linux/net/dsa/dsa2.c

841 lines
17 KiB
C

/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include "dsa_priv.h"
static LIST_HEAD(dsa_switch_trees);
static DEFINE_MUTEX(dsa2_mutex);
static const struct devlink_ops dsa_devlink_ops = {
};
static struct dsa_switch_tree *dsa_get_dst(u32 tree)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_switch_trees, list)
if (dst->tree == tree) {
kref_get(&dst->refcount);
return dst;
}
return NULL;
}
static void dsa_free_dst(struct kref *ref)
{
struct dsa_switch_tree *dst = container_of(ref, struct dsa_switch_tree,
refcount);
list_del(&dst->list);
kfree(dst);
}
static void dsa_put_dst(struct dsa_switch_tree *dst)
{
kref_put(&dst->refcount, dsa_free_dst);
}
static struct dsa_switch_tree *dsa_add_dst(u32 tree)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->tree = tree;
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dsa_switch_trees, &dst->list);
kref_init(&dst->refcount);
return dst;
}
static void dsa_dst_add_ds(struct dsa_switch_tree *dst,
struct dsa_switch *ds, u32 index)
{
kref_get(&dst->refcount);
dst->ds[index] = ds;
}
static void dsa_dst_del_ds(struct dsa_switch_tree *dst,
struct dsa_switch *ds, u32 index)
{
dst->ds[index] = NULL;
kref_put(&dst->refcount, dsa_free_dst);
}
/* For platform data configurations, we need to have a valid name argument to
* differentiate a disabled port from an enabled one
*/
static bool dsa_port_is_valid(struct dsa_port *port)
{
return !!(port->dn || port->name);
}
static bool dsa_port_is_dsa(struct dsa_port *port)
{
if (port->name && !strcmp(port->name, "dsa"))
return true;
else
return !!of_parse_phandle(port->dn, "link", 0);
}
static bool dsa_port_is_cpu(struct dsa_port *port)
{
if (port->name && !strcmp(port->name, "cpu"))
return true;
else
return !!of_parse_phandle(port->dn, "ethernet", 0);
}
static bool dsa_ds_find_port_dn(struct dsa_switch *ds,
struct device_node *port)
{
u32 index;
for (index = 0; index < ds->num_ports; index++)
if (ds->ports[index].dn == port)
return true;
return false;
}
static struct dsa_switch *dsa_dst_find_port_dn(struct dsa_switch_tree *dst,
struct device_node *port)
{
struct dsa_switch *ds;
u32 index;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
if (dsa_ds_find_port_dn(ds, port))
return ds;
}
return NULL;
}
static int dsa_port_complete(struct dsa_switch_tree *dst,
struct dsa_switch *src_ds,
struct dsa_port *port,
u32 src_port)
{
struct device_node *link;
int index;
struct dsa_switch *dst_ds;
for (index = 0;; index++) {
link = of_parse_phandle(port->dn, "link", index);
if (!link)
break;
dst_ds = dsa_dst_find_port_dn(dst, link);
of_node_put(link);
if (!dst_ds)
return 1;
src_ds->rtable[dst_ds->index] = src_port;
}
return 0;
}
/* A switch is complete if all the DSA ports phandles point to ports
* known in the tree. A return value of 1 means the tree is not
* complete. This is not an error condition. A value of 0 is
* success.
*/
static int dsa_ds_complete(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct dsa_port *port;
u32 index;
int err;
for (index = 0; index < ds->num_ports; index++) {
port = &ds->ports[index];
if (!dsa_port_is_valid(port))
continue;
if (!dsa_port_is_dsa(port))
continue;
err = dsa_port_complete(dst, ds, port, index);
if (err != 0)
return err;
ds->dsa_port_mask |= BIT(index);
}
return 0;
}
/* A tree is complete if all the DSA ports phandles point to ports
* known in the tree. A return value of 1 means the tree is not
* complete. This is not an error condition. A value of 0 is
* success.
