mirror of https://gitee.com/openkylin/linux.git
874 lines
22 KiB
C
874 lines
22 KiB
C
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
|
|
/* A BPF sock_map is used to store sock objects. This is primarly used
|
|
* for doing socket redirect with BPF helper routines.
|
|
*
|
|
* A sock map may have BPF programs attached to it, currently a program
|
|
* used to parse packets and a program to provide a verdict and redirect
|
|
* decision on the packet are supported. Any programs attached to a sock
|
|
* map are inherited by sock objects when they are added to the map. If
|
|
* no BPF programs are attached the sock object may only be used for sock
|
|
* redirect.
|
|
*
|
|
* A sock object may be in multiple maps, but can only inherit a single
|
|
* parse or verdict program. If adding a sock object to a map would result
|
|
* in having multiple parsing programs the update will return an EBUSY error.
|
|
*
|
|
* For reference this program is similar to devmap used in XDP context
|
|
* reviewing these together may be useful. For an example please review
|
|
* ./samples/bpf/sockmap/.
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <net/sock.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/file.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/net.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/list.h>
|
|
#include <net/strparser.h>
|
|
|
|
struct bpf_stab {
|
|
struct bpf_map map;
|
|
struct sock **sock_map;
|
|
struct bpf_prog *bpf_parse;
|
|
struct bpf_prog *bpf_verdict;
|
|
};
|
|
|
|
enum smap_psock_state {
|
|
SMAP_TX_RUNNING,
|
|
};
|
|
|
|
struct smap_psock_map_entry {
|
|
struct list_head list;
|
|
struct sock **entry;
|
|
};
|
|
|
|
struct smap_psock {
|
|
struct rcu_head rcu;
|
|
/* refcnt is used inside sk_callback_lock */
|
|
u32 refcnt;
|
|
|
|
/* datapath variables */
|
|
struct sk_buff_head rxqueue;
|
|
bool strp_enabled;
|
|
|
|
/* datapath error path cache across tx work invocations */
|
|
int save_rem;
|
|
int save_off;
|
|
struct sk_buff *save_skb;
|
|
|
|
struct strparser strp;
|
|
struct bpf_prog *bpf_parse;
|
|
struct bpf_prog *bpf_verdict;
|
|
struct list_head maps;
|
|
|
|
/* Back reference used when sock callback trigger sockmap operations */
|
|
struct sock *sock;
|
|
unsigned long state;
|
|
|
|
struct work_struct tx_work;
|
|
struct work_struct gc_work;
|
|
|
|
void (*save_data_ready)(struct sock *sk);
|
|
void (*save_write_space)(struct sock *sk);
|
|
void (*save_state_change)(struct sock *sk);
|
|
};
|
|
|
|
static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
|
|
{
|
|
return rcu_dereference_sk_user_data(sk);
|
|
}
|
|
|
|
static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
|
|
{
|
|
struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
|
|
int rc;
|
|
|
|
if (unlikely(!prog))
|
|
return SK_DROP;
|
|
|
|
skb_orphan(skb);
|
|
skb->sk = psock->sock;
|
|
bpf_compute_data_pointers(skb);
|
|
rc = (*prog->bpf_func)(skb, prog->insnsi);
|
|
skb->sk = NULL;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
|
|
{
|
|
struct sock *sk;
|
|
int rc;
|
|
|
|
/* Because we use per cpu values to feed input from sock redirect
|
|
* in BPF program to do_sk_redirect_map() call we need to ensure we
|
|
* are not preempted. RCU read lock is not sufficient in this case
|
|
* with CONFIG_PREEMPT_RCU enabled so we must be explicit here.
