linux/drivers/gpu/drm/i915/intel_runtime_pm.c

2341 lines
69 KiB
C

/*
* Copyright © 2012-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#include <linux/pm_runtime.h>
#include <linux/vgaarb.h>
#include "i915_drv.h"
#include "intel_drv.h"
/**
* DOC: runtime pm
*
* The i915 driver supports dynamic enabling and disabling of entire hardware
* blocks at runtime. This is especially important on the display side where
* software is supposed to control many power gates manually on recent hardware,
* since on the GT side a lot of the power management is done by the hardware.
* But even there some manual control at the device level is required.
*
* Since i915 supports a diverse set of platforms with a unified codebase and
* hardware engineers just love to shuffle functionality around between power
* domains there's a sizeable amount of indirection required. This file provides
* generic functions to the driver for grabbing and releasing references for
* abstract power domains. It then maps those to the actual power wells
* present for a given platform.
*/
#define for_each_power_well(i, power_well, domain_mask, power_domains) \
for (i = 0; \
i < (power_domains)->power_well_count && \
((power_well) = &(power_domains)->power_wells[i]); \
i++) \
for_each_if ((power_well)->domains & (domain_mask))
#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
for (i = (power_domains)->power_well_count - 1; \
i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
i--) \
for_each_if ((power_well)->domains & (domain_mask))
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
int power_well_id);
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
switch (domain) {
case POWER_DOMAIN_PIPE_A:
return "PIPE_A";
case POWER_DOMAIN_PIPE_B:
return "PIPE_B";
case POWER_DOMAIN_PIPE_C:
return "PIPE_C";
case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
return "PIPE_A_PANEL_FITTER";
case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
return "PIPE_B_PANEL_FITTER";
case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
return "PIPE_C_PANEL_FITTER";
case POWER_DOMAIN_TRANSCODER_A:
return "TRANSCODER_A";
case POWER_DOMAIN_TRANSCODER_B:
return "TRANSCODER_B";
case POWER_DOMAIN_TRANSCODER_C:
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_PORT_DDI_A_LANES:
return "PORT_DDI_A_LANES";
case POWER_DOMAIN_PORT_DDI_B_LANES:
return "PORT_DDI_B_LANES";
case POWER_DOMAIN_PORT_DDI_C_LANES:
return "PORT_DDI_C_LANES";
case POWER_DOMAIN_PORT_DDI_D_LANES:
return "PORT_DDI_D_LANES";
case POWER_DOMAIN_PORT_DDI_E_LANES:
return "PORT_DDI_E_LANES";
case POWER_DOMAIN_PORT_DSI:
return "PORT_DSI";
case POWER_DOMAIN_PORT_CRT:
return "PORT_CRT";
case POWER_DOMAIN_PORT_OTHER:
return "PORT_OTHER";
case POWER_DOMAIN_VGA:
return "VGA";
case POWER_DOMAIN_AUDIO:
return "AUDIO";
case POWER_DOMAIN_PLLS:
return "PLLS";
case POWER_DOMAIN_AUX_A:
return "AUX_A";
case POWER_DOMAIN_AUX_B:
return "AUX_B";
case POWER_DOMAIN_AUX_C:
return "AUX_C";
case POWER_DOMAIN_AUX_D:
return "AUX_D";
case POWER_DOMAIN_GMBUS:
return "GMBUS";
case POWER_DOMAIN_INIT:
return "INIT";
case POWER_DOMAIN_MODESET:
return "MODESET";
default:
MISSING_CASE(domain);
return "?";
}
}
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->hw_enabled = false;
power_well->ops->disable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return I915_READ(HSW_PWR_WELL_DRIVER) ==
(HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}
/**
* __intel_display_power_is_enabled - unlocked check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This is the unlocked version of intel_display_power_is_enabled() and should
* only be used from error capture and recovery code where deadlocks are
* possible.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
bool is_enabled;
int i;
if (dev_priv->pm.suspended)
return false;
power_domains = &dev_priv->power_domains;
is_enabled = true;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
if (power_well->always_on)
continue;
if (!power_well->hw_enabled) {
is_enabled = false;
break;
}
}
return is_enabled;
}
/**
* intel_display_power_is_enabled - check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This function can be used to check the hw power domain state. It is mostly
* used in hardware state readout functions. Everywhere else code should rely
* upon explicit power domain reference counting to ensure that the hardware
* block is powered up before accessing it.