*/
static int dsa_dst_complete(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_complete(dst, ds);
if (err != 0)
return err;
}
return 0;
}
static int dsa_dsa_port_apply(struct dsa_port *port)
{
struct dsa_switch *ds = port->ds;
int err;
err = dsa_cpu_dsa_setup(port);
if (err) {
dev_warn(ds->dev, "Failed to setup dsa port %d: %d\n",
port->index, err);
return err;
}
memset(&port->devlink_port, 0, sizeof(port->devlink_port));
return devlink_port_register(ds->devlink, &port->devlink_port,
port->index);
}
static void dsa_dsa_port_unapply(struct dsa_port *port)
{
devlink_port_unregister(&port->devlink_port);
dsa_cpu_dsa_destroy(port);
}
static int dsa_cpu_port_apply(struct dsa_port *port)
{
struct dsa_switch *ds = port->ds;
int err;
err = dsa_cpu_dsa_setup(port);
if (err) {
dev_warn(ds->dev, "Failed to setup cpu port %d: %d\n",
port->index, err);
return err;
}
memset(&port->devlink_port, 0, sizeof(port->devlink_port));
err = devlink_port_register(ds->devlink, &port->devlink_port,
port->index);
return err;
}
static void dsa_cpu_port_unapply(struct dsa_port *port)
{
devlink_port_unregister(&port->devlink_port);
dsa_cpu_dsa_destroy(port);
port->ds->cpu_port_mask &= ~BIT(port->index);
}
static int dsa_user_port_apply(struct dsa_port *port)
{
struct dsa_switch *ds = port->ds;
const char *name = port->name;
int err;
if (port->dn)
name = of_get_property(port->dn, "label", NULL);
if (!name)
name = "eth%d";
err = dsa_slave_create(port, name);
if (err) {
dev_warn(ds->dev, "Failed to create slave %d: %d\n",
port->index, err);
port->netdev = NULL;
return err;
}
memset(&port->devlink_port, 0, sizeof(port->devlink_port));
err = devlink_port_register(ds->devlink, &port->devlink_port,
port->index);
if (err)
return err;
devlink_port_type_eth_set(&port->devlink_port, port->netdev);
return 0;
}
static void dsa_user_port_unapply(struct dsa_port *port)
{
devlink_port_unregister(&port->devlink_port);
if (port->netdev) {
dsa_slave_destroy(port->netdev);
port->netdev = NULL;
port->ds->enabled_port_mask &= ~(1 << port->index);
}
}
static int dsa_ds_apply(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct dsa_port *port;
u32 index;
int err;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before ops->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask = ds->enabled_port_mask;
/* Add the switch to devlink before calling setup, so that setup can
* add dpipe tables
*/
ds->devlink = devlink_alloc(&dsa_devlink_ops, 0);
if (!ds->devlink)
return -ENOMEM;
err = devlink_register(ds->devlink, ds->dev);
if (err)
return err;
err = ds->ops->setup(ds);
if (err < 0)
return err;
err = dsa_switch_register_notifier(ds);
if (err)
return err;
if (ds->ops->set_addr) {
err = ds->ops->set_addr(ds, dst->cpu_dp->netdev->dev_addr);
if (err < 0)
return err;
}
if (!ds->slave_mii_bus && ds->ops->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!ds->slave_mii_bus)
return -ENOMEM;
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
return err;
}
for (index = 0; index < ds->num_ports; index++) {
port = &ds->ports[index];
if (!dsa_port_is_valid(port))
continue;
if (dsa_port_is_dsa(port)) {
err = dsa_dsa_port_apply(port);
if (err)
return err;
continue;
}
if (dsa_port_is_cpu(port)) {
err = dsa_cpu_port_apply(port);
if (err)
return err;
continue;
}
err = dsa_user_port_apply(port);
if (err)
continue;
}
return 0;
}
static void dsa_ds_unapply(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct dsa_port *port;
u32 index;
for (index = 0; index < ds->num_ports; index++) {
port = &ds->ports[index];
if (!dsa_port_is_valid(port))
continue;
if (dsa_port_is_dsa(port)) {
dsa_dsa_port_unapply(port);
continue;
}
if (dsa_port_is_cpu(port)) {
dsa_cpu_port_unapply(port);
continue;
}
dsa_user_port_unapply(port);
}
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
dsa_switch_unregister_notifier(ds);
if (ds->devlink) {
devlink_unregister(ds->devlink);
devlink_free(ds->devlink);
ds->devlink = NULL;
}
}
static int dsa_dst_apply(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_apply(dst, ds);
if (err)
return err;
}
if (dst->cpu_dp) {
err = dsa_cpu_port_ethtool_setup(dst->cpu_dp);
if (err)
return err;
}
/* If we use a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point on get
* sent to the tag format's receive function.