|
|
*/
|
|
preempt_disable();
|
|
rc = smap_verdict_func(psock, skb);
|
|
switch (rc) {
|
|
case SK_REDIRECT:
|
|
sk = do_sk_redirect_map();
|
|
preempt_enable();
|
|
if (likely(sk)) {
|
|
struct smap_psock *peer = smap_psock_sk(sk);
|
|
|
|
if (likely(peer &&
|
|
test_bit(SMAP_TX_RUNNING, &peer->state) &&
|
|
!sock_flag(sk, SOCK_DEAD) &&
|
|
sock_writeable(sk))) {
|
|
skb_set_owner_w(skb, sk);
|
|
skb_queue_tail(&peer->rxqueue, skb);
|
|
schedule_work(&peer->tx_work);
|
|
break;
|
|
}
|
|
}
|
|
/* Fall through and free skb otherwise */
|
|
case SK_DROP:
|
|
default:
|
|
if (rc != SK_REDIRECT)
|
|
preempt_enable();
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static void smap_report_sk_error(struct smap_psock *psock, int err)
|
|
{
|
|
struct sock *sk = psock->sock;
|
|
|
|
sk->sk_err = err;
|
|
sk->sk_error_report(sk);
|
|
}
|
|
|
|
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
|
|
|
|
/* Called with lock_sock(sk) held */
|
|
static void smap_state_change(struct sock *sk)
|
|
{
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
struct smap_psock *psock;
|
|
struct socket_wq *wq;
|
|
struct sock *osk;
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Allowing transitions into an established syn_recv states allows
|
|
* for early binding sockets to a smap object before the connection
|
|
* is established.
|
|
*/
|
|
switch (sk->sk_state) {
|
|
case TCP_SYN_SENT:
|
|
case TCP_SYN_RECV:
|
|
case TCP_ESTABLISHED:
|
|
break;
|
|
case TCP_CLOSE_WAIT:
|
|
case TCP_CLOSING:
|
|
case TCP_LAST_ACK:
|
|
case TCP_FIN_WAIT1:
|
|
case TCP_FIN_WAIT2:
|
|
case TCP_LISTEN:
|
|
break;
|
|
case TCP_CLOSE:
|
|
/* Only release if the map entry is in fact the sock in
|
|
* question. There is a case where the operator deletes
|
|
* the sock from the map, but the TCP sock is closed before
|
|
* the psock is detached. Use cmpxchg to verify correct
|
|
* sock is removed.
|
|
*/
|
|
psock = smap_psock_sk(sk);
|
|
if (unlikely(!psock))
|
|
break;
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
osk = cmpxchg(e->entry, sk, NULL);
|
|
if (osk == sk) {
|
|
list_del(&e->list);
|
|
smap_release_sock(psock, sk);
|
|
}
|
|
}
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
break;
|
|
default:
|
|
psock = smap_psock_sk(sk);
|
|
if (unlikely(!psock))
|
|
break;
|
|
smap_report_sk_error(psock, EPIPE);
|
|
break;
|
|
}
|
|
|
|
wq = rcu_dereference(sk->sk_wq);
|
|
if (skwq_has_sleeper(wq))
|
|
wake_up_interruptible_all(&wq->wait);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_read_sock_strparser(struct strparser *strp,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = container_of(strp, struct smap_psock, strp);
|
|
smap_do_verdict(psock, skb);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Called with lock held on socket */
|
|
static void smap_data_ready(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (likely(psock)) {
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
strp_data_ready(&psock->strp);
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_tx_work(struct work_struct *w)
|
|
{
|
|
struct smap_psock *psock;
|
|
struct sk_buff *skb;
|
|
int rem, off, n;
|
|
|
|
psock = container_of(w, struct smap_psock, tx_work);
