linux/net/ipv4/tcp_cubic.c

494 lines
14 KiB
C

/*
* TCP CUBIC: Binary Increase Congestion control for TCP v2.3
* Home page:
* http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
* This is from the implementation of CUBIC TCP in
* Sangtae Ha, Injong Rhee and Lisong Xu,
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
* in ACM SIGOPS Operating System Review, July 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
*
* CUBIC integrates a new slow start algorithm, called HyStart.
* The details of HyStart are presented in
* Sangtae Ha and Injong Rhee,
* "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
* Available from:
* http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
*
* All testing results are available from:
* http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
*
* Unless CUBIC is enabled and congestion window is large
* this behaves the same as the original Reno.
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <net/tcp.h>
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
* max_cwnd = snd_cwnd * beta
*/
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
/* Two methods of hybrid slow start */
#define HYSTART_ACK_TRAIN 0x1
#define HYSTART_DELAY 0x2
/* Number of delay samples for detecting the increase of delay */
#define HYSTART_MIN_SAMPLES 8
#define HYSTART_DELAY_MIN (4U<<3)
#define HYSTART_DELAY_MAX (16U<<3)
#define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
static int fast_convergence __read_mostly = 1;
static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
static int initial_ssthresh __read_mostly;
static int bic_scale __read_mostly = 41;
static int tcp_friendliness __read_mostly = 1;
static int hystart __read_mostly = 1;
static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
static int hystart_low_window __read_mostly = 16;
static int hystart_ack_delta __read_mostly = 2;
static u32 cube_rtt_scale __read_mostly;
static u32 beta_scale __read_mostly;
static u64 cube_factor __read_mostly;
/* Note parameters that are used for precomputing scale factors are read-only */
module_param(fast_convergence, int, 0644);
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
module_param(beta, int, 0644);
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
module_param(initial_ssthresh, int, 0644);
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
module_param(bic_scale, int, 0444);
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
module_param(tcp_friendliness, int, 0644);
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
module_param(hystart, int, 0644);
MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
module_param(hystart_detect, int, 0644);
MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
" 1: packet-train 2: delay 3: both packet-train and delay");
module_param(hystart_low_window, int, 0644);
MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
module_param(hystart_ack_delta, int, 0644);
MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
/* BIC TCP Parameters */
struct bictcp {
u32 cnt; /* increase cwnd by 1 after ACKs */
u32 last_max_cwnd; /* last maximum snd_cwnd */
u32 loss_cwnd; /* congestion window at last loss */
u32 last_cwnd; /* the last snd_cwnd */
u32 last_time; /* time when updated last_cwnd */
u32 bic_origin_point;/* origin point of bic function */
u32 bic_K; /* time to origin point from the beginning of the current epoch */
u32 delay_min; /* min delay (msec << 3) */
u32 epoch_start; /* beginning of an epoch */
u32 ack_cnt; /* number of acks */
u32 tcp_cwnd; /* estimated tcp cwnd */
#define ACK_RATIO_SHIFT 4
#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
u8 sample_cnt; /* number of samples to decide curr_rtt */
u8 found; /* the exit point is found? */
u32 round_start; /* beginning of each round */
u32 end_seq; /* end_seq of the round */
u32 last_ack; /* last time when the ACK spacing is close */
u32 curr_rtt; /* the minimum rtt of current round */
};
static inline void bictcp_reset(struct bictcp *ca)
{
ca->cnt = 0;
ca->last_max_cwnd = 0;
ca->last_cwnd = 0;
ca->last_time = 0;
ca->bic_origin_point = 0;
ca->bic_K = 0;
ca->delay_min = 0;
ca->epoch_start = 0;
ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
ca->ack_cnt = 0;
ca->tcp_cwnd = 0;
ca->found = 0;
}
static inline u32 bictcp_clock(void)
{
#if HZ < 1000
return ktime_to_ms(ktime_get_real());
#else
return jiffies_to_msecs(jiffies);
#endif
}
static inline void bictcp_hystart_reset(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
ca->round_start = ca->last_ack = bictcp_clock();
ca->end_seq = tp->snd_nxt;
ca->curr_rtt = 0;
ca->sample_cnt = 0;
}
static void bictcp_init(struct sock *sk)
{
struct bictcp *ca = inet_csk_ca(sk);
bictcp_reset(ca);
ca->loss_cwnd = 0;
if (hystart)
bictcp_hystart_reset(sk);
if (!hystart && initial_ssthresh)
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
}
/* calculate the cubic root of x using a table lookup followed by one
* Newton-Raphson iteration.