*
* Callers must hold the relevant modesetting locks to ensure that concurrent
* threads can't disable the power well while the caller tries to read a few
* registers.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = __intel_display_power_is_enabled(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
/**
* intel_display_set_init_power - set the initial power domain state
* @dev_priv: i915 device instance
* @enable: whether to enable or disable the initial power domain state
*
* For simplicity our driver load/unload and system suspend/resume code assumes
* that all power domains are always enabled. This functions controls the state
* of this little hack. While the initial power domain state is enabled runtime
* pm is effectively disabled.
*/
void intel_display_set_init_power(struct drm_i915_private *dev_priv,
bool enable)
{
if (dev_priv->power_domains.init_power_on == enable)
return;
if (enable)
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
else
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
dev_priv->power_domains.init_power_on = enable;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
if (IS_BROADWELL(dev))
gen8_irq_power_well_post_enable(dev_priv,
1 << PIPE_C | 1 << PIPE_B);
}
static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
struct drm_device *dev = dev_priv->dev;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
if (power_well->data == SKL_DISP_PW_2) {
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
gen8_irq_power_well_post_enable(dev_priv,
1 << PIPE_C | 1 << PIPE_B);
}
}
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
bool is_enabled, enable_requested;
uint32_t tmp;
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
if (enable) {
if (!enable_requested)
I915_WRITE(HSW_PWR_WELL_DRIVER,
HSW_PWR_WELL_ENABLE_REQUEST);
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling power well\n");
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
HSW_PWR_WELL_STATE_ENABLED), 20))
DRM_ERROR("Timeout enabling power well\n");
hsw_power_well_post_enable(dev_priv);
}
} else {
if (enable_requested) {
I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Requesting to disable the power well\n");
}
}
}
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_TRANSCODER_A) | \
BIT(POWER_DOMAIN_PIPE_B) | \
BIT(POWER_DOMAIN_TRANSCODER_B) | \
BIT(POWER_DOMAIN_PIPE_C) | \
BIT(POWER_DOMAIN_TRANSCODER_C) | \
BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_AUDIO) | \
BIT(POWER_DOMAIN_VGA) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_MODESET) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~( \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_TRANSCODER_A) | \
BIT(POWER_DOMAIN_PIPE_B) | \
BIT(POWER_DOMAIN_TRANSCODER_B) | \
BIT(POWER_DOMAIN_PIPE_C) | \
BIT(POWER_DOMAIN_TRANSCODER_C) | \
BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUDIO) | \
BIT(POWER_DOMAIN_VGA) | \
BIT(POWER_DOMAIN_GMBUS) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_MODESET) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
BIT(POWER_DOMAIN_INIT))
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be enabled.\n");
WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled to enable DC9.\n");
WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
/*
* TODO: check for the following to verify the conditions to enter DC9
* state are satisfied:
* 1] Check relevant display engine registers to verify if mode set
* disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be disabled.\n");
WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
/*
* TODO: check for the following to verify DC9 state was indeed
* entered before programming to disable it:
* 1] Check relevant display engine registers to verify if mode
* set disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void gen9_set_dc_state_debugmask_memory_up(
struct drm_i915_private *dev_priv)
{
uint32_t val;
/* The below bit doesn't need to be cleared ever afterwards */
val = I915_READ(DC_STATE_DEBUG);
if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
I915_WRITE(DC_STATE_DEBUG, val);
POSTING_READ(DC_STATE_DEBUG);
}
}
static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
{
uint32_t val;
uint32_t mask;
mask = DC_STATE_EN_UPTO_DC5;
if (IS_BROXTON(dev_priv))
mask |= DC_STATE_EN_DC9;
else
mask |= DC_STATE_EN_UPTO_DC6;
WARN_ON_ONCE(state & ~mask);
if (i915.enable_dc == 0)
state = DC_STATE_DISABLE;
else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
state = DC_STATE_EN_UPTO_DC5;
if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
gen9_set_dc_state_debugmask_memory_up(dev_priv);
val = I915_READ(DC_STATE_EN);
DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
val & mask, state);
val &= ~mask;
val |= state;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
}
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc9(dev_priv);
DRM_DEBUG_KMS("Enabling DC9\n");
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}
void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc9(dev_priv);
DRM_DEBUG_KMS("Disabling DC9\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}
static void assert_csr_loaded(struct drm_i915_private *dev_priv)
{
WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
"CSR program storage start is NULL\n");
WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
}
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
SKL_DISP_PW_2);
WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
"Platform doesn't support DC5.\n");
WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
"DC5 already programmed to be enabled.\n");
assert_rpm_wakelock_held(dev_priv);
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
{
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
assert_rpm_wakelock_held(dev_priv);
}
static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc5(dev_priv);
DRM_DEBUG_KMS("Enabling DC5\n");
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
"Platform doesn't support DC6.\n");
WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Backlight is not disabled.\n");
WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be enabled.\n");
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
{
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be disabled.\n");
}
static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc5(dev_priv);
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 && i915.enable_dc != 1)
assert_can_disable_dc6(dev_priv);
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}
void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc6(dev_priv);
DRM_DEBUG_KMS("Enabling DC6\n");
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
}
void skl_disable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc6(dev_priv);
DRM_DEBUG_KMS("Disabling DC6\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}
static void skl_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
struct drm_device *dev = dev_priv->dev;
uint32_t tmp, fuse_status;
uint32_t req_mask, state_mask;
bool is_enabled, enable_requested, check_fuse_status = false;
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
fuse_status = I915_READ(SKL_FUSE_STATUS);
switch (power_well->data) {
case SKL_DISP_PW_1:
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG0_DIST_STATUS), 1)) {
DRM_ERROR("PG0 not enabled\n");
return;
}
break;
case SKL_DISP_PW_2:
if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
DRM_ERROR("PG1 in disabled state\n");
return;
}
break;
case SKL_DISP_PW_DDI_A_E:
case SKL_DISP_PW_DDI_B:
case SKL_DISP_PW_DDI_C:
case SKL_DISP_PW_DDI_D:
case SKL_DISP_PW_MISC_IO:
break;
default:
WARN(1, "Unknown power well %lu\n", power_well->data);
return;
}
req_mask = SKL_POWER_WELL_REQ(power_well->data);
enable_requested = tmp & req_mask;
state_mask = SKL_POWER_WELL_STATE(power_well->data);
is_enabled = tmp & state_mask;
if (enable) {
if (!enable_requested) {
WARN((tmp & state_mask) &&
!I915_READ(HSW_PWR_WELL_BIOS),
"Invalid for power well status to be enabled, unless done by the BIOS, \
when request is to disable!\n");
if (power_well->data == SKL_DISP_PW_2) {
/*
* DDI buffer programming unnecessary during
* driver-load/resume as it's already done
* during modeset initialization then. It's
* also invalid here as encoder list is still
* uninitialized.
*/
if (!dev_priv->power_domains.initializing)
intel_prepare_ddi(dev);
}
I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
}
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
state_mask), 1))
DRM_ERROR("%s enable timeout\n",
power_well->name);
check_fuse_status = true;
}
} else {
if (enable_requested) {
I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
}
}
if (check_fuse_status) {
if (power_well->data == SKL_DISP_PW_1) {
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG1_DIST_STATUS), 1))
DRM_ERROR("PG1 distributing status timeout\n");
} else if (power_well->data == SKL_DISP_PW_2) {
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG2_DIST_STATUS), 1))
DRM_ERROR("PG2 distributing status timeout\n");
}
}
if (enable && !is_enabled)
skl_power_well_post_enable(dev_priv, power_well);
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
/*
* We're taking over the BIOS, so clear any requests made by it since
* the driver is in charge now.