|
|
|
|
/* lock sock to avoid losing sk_socket at some point during loop */
|
|
lock_sock(psock->sock);
|
|
if (psock->save_skb) {
|
|
skb = psock->save_skb;
|
|
rem = psock->save_rem;
|
|
off = psock->save_off;
|
|
psock->save_skb = NULL;
|
|
goto start;
|
|
}
|
|
|
|
while ((skb = skb_dequeue(&psock->rxqueue))) {
|
|
rem = skb->len;
|
|
off = 0;
|
|
start:
|
|
do {
|
|
if (likely(psock->sock->sk_socket))
|
|
n = skb_send_sock_locked(psock->sock,
|
|
skb, off, rem);
|
|
else
|
|
n = -EINVAL;
|
|
if (n <= 0) {
|
|
if (n == -EAGAIN) {
|
|
/* Retry when space is available */
|
|
psock->save_skb = skb;
|
|
psock->save_rem = rem;
|
|
psock->save_off = off;
|
|
goto out;
|
|
}
|
|
/* Hard errors break pipe and stop xmit */
|
|
smap_report_sk_error(psock, n ? -n : EPIPE);
|
|
clear_bit(SMAP_TX_RUNNING, &psock->state);
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
rem -= n;
|
|
off += n;
|
|
} while (rem);
|
|
kfree_skb(skb);
|
|
}
|
|
out:
|
|
release_sock(psock->sock);
|
|
}
|
|
|
|
static void smap_write_space(struct sock *sk)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = smap_psock_sk(sk);
|
|
if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
|
|
schedule_work(&psock->tx_work);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
|
|
{
|
|
if (!psock->strp_enabled)
|
|
return;
|
|
sk->sk_data_ready = psock->save_data_ready;
|
|
sk->sk_write_space = psock->save_write_space;
|
|
sk->sk_state_change = psock->save_state_change;
|
|
psock->save_data_ready = NULL;
|
|
psock->save_write_space = NULL;
|
|
psock->save_state_change = NULL;
|
|
strp_stop(&psock->strp);
|
|
psock->strp_enabled = false;
|
|
}
|
|
|
|
static void smap_destroy_psock(struct rcu_head *rcu)
|
|
{
|
|
struct smap_psock *psock = container_of(rcu,
|
|
struct smap_psock, rcu);
|
|
|
|
/* Now that a grace period has passed there is no longer
|
|
* any reference to this sock in the sockmap so we can
|
|
* destroy the psock, strparser, and bpf programs. But,
|
|
* because we use workqueue sync operations we can not
|
|
* do it in rcu context
|
|
*/
|
|
schedule_work(&psock->gc_work);
|
|
}
|
|
|
|
static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
|
|
{
|
|
psock->refcnt--;
|
|
if (psock->refcnt)
|
|
return;
|
|
|
|
smap_stop_sock(psock, sock);
|
|
clear_bit(SMAP_TX_RUNNING, &psock->state);
|
|
rcu_assign_sk_user_data(sock, NULL);
|
|
call_rcu_sched(&psock->rcu, smap_destroy_psock);
|
|
}
|
|
|
|
static int smap_parse_func_strparser(struct strparser *strp,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct smap_psock *psock;
|
|
struct bpf_prog *prog;
|
|
int rc;
|
|
|
|
rcu_read_lock();
|
|
psock = container_of(strp, struct smap_psock, strp);
|
|
prog = READ_ONCE(psock->bpf_parse);
|
|
|
|
if (unlikely(!prog)) {
|
|
rcu_read_unlock();
|
|
return skb->len;
|
|
}
|
|
|
|
/* Attach socket for bpf program to use if needed we can do this
|
|
* because strparser clones the skb before handing it to a upper
|
|
* layer, meaning skb_orphan has been called. We NULL sk on the
|
|
* way out to ensure we don't trigger a BUG_ON in skb/sk operations
|
|
* later and because we are not charging the memory of this skb to
|
|
* any socket yet.