* Avg err ~= 0.195%
*/
static u32 cubic_root(u64 a)
{
u32 x, b, shift;
/*
* cbrt(x) MSB values for x MSB values in [0..63].
* Precomputed then refined by hand - Willy Tarreau
*
* For x in [0..63],
* v = cbrt(x << 18) - 1
* cbrt(x) = (v[x] + 10) >> 6
*/
static const u8 v[] = {
/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
};
b = fls64(a);
if (b < 7) {
/* a in [0..63] */
return ((u32)v[(u32)a] + 35) >> 6;
}
b = ((b * 84) >> 8) - 1;
shift = (a >> (b * 3));
x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
/*
* Newton-Raphson iteration
* 2
* x = ( 2 * x + a / x ) / 3
* k+1 k k
*/
x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
x = ((x * 341) >> 10);
return x;
}
/*
* Compute congestion window to use.
*/
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
{
u32 delta, bic_target, max_cnt;
u64 offs, t;
ca->ack_cnt++; /* count the number of ACKs */
if (ca->last_cwnd == cwnd &&
(s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
return;
ca->last_cwnd = cwnd;
ca->last_time = tcp_time_stamp;
if (ca->epoch_start == 0) {
ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
ca->ack_cnt = 1; /* start counting */
ca->tcp_cwnd = cwnd; /* syn with cubic */
if (ca->last_max_cwnd <= cwnd) {
ca->bic_K = 0;
ca->bic_origin_point = cwnd;
} else {
/* Compute new K based on
* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
*/
ca->bic_K = cubic_root(cube_factor
* (ca->last_max_cwnd - cwnd));
ca->bic_origin_point = ca->last_max_cwnd;
}
}
/* cubic function - calc*/
/* calculate c * time^3 / rtt,
* while considering overflow in calculation of time^3
* (so time^3 is done by using 64 bit)
* and without the support of division of 64bit numbers
* (so all divisions are done by using 32 bit)
* also NOTE the unit of those veriables
* time = (t - K) / 2^bictcp_HZ
* c = bic_scale >> 10
* rtt = (srtt >> 3) / HZ
* !!! The following code does not have overflow problems,
* if the cwnd < 1 million packets !!!
*/
t = (s32)(tcp_time_stamp - ca->epoch_start);
t += msecs_to_jiffies(ca->delay_min >> 3);
/* change the unit from HZ to bictcp_HZ */
t <<= BICTCP_HZ;
do_div(t, HZ);
if (t < ca->bic_K) /* t - K */
offs = ca->bic_K - t;
else
offs = t - ca->bic_K;
/* c/rtt * (t-K)^3 */
delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
if (t < ca->bic_K) /* below origin*/
bic_target = ca->bic_origin_point - delta;
else /* above origin*/
bic_target = ca->bic_origin_point + delta;
/* cubic function - calc bictcp_cnt*/
if (bic_target > cwnd) {
ca->cnt = cwnd / (bic_target - cwnd);
} else {
ca->cnt = 100 * cwnd; /* very small increment*/
}
/*
* The initial growth of cubic function may be too conservative
* when the available bandwidth is still unknown.
