
|
{9, 245, 2, 10, 3},
|
|
{10, 245, 7, 10, 3},
|
|
{11, 246, 2, 10, 3},
|
|
{12, 246, 7, 10, 3},
|
|
{13, 247, 2, 10, 3},
|
|
{14, 248, 4, 10, 3},
|
|
{36, 86, 4, 12, 1},
|
|
{38, 86, 6, 12, 1},
|
|
{40, 86, 8, 12, 1},
|
|
{42, 86, 10, 12, 1},
|
|
{44, 87, 0, 12, 1},
|
|
{46, 87, 2, 12, 1},
|
|
{48, 87, 4, 12, 1},
|
|
{50, 87, 6, 12, 1},
|
|
{52, 87, 8, 12, 1},
|
|
{54, 87, 10, 12, 1},
|
|
{56, 88, 0, 12, 1},
|
|
{58, 88, 2, 12, 1},
|
|
{60, 88, 4, 12, 1},
|
|
{62, 88, 6, 12, 1},
|
|
{64, 88, 8, 12, 1},
|
|
{100, 91, 8, 12, 1},
|
|
{102, 91, 10, 12, 1},
|
|
{104, 92, 0, 12, 1},
|
|
{106, 92, 2, 12, 1},
|
|
{108, 92, 4, 12, 1},
|
|
{110, 92, 6, 12, 1},
|
|
{112, 92, 8, 12, 1},
|
|
{114, 92, 10, 12, 1},
|
|
{116, 93, 0, 12, 1},
|
|
{118, 93, 2, 12, 1},
|
|
{120, 93, 4, 12, 1},
|
|
{122, 93, 6, 12, 1},
|
|
{124, 93, 8, 12, 1},
|
|
{126, 93, 10, 12, 1},
|
|
{128, 94, 0, 12, 1},
|
|
{130, 94, 2, 12, 1},
|
|
{132, 94, 4, 12, 1},
|
|
{134, 94, 6, 12, 1},
|
|
{136, 94, 8, 12, 1},
|
|
{138, 94, 10, 12, 1},
|
|
{140, 95, 0, 12, 1},
|
|
{149, 95, 9, 12, 1},
|
|
{151, 95, 11, 12, 1},
|
|
{153, 96, 1, 12, 1},
|
|
{155, 96, 3, 12, 1},
|
|
{157, 96, 5, 12, 1},
|
|
{159, 96, 7, 12, 1},
|
|
{161, 96, 9, 12, 1},
|
|
{165, 97, 1, 12, 1},
|
|
{184, 82, 0, 12, 1},
|
|
{188, 82, 4, 12, 1},
|
|
{192, 82, 8, 12, 1},
|
|
{196, 83, 0, 12, 1},
|
|
};
|
|
|
|
static int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
struct channel_info *info;
|
|
char *default_power1;
|
|
char *default_power2;
|
|
char *default_power3;
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Disable powersaving as default.
|
|
*/
|
|
rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
|
|
|
|
/*
|
|
* Initialize all hw fields.
|
|
*/
|
|
rt2x00dev->hw->flags =
|
|
IEEE80211_HW_SIGNAL_DBM |
|
|
IEEE80211_HW_SUPPORTS_PS |
|
|
IEEE80211_HW_PS_NULLFUNC_STACK |
|
|
IEEE80211_HW_AMPDU_AGGREGATION |
|
|
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
|
|
IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
|
|
|
|
/*
|
|
* Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
|
|
* unless we are capable of sending the buffered frames out after the
|
|
* DTIM transmission using rt2x00lib_beacondone. This will send out
|
|
* multicast and broadcast traffic immediately instead of buffering it
|
|
* infinitly and thus dropping it after some time.
|
|
*/
|
|
if (!rt2x00_is_usb(rt2x00dev))
|
|
rt2x00dev->hw->flags |=
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
|
|
|
|
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
|
|
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
|
|
rt2800_eeprom_addr(rt2x00dev,
|
|
EEPROM_MAC_ADDR_0));
|
|
|
|
/*
|
|
* As rt2800 has a global fallback table we cannot specify
|
|
* more then one tx rate per frame but since the hw will
|
|
* try several rates (based on the fallback table) we should
|
|
* initialize max_report_rates to the maximum number of rates
|
|
* we are going to try. Otherwise mac80211 will truncate our
|
|
* reported tx rates and the rc algortihm will end up with
|
|
* incorrect data.