|
|
*/
|
|
skb->sk = psock->sock;
|
|
bpf_compute_data_pointers(skb);
|
|
rc = (*prog->bpf_func)(skb, prog->insnsi);
|
|
skb->sk = NULL;
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
|
|
|
|
static int smap_read_sock_done(struct strparser *strp, int err)
|
|
{
|
|
return err;
|
|
}
|
|
|
|
static int smap_init_sock(struct smap_psock *psock,
|
|
struct sock *sk)
|
|
{
|
|
static const struct strp_callbacks cb = {
|
|
.rcv_msg = smap_read_sock_strparser,
|
|
.parse_msg = smap_parse_func_strparser,
|
|
.read_sock_done = smap_read_sock_done,
|
|
};
|
|
|
|
return strp_init(&psock->strp, sk, &cb);
|
|
}
|
|
|
|
static void smap_init_progs(struct smap_psock *psock,
|
|
struct bpf_stab *stab,
|
|
struct bpf_prog *verdict,
|
|
struct bpf_prog *parse)
|
|
{
|
|
struct bpf_prog *orig_parse, *orig_verdict;
|
|
|
|
orig_parse = xchg(&psock->bpf_parse, parse);
|
|
orig_verdict = xchg(&psock->bpf_verdict, verdict);
|
|
|
|
if (orig_verdict)
|
|
bpf_prog_put(orig_verdict);
|
|
if (orig_parse)
|
|
bpf_prog_put(orig_parse);
|
|
}
|
|
|
|
static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
|
|
{
|
|
if (sk->sk_data_ready == smap_data_ready)
|
|
return;
|
|
psock->save_data_ready = sk->sk_data_ready;
|
|
psock->save_write_space = sk->sk_write_space;
|
|
psock->save_state_change = sk->sk_state_change;
|
|
sk->sk_data_ready = smap_data_ready;
|
|
sk->sk_write_space = smap_write_space;
|
|
sk->sk_state_change = smap_state_change;
|
|
psock->strp_enabled = true;
|
|
}
|
|
|
|
static void sock_map_remove_complete(struct bpf_stab *stab)
|
|
{
|
|
bpf_map_area_free(stab->sock_map);
|
|
kfree(stab);
|
|
}
|
|
|
|
static void smap_gc_work(struct work_struct *w)
|
|
{
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
struct smap_psock *psock;
|
|
|
|
psock = container_of(w, struct smap_psock, gc_work);
|
|
|
|
/* no callback lock needed because we already detached sockmap ops */
|
|
if (psock->strp_enabled)
|
|
strp_done(&psock->strp);
|
|
|
|
cancel_work_sync(&psock->tx_work);
|
|
__skb_queue_purge(&psock->rxqueue);
|
|
|
|
/* At this point all strparser and xmit work must be complete */
|
|
if (psock->bpf_parse)
|
|
bpf_prog_put(psock->bpf_parse);
|
|
if (psock->bpf_verdict)
|
|
bpf_prog_put(psock->bpf_verdict);
|
|
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
list_del(&e->list);
|
|
kfree(e);
|
|
}
|
|
|
|
sock_put(psock->sock);
|
|
kfree(psock);
|
|
}
|
|
|
|
static struct smap_psock *smap_init_psock(struct sock *sock,
|
|
struct bpf_stab *stab)
|
|
{
|
|
struct smap_psock *psock;
|
|
|
|
psock = kzalloc_node(sizeof(struct smap_psock),
|
|
GFP_ATOMIC | __GFP_NOWARN,
|
|
stab->map.numa_node);
|
|
if (!psock)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
psock->sock = sock;
|
|
skb_queue_head_init(&psock->rxqueue);
|
|
INIT_WORK(&psock->tx_work, smap_tx_work);
|
|
INIT_WORK(&psock->gc_work, smap_gc_work);
|
|
INIT_LIST_HEAD(&psock->maps);
|
|
psock->refcnt = 1;
|
|
|
|
rcu_assign_sk_user_data(sock, psock);
|
|
sock_hold(sock);
|
|
return psock;
|
|
}
|
|
|
|
static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_stab *stab;
|
|
int err = -EINVAL;
|
|
u64 cost;
|
|
|
|
/* check sanity of attributes */
|
|
if (attr->max_entries == 0 || attr->key_size != 4 ||
|
|
attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (attr->value_size > KMALLOC_MAX_SIZE)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
stab = kzalloc(sizeof(*stab), GFP_USER);
|
|
if (!stab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* mandatory map attributes */
|
|
stab->map.map_type = attr->map_type;
|
|
stab->map.key_size = attr->key_size;
|
|