*/
if (ca->last_max_cwnd == 0 && ca->cnt > 20)
ca->cnt = 20; /* increase cwnd 5% per RTT */
/* TCP Friendly */
if (tcp_friendliness) {
u32 scale = beta_scale;
delta = (cwnd * scale) >> 3;
while (ca->ack_cnt > delta) { /* update tcp cwnd */
ca->ack_cnt -= delta;
ca->tcp_cwnd++;
}
if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
delta = ca->tcp_cwnd - cwnd;
max_cnt = cwnd / delta;
if (ca->cnt > max_cnt)
ca->cnt = max_cnt;
}
}
ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
if (ca->cnt == 0) /* cannot be zero */
ca->cnt = 1;
}
static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked,
u32 in_flight)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
if (!tcp_is_cwnd_limited(sk, in_flight))
return;
if (tp->snd_cwnd <= tp->snd_ssthresh) {
if (hystart && after(ack, ca->end_seq))
bictcp_hystart_reset(sk);
tcp_slow_start(tp, acked);
} else {
bictcp_update(ca, tp->snd_cwnd);
tcp_cong_avoid_ai(tp, ca->cnt);
}
}
static u32 bictcp_recalc_ssthresh(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
ca->epoch_start = 0; /* end of epoch */
/* Wmax and fast convergence */
if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
/ (2 * BICTCP_BETA_SCALE);
else
ca->last_max_cwnd = tp->snd_cwnd;
ca->loss_cwnd = tp->snd_cwnd;
return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
}
static u32 bictcp_undo_cwnd(struct sock *sk)
{
struct bictcp *ca = inet_csk_ca(sk);
return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
}
static void bictcp_state(struct sock *sk, u8 new_state)
{
if (new_state == TCP_CA_Loss) {
bictcp_reset(inet_csk_ca(sk));
bictcp_hystart_reset(sk);
}
}
static void hystart_update(struct sock *sk, u32 delay)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
if (!(ca->found & hystart_detect)) {
u32 now = bictcp_clock();
/* first detection parameter - ack-train detection */
if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
ca->last_ack = now;
if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
ca->found |= HYSTART_ACK_TRAIN;
}
/* obtain the minimum delay of more than sampling packets */
if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
ca->curr_rtt = delay;
ca->sample_cnt++;
} else {
if (ca->curr_rtt > ca->delay_min +
HYSTART_DELAY_THRESH(ca->delay_min>>4))
ca->found |= HYSTART_DELAY;
}
/*
* Either one of two conditions are met,
* we exit from slow start immediately.
*/
if (ca->found & hystart_detect)
tp->snd_ssthresh = tp->snd_cwnd;
}
}
/* Track delayed acknowledgment ratio using sliding window
* ratio = (15*ratio + sample) / 16
*/
static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct tcp_sock *tp = tcp_sk(sk);
struct bictcp *ca = inet_csk_ca(sk);
u32 delay;
if (icsk->icsk_ca_state == TCP_CA_Open) {
u32 ratio = ca->delayed_ack;
ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
ratio += cnt;
ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
}
/* Some calls are for duplicates without timetamps */
if (rtt_us < 0)
return;
/* Discard delay samples right after fast recovery */
if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
return;
delay = (rtt_us << 3) / USEC_PER_MSEC;
if (delay == 0)
delay = 1;
/* first time call or link delay decreases */
if (ca->delay_min == 0 || ca->delay_min > delay)
ca->delay_min = delay;
/* hystart triggers when cwnd is larger than some threshold */
if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
tp->snd_cwnd >= hystart_low_window)
hystart_update(sk, delay);
}
static struct tcp_congestion_ops cubictcp __read_mostly = {
.init = bictcp_init,
.ssthresh = bictcp_recalc_ssthresh,
.cong_avoid = bictcp_cong_avoid,
.set_state = bictcp_state,
.undo_cwnd = bictcp_undo_cwnd,
.pkts_acked = bictcp_acked,
.owner = THIS_MODULE,
.name = "cubic",
};
static int __init cubictcp_register(void)
{
BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
/* Precompute a bunch of the scaling factors that are used per-packet
* based on SRTT of 100ms
*/
beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
* so K = cubic_root( (wmax-cwnd)*rtt/c )
* the unit of K is bictcp_HZ=2^10, not HZ
*
* c = bic_scale >> 10
* rtt = 100ms
*
* the following code has been designed and tested for
* cwnd < 1 million packets
* RTT < 100 seconds
* HZ < 1,000,00 (corresponding to 10 nano-second)
*/
/* 1/c * 2^2*bictcp_HZ * srtt */
cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
/* divide by bic_scale and by constant Srtt (100ms) */
do_div(cube_factor, bic_scale * 10);
return tcp_register_congestion_control(&cubictcp);
}
static void __exit cubictcp_unregister(void)
{
tcp_unregister_congestion_control(&cubictcp);
}
module_init(cubictcp_register);
module_exit(cubictcp_unregister);
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CUBIC TCP");
MODULE_VERSION("2.3");