*/
if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, true);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, false);
}
static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
SKL_POWER_WELL_STATE(power_well->data);
return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
}
static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, power_well->count > 0);
/* Clear any request made by BIOS as driver is taking over */
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void skl_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, true);
}
static void skl_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, false);
}
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
}
static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
gen9_disable_dc5_dc6(dev_priv);
}
static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 && i915.enable_dc != 1)
skl_enable_dc6(dev_priv);
else
gen9_enable_dc5(dev_priv);
}
static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (power_well->count > 0) {
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
} else {
if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
i915.enable_dc != 0 &&
i915.enable_dc != 1)
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
else
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
enum punit_power_well power_well_id = power_well->data;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
PUNIT_PWRGT_PWR_GATE(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int power_well_id = power_well->data;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
state != PUNIT_PWRGT_PWR_GATE(power_well_id));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
WARN_ON(ctrl != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection. Supposedly DSI also
* needs the ref clock up and running.
*
* CHV DPLL B/C have some issues if VGA mode is enabled.
*/
for_each_pipe(dev_priv->dev, pipe) {
u32 val = I915_READ(DPLL(pipe));
val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
}
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->power_domains.initializing)
return;
intel_hpd_init(dev_priv);
i915_redisable_vga_power_on(dev_priv->dev);
}
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
vlv_power_sequencer_reset(dev_priv);
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_set_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_display_power_well_deinit(dev_priv);
vlv_set_power_well(dev_priv, power_well, false);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
vlv_set_power_well(dev_priv, power_well, false);
}
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
int power_well_id)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int i;
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
power_well = &power_domains->power_wells[i];
if (power_well->data == power_well_id)
return power_well;
}
return NULL;
}
#define BITS_SET(val, bits) (((val) & (bits)) == (bits))
static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
u32 phy_control = dev_priv->chv_phy_control;
u32 phy_status = 0;
u32 phy_status_mask = 0xffffffff;
u32 tmp;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[DPIO_PHY0])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
if (!dev_priv->chv_phy_assert[DPIO_PHY1])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY0);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
/* CL1 is on whenever anything is on in either channel */
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
/*
* The DPLLB check accounts for the pipe B + port A usage
* with CL2 powered up but all the lanes in the second channel
* powered down.
*/
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
(I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
}
if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY1);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
}
phy_status &= phy_status_mask;
/*
* The PHY may be busy with some initial calibration and whatnot,
* so the power state can take a while to actually change.
*/
if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
WARN(phy_status != tmp,
"Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
tmp, phy_status, dev_priv->chv_phy_control);
}
#undef BITS_SET
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
enum pipe pipe;
uint32_t tmp;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
pipe = PIPE_A;
phy = DPIO_PHY0;
} else {
pipe = PIPE_C;
phy = DPIO_PHY1;
}
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
DRM_ERROR("Display PHY %d is not power up\n", phy);
mutex_lock(&dev_priv->sb_lock);
/* Enable dynamic power down */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
tmp |= DPIO_DYNPWRDOWNEN_CH1;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
} else {
/*
* Force the non-existing CL2 off. BXT does this
* too, so maybe it saves some power even though
* CL2 doesn't exist?
*/
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
tmp |= DPIO_CL2_LDOFUSE_PWRENB;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
}
mutex_unlock(&dev_priv->sb_lock);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
vlv_set_power_well(dev_priv, power_well, false);
DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
/* PHY is fully reset now, so we can enable the PHY state asserts */
dev_priv->chv_phy_assert[phy] = true;
assert_chv_phy_status(dev_priv);
}
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override, unsigned int mask)
{
enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
u32 reg, val, expected, actual;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[phy])
return;
if (ch == DPIO_CH0)
reg = _CHV_CMN_DW0_CH0;
else
reg = _CHV_CMN_DW6_CH1;
mutex_lock(&dev_priv->sb_lock);
val = vlv_dpio_read(dev_priv, pipe, reg);
mutex_unlock(&dev_priv->sb_lock);
/*
* This assumes !override is only used when the port is disabled.
* All lanes should power down even without the override when
* the port is disabled.
*/
if (!override || mask == 0xf) {
expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
/*
* If CH1 common lane is not active anymore
* (eg. for pipe B DPLL) the entire channel will
* shut down, which causes the common lane registers
* to read as 0. That means we can't actually check
* the lane power down status bits, but as the entire
* register reads as 0 it's a good indication that the
* channel is indeed entirely powered down.