stab->map.value_size = attr->value_size;
|
|
stab->map.max_entries = attr->max_entries;
|
|
stab->map.map_flags = attr->map_flags;
|
|
stab->map.numa_node = bpf_map_attr_numa_node(attr);
|
|
|
|
/* make sure page count doesn't overflow */
|
|
cost = (u64) stab->map.max_entries * sizeof(struct sock *);
|
|
if (cost >= U32_MAX - PAGE_SIZE)
|
|
goto free_stab;
|
|
|
|
stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
/* if map size is larger than memlock limit, reject it early */
|
|
err = bpf_map_precharge_memlock(stab->map.pages);
|
|
if (err)
|
|
goto free_stab;
|
|
|
|
err = -ENOMEM;
|
|
stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
|
|
sizeof(struct sock *),
|
|
stab->map.numa_node);
|
|
if (!stab->sock_map)
|
|
goto free_stab;
|
|
|
|
return &stab->map;
|
|
free_stab:
|
|
kfree(stab);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
|
|
{
|
|
struct smap_psock_map_entry *e, *tmp;
|
|
|
|
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
|
|
if (e->entry == entry) {
|
|
list_del(&e->list);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sock_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
int i;
|
|
|
|
synchronize_rcu();
|
|
|
|
/* At this point no update, lookup or delete operations can happen.
|
|
* However, be aware we can still get a socket state event updates,
|
|
* and data ready callabacks that reference the psock from sk_user_data
|
|
* Also psock worker threads are still in-flight. So smap_release_sock
|
|
* will only free the psock after cancel_sync on the worker threads
|
|
* and a grace period expire to ensure psock is really safe to remove.
|
|
*/
|
|
rcu_read_lock();
|
|
for (i = 0; i < stab->map.max_entries; i++) {
|
|
struct smap_psock *psock;
|
|
struct sock *sock;
|
|
|
|
sock = xchg(&stab->sock_map[i], NULL);
|
|
if (!sock)
|
|
continue;
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
smap_list_remove(psock, &stab->sock_map[i]);
|
|
smap_release_sock(psock, sock);
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (stab->bpf_verdict)
|
|
bpf_prog_put(stab->bpf_verdict);
|
|
if (stab->bpf_parse)
|
|
bpf_prog_put(stab->bpf_parse);
|
|
|
|
sock_map_remove_complete(stab);
|
|
}
|
|
|
|
static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
u32 i = key ? *(u32 *)key : U32_MAX;
|
|
u32 *next = (u32 *)next_key;
|
|
|
|
if (i >= stab->map.max_entries) {
|
|
*next = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (i == stab->map.max_entries - 1)
|
|
return -ENOENT;
|
|
|
|
*next = i + 1;
|
|
return 0;
|
|
}
|
|
|
|
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
|
|
if (key >= map->max_entries)
|
|
return NULL;
|
|
|
|
return READ_ONCE(stab->sock_map[key]);
|
|
}
|
|
|
|
static int sock_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct smap_psock *psock;
|
|
int k = *(u32 *)key;
|
|
struct sock *sock;
|
|
|
|
if (k >= map->max_entries)
|
|
return -EINVAL;
|
|
|
|
sock = xchg(&stab->sock_map[k], NULL);
|
|
if (!sock)
|
|
return -EINVAL;
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
if (!psock)
|
|
goto out;
|
|
|
|
if (psock->bpf_parse)
|
|
smap_stop_sock(psock, sock);
|
|
smap_list_remove(psock, &stab->sock_map[k]);
|
|
smap_release_sock(psock, sock);
|
|
out:
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
|
|
* done inside rcu critical sections. This ensures on updates that the psock
|
|
* will not be released via smap_release_sock() until concurrent updates/deletes
|
|
* complete. All operations operate on sock_map using cmpxchg and xchg
|
|
* operations to ensure we do not get stale references. Any reads into the
|
|
* map must be done with READ_ONCE() because of this.