*/
wmb();
dst->cpu_dp->netdev->dsa_ptr = dst;
dst->applied = true;
return 0;
}
static void dsa_dst_unapply(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
u32 index;
if (!dst->applied)
return;
dst->cpu_dp->netdev->dsa_ptr = NULL;
/* If we used a tagging format that doesn't have an ethertype
* field, make sure that all packets from this point get sent
* without the tag and go through the regular receive path.
*/
wmb();
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
dsa_ds_unapply(dst, ds);
}
if (dst->cpu_dp) {
dsa_cpu_port_ethtool_restore(dst->cpu_dp);
dst->cpu_dp = NULL;
}
pr_info("DSA: tree %d unapplied\n", dst->tree);
dst->applied = false;
}
static int dsa_cpu_parse(struct dsa_port *port, u32 index,
struct dsa_switch_tree *dst,
struct dsa_switch *ds)
{
enum dsa_tag_protocol tag_protocol;
struct net_device *ethernet_dev;
struct device_node *ethernet;
if (port->dn) {
ethernet = of_parse_phandle(port->dn, "ethernet", 0);
if (!ethernet)
return -EINVAL;
ethernet_dev = of_find_net_device_by_node(ethernet);
} else {
ethernet_dev = dsa_dev_to_net_device(ds->cd->netdev[index]);
dev_put(ethernet_dev);
}
if (!ethernet_dev)
return -EPROBE_DEFER;
if (!dst->cpu_dp) {
dst->cpu_dp = port;
dst->cpu_dp->netdev = ethernet_dev;
}
/* Initialize cpu_port_mask now for drv->setup()
* to have access to a correct value, just like what
* net/dsa/dsa.c::dsa_switch_setup_one does.
*/
ds->cpu_port_mask |= BIT(index);
tag_protocol = ds->ops->get_tag_protocol(ds);
dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol);
if (IS_ERR(dst->tag_ops)) {
dev_warn(ds->dev, "No tagger for this switch\n");
ds->cpu_port_mask &= ~BIT(index);
return PTR_ERR(dst->tag_ops);
}
dst->rcv = dst->tag_ops->rcv;
return 0;
}
static int dsa_ds_parse(struct dsa_switch_tree *dst, struct dsa_switch *ds)
{
struct dsa_port *port;
u32 index;
int err;
for (index = 0; index < ds->num_ports; index++) {
port = &ds->ports[index];
if (!dsa_port_is_valid(port) ||
dsa_port_is_dsa(port))
continue;
if (dsa_port_is_cpu(port)) {
err = dsa_cpu_parse(port, index, dst, ds);
if (err)
return err;
} else {
/* Initialize enabled_port_mask now for drv->setup()
* to have access to a correct value, just like what
* net/dsa/dsa.c::dsa_switch_setup_one does.