|
|
*/
|
|
rt2x00dev->hw->max_rates = 1;
|
|
rt2x00dev->hw->max_report_rates = 7;
|
|
rt2x00dev->hw->max_rate_tries = 1;
|
|
|
|
/*
|
|
* Initialize hw_mode information.
|
|
*/
|
|
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
|
|
|
|
switch (rt2x00dev->chip.rf) {
|
|
case RF2720:
|
|
case RF2820:
|
|
spec->num_channels = 14;
|
|
spec->channels = rf_vals;
|
|
break;
|
|
|
|
case RF2750:
|
|
case RF2850:
|
|
spec->num_channels = ARRAY_SIZE(rf_vals);
|
|
spec->channels = rf_vals;
|
|
break;
|
|
|
|
case RF2020:
|
|
case RF3020:
|
|
case RF3021:
|
|
case RF3022:
|
|
case RF3070:
|
|
case RF3290:
|
|
case RF3320:
|
|
case RF3322:
|
|
case RF5360:
|
|
case RF5370:
|
|
case RF5372:
|
|
case RF5390:
|
|
case RF5392:
|
|
spec->num_channels = 14;
|
|
spec->channels = rf_vals_3x;
|
|
break;
|
|
|
|
case RF3052:
|
|
case RF3053:
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_3x);
|
|
spec->channels = rf_vals_3x;
|
|
break;
|
|
|
|
case RF5592:
|
|
rt2800_register_read(rt2x00dev, MAC_DEBUG_INDEX, ®);
|
|
if (rt2x00_get_field32(reg, MAC_DEBUG_INDEX_XTAL)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal40);
|
|
spec->channels = rf_vals_5592_xtal40;
|
|
} else {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal20);
|
|
spec->channels = rf_vals_5592_xtal20;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!spec->channels))
|
|
return -ENODEV;
|
|
|
|
spec->supported_bands = SUPPORT_BAND_2GHZ;
|
|
if (spec->num_channels > 14)
|
|
spec->supported_bands |= SUPPORT_BAND_5GHZ;
|
|
|
|
/*
|
|
* Initialize HT information.
|
|
*/
|
|
if (!rt2x00_rf(rt2x00dev, RF2020))
|
|
spec->ht.ht_supported = true;
|
|
else
|
|
spec->ht.ht_supported = false;
|
|
|
|
spec->ht.cap =
|
|
IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
|
|
IEEE80211_HT_CAP_GRN_FLD |
|
|
IEEE80211_HT_CAP_SGI_20 |
|
|
IEEE80211_HT_CAP_SGI_40;
|
|
|
|
if (rt2x00dev->default_ant.tx_chain_num >= 2)
|
|
spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
|
|
|
|
spec->ht.cap |= rt2x00dev->default_ant.rx_chain_num <<
|
|
IEEE80211_HT_CAP_RX_STBC_SHIFT;
|
|
|
|
spec->ht.ampdu_factor = 3;
|
|
spec->ht.ampdu_density = 4;
|
|
spec->ht.mcs.tx_params =
|
|
IEEE80211_HT_MCS_TX_DEFINED |
|
|
IEEE80211_HT_MCS_TX_RX_DIFF |
|
|
((rt2x00dev->default_ant.tx_chain_num - 1) <<
|
|
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
|
|
|
|
switch (rt2x00dev->default_ant.rx_chain_num) {
|
|
case 3:
|
|
spec->ht.mcs.rx_mask[2] = 0xff;
|
|
case 2:
|
|
spec->ht.mcs.rx_mask[1] = 0xff;
|
|
case 1:
|
|
spec->ht.mcs.rx_mask[0] = 0xff;
|
|
spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Create channel information array
|
|
*/
|
|
info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
spec->channels_info = info;
|
|
|
|
default_power1 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
|
|
default_power2 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
|
|
|
|
if (rt2x00dev->default_ant.tx_chain_num > 2)
|
|
default_power3 = rt2800_eeprom_addr(rt2x00dev,
|
|
EEPROM_EXT_TXPOWER_BG3);
|
|
else
|
|
default_power3 = NULL;
|
|
|
|
for (i = 0; i < 14; i++) {
|
|
info[i].default_power1 = default_power1[i];
|
|
info[i].default_power2 = default_power2[i];
|
|
if (default_power3)
|
|
info[i].default_power3 = default_power3[i];
|
|
}
|
|
|
|
if (spec->num_channels > 14) {
|
|