|
|
*
|
|
* A psock is destroyed via call_rcu and after any worker threads are cancelled
|
|
* and syncd so we are certain all references from the update/lookup/delete
|
|
* operations as well as references in the data path are no longer in use.
|
|
*
|
|
* Psocks may exist in multiple maps, but only a single set of parse/verdict
|
|
* programs may be inherited from the maps it belongs to. A reference count
|
|
* is kept with the total number of references to the psock from all maps. The
|
|
* psock will not be released until this reaches zero. The psock and sock
|
|
* user data data use the sk_callback_lock to protect critical data structures
|
|
* from concurrent access. This allows us to avoid two updates from modifying
|
|
* the user data in sock and the lock is required anyways for modifying
|
|
* callbacks, we simply increase its scope slightly.
|
|
*
|
|
* Rules to follow,
|
|
* - psock must always be read inside RCU critical section
|
|
* - sk_user_data must only be modified inside sk_callback_lock and read
|
|
* inside RCU critical section.
|
|
* - psock->maps list must only be read & modified inside sk_callback_lock
|
|
* - sock_map must use READ_ONCE and (cmp)xchg operations
|
|
* - BPF verdict/parse programs must use READ_ONCE and xchg operations
|
|
*/
|
|
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
|
|
struct bpf_map *map,
|
|
void *key, u64 flags)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct smap_psock_map_entry *e = NULL;
|
|
struct bpf_prog *verdict, *parse;
|
|
struct sock *osock, *sock;
|
|
struct smap_psock *psock;
|
|
u32 i = *(u32 *)key;
|
|
int err;
|
|
|
|
if (unlikely(flags > BPF_EXIST))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(i >= stab->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
sock = READ_ONCE(stab->sock_map[i]);
|
|
if (flags == BPF_EXIST && !sock)
|
|
return -ENOENT;
|
|
else if (flags == BPF_NOEXIST && sock)
|
|
return -EEXIST;
|
|
|
|
sock = skops->sk;
|
|
|
|
/* 1. If sock map has BPF programs those will be inherited by the
|
|
* sock being added. If the sock is already attached to BPF programs
|
|
* this results in an error.
|
|
*/
|
|
verdict = READ_ONCE(stab->bpf_verdict);
|
|
parse = READ_ONCE(stab->bpf_parse);
|
|
|
|
if (parse && verdict) {
|
|
/* bpf prog refcnt may be zero if a concurrent attach operation
|
|
* removes the program after the above READ_ONCE() but before
|
|
* we increment the refcnt. If this is the case abort with an
|
|
* error.
|
|
*/
|
|
verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
|
|
if (IS_ERR(verdict))
|
|
return PTR_ERR(verdict);
|
|
|
|
parse = bpf_prog_inc_not_zero(stab->bpf_parse);
|
|
if (IS_ERR(parse)) {
|
|
bpf_prog_put(verdict);
|
|
return PTR_ERR(parse);
|
|
}
|
|
}
|
|
|
|
write_lock_bh(&sock->sk_callback_lock);
|
|
psock = smap_psock_sk(sock);
|
|
|
|
/* 2. Do not allow inheriting programs if psock exists and has
|
|
* already inherited programs. This would create confusion on
|
|
* which parser/verdict program is running. If no psock exists
|
|
* create one. Inside sk_callback_lock to ensure concurrent create
|
|
* doesn't update user data.