*/
ds->enabled_port_mask |= BIT(index);
}
}
pr_info("DSA: switch %d %d parsed\n", dst->tree, ds->index);
return 0;
}
static int dsa_dst_parse(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
u32 index;
int port;
int err;
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
err = dsa_ds_parse(dst, ds);
if (err)
return err;
}
if (!dst->cpu_dp) {
pr_warn("Tree has no master device\n");
return -EINVAL;
}
/* Assign the default CPU port to all ports of the fabric */
for (index = 0; index < DSA_MAX_SWITCHES; index++) {
ds = dst->ds[index];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (!dsa_port_is_valid(dp) ||
dsa_port_is_dsa(dp) ||
dsa_port_is_cpu(dp))
continue;
dp->cpu_dp = dst->cpu_dp;
}
}
pr_info("DSA: tree %d parsed\n", dst->tree);
return 0;
}
static int dsa_parse_ports_dn(struct device_node *ports, struct dsa_switch *ds)
{
struct device_node *port;
int err;
u32 reg;
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
return err;
if (reg >= ds->num_ports)
return -EINVAL;
ds->ports[reg].dn = port;
}
return 0;
}
static int dsa_parse_ports(struct dsa_chip_data *cd, struct dsa_switch *ds)
{
bool valid_name_found = false;
unsigned int i;
for (i = 0; i < DSA_MAX_PORTS; i++) {
if (!cd->port_names[i])
continue;
ds->ports[i].name = cd->port_names[i];
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS)
return -EINVAL;
return 0;
}
static int dsa_parse_member_dn(struct device_node *np, u32 *tree, u32 *index)
{
int err;
*tree = *index = 0;
err = of_property_read_u32_index(np, "dsa,member", 0, tree);
if (err) {
/* Does not exist, but it is optional */
if (err == -EINVAL)
return 0;
return err;
}
err = of_property_read_u32_index(np, "dsa,member", 1, index);
if (err)
return err;
if (*index >= DSA_MAX_SWITCHES)
return -EINVAL;
return 0;
}
static int dsa_parse_member(struct dsa_chip_data *pd, u32 *tree, u32 *index)
{
if (!pd)
return -ENODEV;
/* We do not support complex trees with dsa_chip_data */
*tree = 0;
*index = 0;
return 0;
}
static struct device_node *dsa_get_ports(struct dsa_switch *ds,
struct device_node *np)
{
struct device_node *ports;
ports = of_get_child_by_name(np, "ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return ERR_PTR(-EINVAL);
}
return ports;
}
static int _dsa_register_switch(struct dsa_switch *ds)
{
struct dsa_chip_data *pdata = ds->dev->platform_data;
struct device_node *np = ds->dev->of_node;
struct dsa_switch_tree *dst;
struct device_node *ports;
u32 tree, index;
int i, err;
if (np) {
err = dsa_parse_member_dn(np, &tree, &index);
if (err)
return err;
ports = dsa_get_ports(ds, np);
if (IS_ERR(ports))
return PTR_ERR(ports);
err = dsa_parse_ports_dn(ports, ds);
if (err)
return err;
} else {
err = dsa_parse_member(pdata, &tree, &index);
if (err)
return err;
err = dsa_parse_ports(pdata, ds);
if (err)
return err;
}
dst = dsa_get_dst(tree);
if (!dst) {
dst = dsa_add_dst(tree);
if (!dst)
return -ENOMEM;
}
if (dst->ds[index]) {
err = -EBUSY;
goto out;
}
ds->dst = dst;
ds->index = index;
ds->cd = pdata;
/* Initialize the routing table */
for (i = 0; i < DSA_MAX_SWITCHES; ++i)
ds->rtable[i] = DSA_RTABLE_NONE;
dsa_dst_add_ds(dst, ds, index);
err = dsa_dst_complete(dst);
if (err < 0)
goto out_del_dst;
if (err == 1) {
/* Not all switches registered yet */
err = 0;
goto out;
}
if (dst->applied) {
pr_info("DSA: Disjoint trees?\n");
return -EINVAL;
}
err = dsa_dst_parse(dst);
if (err) {
if (err == -EPROBE_DEFER) {
dsa_dst_del_ds(dst, ds, ds->index);
return err;
}
goto out_del_dst;
}
err = dsa_dst_apply(dst);
if (err) {
dsa_dst_unapply(dst);
goto out_del_dst;
}
dsa_put_dst(dst);
return 0;
out_del_dst:
dsa_dst_del_ds(dst, ds, ds->index);
out:
dsa_put_dst(dst);
return err;
}
struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n)
{
size_t size = sizeof(struct dsa_switch) + n * sizeof(struct dsa_port);
struct dsa_switch *ds;
int i;
ds = devm_kzalloc(dev, size, GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = dev;
ds->num_ports = n;
for (i = 0; i < ds->num_ports; ++i) {
ds->ports[i].index = i;
ds->ports[i].ds = ds;
}
return ds;
}
EXPORT_SYMBOL_GPL(dsa_switch_alloc);
int dsa_register_switch(struct dsa_switch *ds)
{
int err;
mutex_lock(&dsa2_mutex);
err = _dsa_register_switch(ds);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void _dsa_unregister_switch(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
dsa_dst_unapply(dst);
dsa_dst_del_ds(dst, ds, ds->index);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
_dsa_unregister_switch(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);