*/
if (ch == DPIO_CH1 && val == 0)
expected = 0;
} else if (mask != 0x0) {
expected = DPIO_ANYDL_POWERDOWN;
} else {
expected = 0;
}
if (ch == DPIO_CH0)
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
else
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
WARN(actual != expected,
"Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
!!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
!!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
reg, val);
}
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
bool was_override;
mutex_lock(&power_domains->lock);
was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
if (override == was_override)
goto out;
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
phy, ch, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
out:
mutex_unlock(&power_domains->lock);
return was_override;
}
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
mutex_lock(&power_domains->lock);
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
phy, ch, mask, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
mutex_unlock(&power_domains->lock);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = power_well->data;
bool enabled;
u32 state, ctrl;
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
WARN_ON(ctrl << 16 != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = power_well->data;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
chv_set_pipe_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
vlv_display_power_well_deinit(dev_priv);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
/**
* intel_display_power_get - grab a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
void intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
intel_runtime_pm_get(dev_priv);
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, BIT(domain), power_domains) {
if (!power_well->count++)
intel_power_well_enable(dev_priv, power_well);
}
power_domains->domain_use_count[domain]++;
mutex_unlock(&power_domains->lock);
}
/**
* intel_display_power_put - release a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*/
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
WARN(!power_domains->domain_use_count[domain],
"Use count on domain %s is already zero\n",
intel_display_power_domain_str(domain));
power_domains->domain_use_count[domain]--;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
WARN(!power_well->count,
"Use count on power well %s is already zero",
power_well->name);
if (!--power_well->count)
intel_power_well_disable(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
intel_runtime_pm_put(dev_priv);
}
#define HSW_ALWAYS_ON_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_GMBUS) | \
BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define BDW_ALWAYS_ON_POWER_DOMAINS ( \
HSW_ALWAYS_ON_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_INIT))
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_always_on_power_well_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = chv_pipe_power_well_sync_hw,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = 1,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_ops skl_power_well_ops = {
.sync_hw = skl_power_well_sync_hw,
.enable = skl_power_well_enable,
.disable = skl_power_well_disable,
.is_enabled = skl_power_well_enabled,
};
static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
.sync_hw = gen9_dc_off_power_well_sync_hw,
.enable = gen9_dc_off_power_well_enable,
.disable = gen9_dc_off_power_well_disable,
.is_enabled = gen9_dc_off_power_well_enabled,
};
static struct i915_power_well hsw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static struct i915_power_well bdw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well vlv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
.data = PUNIT_POWER_WELL_ALWAYS_ON,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DISP2D,
.ops = &vlv_display_power_well_ops,
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &vlv_dpio_cmn_power_well_ops,
},
};
static struct i915_power_well chv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
/*
* Pipe A power well is the new disp2d well. Pipe B and C
* power wells don't actually exist. Pipe A power well is
* required for any pipe to work.
*/
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PIPE_A,
.ops = &chv_pipe_power_well_ops,
},
{
.name = "dpio-common-bc",
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &chv_dpio_cmn_power_well_ops,
},
{
.name = "dpio-common-d",
.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_D,
.ops = &chv_dpio_cmn_power_well_ops,
},
};
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
int power_well_id)
{
struct i915_power_well *power_well;
bool ret;
power_well = lookup_power_well(dev_priv, power_well_id);
ret = power_well->ops->is_enabled(dev_priv, power_well);
return ret;
}
static struct i915_power_well skl_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
.data = SKL_DISP_PW_ALWAYS_ON,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.domains = 0,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_1,
},
{
.name = "MISC IO power well",
/* Handled by the DMC firmware */
.domains = 0,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_MISC_IO,
},
{
.name = "DC off",
.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.data = SKL_DISP_PW_DC_OFF,
},
{
.name = "power well 2",
.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_2,
},
{
.name = "DDI A/E power well",
.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_A_E,
},
{
.name = "DDI B power well",
.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_B,
},
{
.name = "DDI C power well",
.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_C,
},
{
.name = "DDI D power well",
.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_D,
},
};
void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *well;
if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
return;
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
intel_power_well_enable(dev_priv, well);
}
void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
{
struct i915_power_well *well;
if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
return;
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
intel_power_well_disable(dev_priv, well);
}
static struct i915_power_well bxt_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "power well 1",
.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_1,
},
{
.name = "DC off",
.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.data = SKL_DISP_PW_DC_OFF,
},
{
.name = "power well 2",
.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_2,
},
};
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
int disable_power_well)
{
if (disable_power_well >= 0)
return !!disable_power_well;
if (IS_BROXTON(dev_priv)) {
DRM_DEBUG_KMS("Disabling display power well support\n");
return 0;
}
return 1;
}
#define set_power_wells(power_domains, __power_wells) ({ \
(power_domains)->power_wells = (__power_wells); \
(power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
})
/**
* intel_power_domains_init - initializes the power domain structures
* @dev_priv: i915 device instance
*
* Initializes the power domain structures for @dev_priv depending upon the
* supported platform.