|
|
*/
|
|
if (psock) {
|
|
if (READ_ONCE(psock->bpf_parse) && parse) {
|
|
err = -EBUSY;
|
|
goto out_progs;
|
|
}
|
|
psock->refcnt++;
|
|
} else {
|
|
psock = smap_init_psock(sock, stab);
|
|
if (IS_ERR(psock)) {
|
|
err = PTR_ERR(psock);
|
|
goto out_progs;
|
|
}
|
|
|
|
set_bit(SMAP_TX_RUNNING, &psock->state);
|
|
}
|
|
|
|
e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
|
|
if (!e) {
|
|
err = -ENOMEM;
|
|
goto out_progs;
|
|
}
|
|
e->entry = &stab->sock_map[i];
|
|
|
|
/* 3. At this point we have a reference to a valid psock that is
|
|
* running. Attach any BPF programs needed.
|
|
*/
|
|
if (parse && verdict && !psock->strp_enabled) {
|
|
err = smap_init_sock(psock, sock);
|
|
if (err)
|
|
goto out_free;
|
|
smap_init_progs(psock, stab, verdict, parse);
|
|
smap_start_sock(psock, sock);
|
|
}
|
|
|
|
/* 4. Place psock in sockmap for use and stop any programs on
|
|
* the old sock assuming its not the same sock we are replacing
|
|
* it with. Because we can only have a single set of programs if
|
|
* old_sock has a strp we can stop it.
|
|
*/
|
|
list_add_tail(&e->list, &psock->maps);
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
|
|
osock = xchg(&stab->sock_map[i], sock);
|
|
if (osock) {
|
|
struct smap_psock *opsock = smap_psock_sk(osock);
|
|
|
|
write_lock_bh(&osock->sk_callback_lock);
|
|
if (osock != sock && parse)
|
|
smap_stop_sock(opsock, osock);
|
|
smap_list_remove(opsock, &stab->sock_map[i]);
|
|
smap_release_sock(opsock, osock);
|
|
write_unlock_bh(&osock->sk_callback_lock);
|
|
}
|
|
return 0;
|
|
out_free:
|
|
smap_release_sock(psock, sock);
|
|
out_progs:
|
|
if (verdict)
|
|
bpf_prog_put(verdict);
|
|
if (parse)
|
|
bpf_prog_put(parse);
|
|
write_unlock_bh(&sock->sk_callback_lock);
|
|
kfree(e);
|
|
return err;
|
|
}
|
|
|
|
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
|
|
{
|
|
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
|
|
struct bpf_prog *orig;
|
|
|
|
if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
|
|
return -EINVAL;
|
|
|
|
switch (type) {
|
|
case BPF_SK_SKB_STREAM_PARSER:
|
|
orig = xchg(&stab->bpf_parse, prog);
|
|
break;
|
|
case BPF_SK_SKB_STREAM_VERDICT:
|
|
orig = xchg(&stab->bpf_verdict, prog);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (orig)
|
|
bpf_prog_put(orig);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *sock_map_lookup(struct bpf_map *map, void *key)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static int sock_map_update_elem(struct bpf_map *map,
|
|
void *key, void *value, u64 flags)
|
|
{
|
|
struct bpf_sock_ops_kern skops;
|
|
u32 fd = *(u32 *)value;
|
|
struct socket *socket;
|
|
int err;
|
|
|
|
socket = sockfd_lookup(fd, &err);
|
|
if (!socket)
|
|
return err;
|
|
|
|
skops.sk = socket->sk;
|
|
if (!skops.sk) {
|
|
fput(socket->file);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = sock_map_ctx_update_elem(&skops, map, key, flags);
|
|
fput(socket->file);
|
|
return err;
|
|
}
|
|
|
|
const struct bpf_map_ops sock_map_ops = {
|
|
.map_alloc = sock_map_alloc,
|
|
.map_free = sock_map_free,
|
|
.map_lookup_elem = sock_map_lookup,
|
|
.map_get_next_key = sock_map_get_next_key,
|
|
.map_update_elem = sock_map_update_elem,
|
|
.map_delete_elem = sock_map_delete_elem,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
|
|
struct bpf_map *, map, void *, key, u64, flags)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_sock_map_update_proto = {
|
|
.func = bpf_sock_map_update,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_PTR_TO_MAP_KEY,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|