default_power1 = rt2800_eeprom_addr(rt2x00dev,
|
|
EEPROM_TXPOWER_A1);
|
|
default_power2 = rt2800_eeprom_addr(rt2x00dev,
|
|
EEPROM_TXPOWER_A2);
|
|
|
|
if (rt2x00dev->default_ant.tx_chain_num > 2)
|
|
default_power3 =
|
|
rt2800_eeprom_addr(rt2x00dev,
|
|
EEPROM_EXT_TXPOWER_A3);
|
|
else
|
|
default_power3 = NULL;
|
|
|
|
for (i = 14; i < spec->num_channels; i++) {
|
|
info[i].default_power1 = default_power1[i - 14];
|
|
info[i].default_power2 = default_power2[i - 14];
|
|
if (default_power3)
|
|
info[i].default_power3 = default_power3[i - 14];
|
|
}
|
|
}
|
|
|
|
switch (rt2x00dev->chip.rf) {
|
|
case RF2020:
|
|
case RF3020:
|
|
case RF3021:
|
|
case RF3022:
|
|
case RF3320:
|
|
case RF3052:
|
|
case RF3053:
|
|
case RF3070:
|
|
case RF3290:
|
|
case RF5360:
|
|
case RF5370:
|
|
case RF5372:
|
|
case RF5390:
|
|
case RF5392:
|
|
__set_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2800_probe_rt(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u32 rt;
|
|
u32 rev;
|
|
|
|
if (rt2x00_rt(rt2x00dev, RT3290))
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0_3290, ®);
|
|
else
|
|
rt2800_register_read(rt2x00dev, MAC_CSR0, ®);
|
|
|
|
rt = rt2x00_get_field32(reg, MAC_CSR0_CHIPSET);
|
|
rev = rt2x00_get_field32(reg, MAC_CSR0_REVISION);
|
|
|
|
switch (rt) {
|
|
case RT2860:
|
|
case RT2872:
|
|
case RT2883:
|
|
case RT3070:
|
|
case RT3071:
|
|
case RT3090:
|
|
case RT3290:
|
|
case RT3352:
|
|
case RT3390:
|
|
case RT3572:
|
|
case RT3593:
|
|
case RT5390:
|
|
case RT5392:
|
|
case RT5592:
|
|
break;
|
|
default:
|
|
rt2x00_err(rt2x00dev, "Invalid RT chipset 0x%04x, rev %04x detected\n",
|
|
rt, rev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
rt2x00_set_rt(rt2x00dev, rt, rev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
u32 reg;
|
|
|
|
retval = rt2800_probe_rt(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Allocate eeprom data.
|
|
*/
|
|
retval = rt2800_validate_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = rt2800_init_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Enable rfkill polling by setting GPIO direction of the
|
|
* rfkill switch GPIO pin correctly.
|
|
*/
|
|
rt2800_register_read(rt2x00dev, GPIO_CTRL, ®);
|
|
rt2x00_set_field32(®, GPIO_CTRL_DIR2, 1);
|
|
rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
|
|
|
|
/*
|
|
* Initialize hw specifications.
|
|
*/
|
|
retval = rt2800_probe_hw_mode(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Set device capabilities.
|
|
*/
|
|
__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
|
|
__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
|
|
if (!rt2x00_is_usb(rt2x00dev))
|
|
__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Set device requirements.
|
|
*/
|
|
if (!rt2x00_is_soc(rt2x00dev))
|
|
__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
|
|
if (!rt2800_hwcrypt_disabled(rt2x00dev))
|
|
__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
|
|
__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
|
|
if (rt2x00_is_usb(rt2x00dev))
|
|
__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
|
|
else {
|
|
__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
|
|
}
|
|
|
|
/*
|
|
* Set the rssi offset.
|
|
*/
|
|
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_probe_hw);
|
|
|
|
/*
|
|
* IEEE80211 stack callback functions.