*/
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
i915.disable_power_well);
BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
mutex_init(&power_domains->lock);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (IS_HASWELL(dev_priv->dev)) {
set_power_wells(power_domains, hsw_power_wells);
} else if (IS_BROADWELL(dev_priv->dev)) {
set_power_wells(power_domains, bdw_power_wells);
} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
set_power_wells(power_domains, skl_power_wells);
} else if (IS_BROXTON(dev_priv->dev)) {
set_power_wells(power_domains, bxt_power_wells);
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, chv_power_wells);
} else if (IS_VALLEYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, vlv_power_wells);
} else {
set_power_wells(power_domains, i9xx_always_on_power_well);
}
return 0;
}
/**
* intel_power_domains_fini - finalizes the power domain structures
* @dev_priv: i915 device instance
*
* Finalizes the power domain structures for @dev_priv depending upon the
* supported platform. This function also disables runtime pm and ensures that
* the device stays powered up so that the driver can be reloaded.
*/
void intel_power_domains_fini(struct drm_i915_private *dev_priv)
{
struct device *device = &dev_priv->dev->pdev->dev;
/*
* The i915.ko module is still not prepared to be loaded when
* the power well is not enabled, so just enable it in case
* we're going to unload/reload.
* The following also reacquires the RPM reference the core passed
* to the driver during loading, which is dropped in
* intel_runtime_pm_enable(). We have to hand back the control of the
* device to the core with this reference held.
*/
intel_display_set_init_power(dev_priv, true);
/* Remove the refcount we took to keep power well support disabled. */
if (!i915.disable_power_well)
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
/*
* Remove the refcount we took in intel_runtime_pm_enable() in case
* the platform doesn't support runtime PM.
*/
if (!HAS_RUNTIME_PM(dev_priv))
pm_runtime_put(device);
}
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
power_well->ops->sync_hw(dev_priv, power_well);
power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
power_well);
}
mutex_unlock(&power_domains->lock);
}
static void skl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
uint32_t val;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* enable PCH reset handshake */
val = I915_READ(HSW_NDE_RSTWRN_OPT);
I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
/* enable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
skl_pw1_misc_io_init(dev_priv);
mutex_unlock(&power_domains->lock);
if (!resume)
return;
skl_init_cdclk(dev_priv);
if (dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
skl_uninit_cdclk(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/* disable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
skl_pw1_misc_io_fini(dev_priv);
mutex_unlock(&power_domains->lock);
}
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
/*
* DISPLAY_PHY_CONTROL can get corrupted if read. As a
* workaround never ever read DISPLAY_PHY_CONTROL, and
* instead maintain a shadow copy ourselves. Use the actual
* power well state and lane status to reconstruct the
* expected initial value.
*/
dev_priv->chv_phy_control =
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
/*
* If all lanes are disabled we leave the override disabled
* with all power down bits cleared to match the state we
* would use after disabling the port. Otherwise enable the
* override and set the lane powerdown bits accding to the
* current lane status.
*/
if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
uint32_t status = I915_READ(DPLL(PIPE_A));
unsigned int mask;
mask = status & DPLL_PORTB_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
mask = (status & DPLL_PORTC_READY_MASK) >> 4;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
dev_priv->chv_phy_assert[DPIO_PHY0] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY0] = true;
}
if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
uint32_t status = I915_READ(DPIO_PHY_STATUS);
unsigned int mask;
mask = status & DPLL_PORTD_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
dev_priv->chv_phy_assert[DPIO_PHY1] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY1] = true;
}
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
dev_priv->chv_phy_control);
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
/* If the display might be already active skip this */
if (cmn->ops->is_enabled(dev_priv, cmn) &&
disp2d->ops->is_enabled(dev_priv, disp2d) &&
I915_READ(DPIO_CTL) & DPIO_CMNRST)
return;
DRM_DEBUG_KMS("toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
disp2d->ops->enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
cmn->ops->disable(dev_priv, cmn);
}
/**
* intel_power_domains_init_hw - initialize hardware power domain state
* @dev_priv: i915 device instance
*
* This function initializes the hardware power domain state and enables all
* power domains using intel_display_set_init_power().
*/
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
{
struct drm_device *dev = dev_priv->dev;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
power_domains->initializing = true;
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
skl_display_core_init(dev_priv, resume);
} else if (IS_CHERRYVIEW(dev)) {
mutex_lock(&power_domains->lock);
chv_phy_control_init(dev_priv);
mutex_unlock(&power_domains->lock);
} else if (IS_VALLEYVIEW(dev)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(dev_priv);
mutex_unlock(&power_domains->lock);
}
/* For now, we need the power well to be always enabled. */
intel_display_set_init_power(dev_priv, true);
/* Disable power support if the user asked so. */
if (!i915.disable_power_well)
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
intel_power_domains_sync_hw(dev_priv);
power_domains->initializing = false;
}
/**
* intel_power_domains_suspend - suspend power domain state
* @dev_priv: i915 device instance
*
* This function prepares the hardware power domain state before entering
* system suspend. It must be paired with intel_power_domains_init_hw().
*/
void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
{
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
skl_display_core_uninit(dev_priv);
/*
* Even if power well support was disabled we still want to disable
* power wells while we are system suspended.
*/
if (!i915.disable_power_well)
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
}
/**
* intel_runtime_pm_get - grab a runtime pm reference
* @dev_priv: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on) and ensures that it is powered up.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*/
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
pm_runtime_get_sync(device);
atomic_inc(&dev_priv->pm.wakeref_count);
assert_rpm_wakelock_held(dev_priv);
}
/**
* intel_runtime_pm_get_noresume - grab a runtime pm reference
* @dev_priv: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on).
*
* It will _not_ power up the device but instead only check that it's powered
* on. Therefore it is only valid to call this functions from contexts where
* the device is known to be powered up and where trying to power it up would
* result in hilarity and deadlocks. That pretty much means only the system
* suspend/resume code where this is used to grab runtime pm references for
* delayed setup down in work items.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*/
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
assert_rpm_wakelock_held(dev_priv);
pm_runtime_get_noresume(device);
atomic_inc(&dev_priv->pm.wakeref_count);
}
/**
* intel_runtime_pm_put - release a runtime pm reference
* @dev_priv: i915 device instance
*
* This function drops the device-level runtime pm reference obtained by
* intel_runtime_pm_get() and might power down the corresponding
* hardware block right away if this is the last reference.
*/
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
assert_rpm_wakelock_held(dev_priv);
if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
atomic_inc(&dev_priv->pm.atomic_seq);
pm_runtime_mark_last_busy(device);
pm_runtime_put_autosuspend(device);
}
/**
* intel_runtime_pm_enable - enable runtime pm
* @dev_priv: i915 device instance
*
* This function enables runtime pm at the end of the driver load sequence.
*
* Note that this function does currently not enable runtime pm for the
* subordinate display power domains. That is only done on the first modeset
* using intel_display_set_init_power().
*/
void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
pm_runtime_mark_last_busy(device);
/*
* Take a permanent reference to disable the RPM functionality and drop
* it only when unloading the driver. Use the low level get/put helpers,
* so the driver's own RPM reference tracking asserts also work on
* platforms without RPM support.
*/
if (!HAS_RUNTIME_PM(dev)) {
pm_runtime_dont_use_autosuspend(device);
pm_runtime_get_sync(device);
} else {
pm_runtime_use_autosuspend(device);
}
/*
* The core calls the driver load handler with an RPM reference held.
* We drop that here and will reacquire it during unloading in
* intel_power_domains_fini().
*/
pm_runtime_put_autosuspend(device);
}