|
|
*/
|
|
void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
|
|
u16 *iv16)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct mac_iveiv_entry iveiv_entry;
|
|
u32 offset;
|
|
|
|
offset = MAC_IVEIV_ENTRY(hw_key_idx);
|
|
rt2800_register_multiread(rt2x00dev, offset,
|
|
&iveiv_entry, sizeof(iveiv_entry));
|
|
|
|
memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
|
|
memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
|
|
|
|
int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u32 reg;
|
|
bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
|
|
|
|
rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®);
|
|
rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value);
|
|
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®);
|
|
rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled);
|
|
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
|
|
|
|
int rt2800_conf_tx(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif, u16 queue_idx,
|
|
const struct ieee80211_tx_queue_params *params)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct data_queue *queue;
|
|
struct rt2x00_field32 field;
|
|
int retval;
|
|
u32 reg;
|
|
u32 offset;
|
|
|
|
/*
|
|
* First pass the configuration through rt2x00lib, that will
|
|
* update the queue settings and validate the input. After that
|
|
* we are free to update the registers based on the value
|
|
* in the queue parameter.
|
|
*/
|
|
retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* We only need to perform additional register initialization
|
|
* for WMM queues/
|
|
*/
|
|
if (queue_idx >= 4)
|
|
return 0;
|
|
|
|
queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
|
|
|
|
/* Update WMM TXOP register */
|
|
offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
|
|
field.bit_offset = (queue_idx & 1) * 16;
|
|
field.bit_mask = 0xffff << field.bit_offset;
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, field, queue->txop);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
/* Update WMM registers */
|
|
field.bit_offset = queue_idx * 4;
|
|
field.bit_mask = 0xf << field.bit_offset;
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->aifs);
|
|
rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->cw_min);
|
|
rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
|
|
|
|
rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®);
|
|
rt2x00_set_field32(®, field, queue->cw_max);
|
|
rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
|
|
|
|
/* Update EDCA registers */
|
|
offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
|
|
|
|
rt2800_register_read(rt2x00dev, offset, ®);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min);
|
|
rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max);
|
|
rt2800_register_write(rt2x00dev, offset, reg);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_conf_tx);
|
|
|
|
u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u64 tsf;
|
|
u32 reg;
|
|
|
|
rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®);
|
|
tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
|
|
rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®);
|
|
tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
|
|
|
|
return tsf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_get_tsf);
|
|
|
|
int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
|
|
enum ieee80211_ampdu_mlme_action action,
|
|
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
|
|
u8 buf_size)
|
|
{
|
|
struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Don't allow aggregation for stations the hardware isn't aware
|
|
* of because tx status reports for frames to an unknown station
|
|
* always contain wcid=255 and thus we can't distinguish between
|
|
* multiple stations which leads to unwanted situations when the
|
|
* hw reorders frames due to aggregation.
|
|
*/
|
|
if (sta_priv->wcid < 0)
|
|
return 1;
|
|
|
|
switch (action) {
|
|
case IEEE80211_AMPDU_RX_START:
|
|
case IEEE80211_AMPDU_RX_STOP:
|
|
/*
|
|
* The hw itself takes care of setting up BlockAck mechanisms.
|
|
* So, we only have to allow mac80211 to nagotiate a BlockAck
|
|
* agreement. Once that is done, the hw will BlockAck incoming
|
|
* AMPDUs without further setup.
|
|
*/
|
|
break;
|
|
case IEEE80211_AMPDU_TX_START:
|
|
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_STOP_CONT:
|
|
case IEEE80211_AMPDU_TX_STOP_FLUSH:
|
|
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
|
|
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_OPERATIONAL:
|
|
break;
|
|
default:
|
|
rt2x00_warn((struct rt2x00_dev *)hw->priv,
|
|
"Unknown AMPDU action\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
|
|
|
|
int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
|
|
struct survey_info *survey)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
u32 idle, busy, busy_ext;
|
|
|
|
if (idx != 0)
|
|
return -ENOENT;
|
|
|
|
survey->channel = conf->chandef.chan;
|
|
|
|
rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
|
|
rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
|
|
rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
|
|
|
|
if (idle || busy) {
|
|
survey->filled = SURVEY_INFO_CHANNEL_TIME |
|
|
SURVEY_INFO_CHANNEL_TIME_BUSY |
|
|
SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
|
|
|
|
survey->channel_time = (idle + busy) / 1000;
|
|
survey->channel_time_busy = busy / 1000;
|
|
survey->channel_time_ext_busy = busy_ext / 1000;
|
|
}
|
|
|
|
if (!(hw->conf.flags & IEEE80211_CONF_OFFCHANNEL))
|
|
survey->filled |= SURVEY_INFO_IN_USE;
|
|
|
|
return 0;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2800_get_survey);
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("Ralink RT2800 library");
|
|
MODULE_LICENSE("GPL");
|