mirror of https://gitee.com/openkylin/linux.git
359 lines
9.6 KiB
C
359 lines
9.6 KiB
C
/*
|
|
* Copyright (c) 2005-2011 Atheros Communications Inc.
|
|
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#ifndef _PCI_H_
|
|
#define _PCI_H_
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include "hw.h"
|
|
#include "ce.h"
|
|
|
|
/* FW dump area */
|
|
#define REG_DUMP_COUNT_QCA988X 60
|
|
|
|
/*
|
|
* maximum number of bytes that can be handled atomically by DiagRead/DiagWrite
|
|
*/
|
|
#define DIAG_TRANSFER_LIMIT 2048
|
|
|
|
/*
|
|
* maximum number of bytes that can be
|
|
* handled atomically by DiagRead/DiagWrite
|
|
*/
|
|
#define DIAG_TRANSFER_LIMIT 2048
|
|
|
|
struct bmi_xfer {
|
|
struct completion done;
|
|
bool wait_for_resp;
|
|
u32 resp_len;
|
|
};
|
|
|
|
struct ath10k_pci_compl {
|
|
struct list_head list;
|
|
int send_or_recv;
|
|
struct ce_state *ce_state;
|
|
struct hif_ce_pipe_info *pipe_info;
|
|
void *transfer_context;
|
|
unsigned int nbytes;
|
|
unsigned int transfer_id;
|
|
unsigned int flags;
|
|
};
|
|
|
|
/* compl_state.send_or_recv */
|
|
#define HIF_CE_COMPLETE_FREE 0
|
|
#define HIF_CE_COMPLETE_SEND 1
|
|
#define HIF_CE_COMPLETE_RECV 2
|
|
|
|
/*
|
|
* PCI-specific Target state
|
|
*
|
|
* NOTE: Structure is shared between Host software and Target firmware!
|
|
*
|
|
* Much of this may be of interest to the Host so
|
|
* HOST_INTEREST->hi_interconnect_state points here
|
|
* (and all members are 32-bit quantities in order to
|
|
* facilitate Host access). In particular, Host software is
|
|
* required to initialize pipe_cfg_addr and svc_to_pipe_map.
|
|
*/
|
|
struct pcie_state {
|
|
/* Pipe configuration Target address */
|
|
/* NB: ce_pipe_config[CE_COUNT] */
|
|
u32 pipe_cfg_addr;
|
|
|
|
/* Service to pipe map Target address */
|
|
/* NB: service_to_pipe[PIPE_TO_CE_MAP_CN] */
|
|
u32 svc_to_pipe_map;
|
|
|
|
/* number of MSI interrupts requested */
|
|
u32 msi_requested;
|
|
|
|
/* number of MSI interrupts granted */
|
|
u32 msi_granted;
|
|
|
|
/* Message Signalled Interrupt address */
|
|
u32 msi_addr;
|
|
|
|
/* Base data */
|
|
u32 msi_data;
|
|
|
|
/*
|
|
* Data for firmware interrupt;
|
|
* MSI data for other interrupts are
|
|
* in various SoC registers
|
|
*/
|
|
u32 msi_fw_intr_data;
|
|
|
|
/* PCIE_PWR_METHOD_* */
|
|
u32 power_mgmt_method;
|
|
|
|
/* PCIE_CONFIG_FLAG_* */
|
|
u32 config_flags;
|
|
};
|
|
|
|
/* PCIE_CONFIG_FLAG definitions */
|
|
#define PCIE_CONFIG_FLAG_ENABLE_L1 0x0000001
|
|
|
|
/* Host software's Copy Engine configuration. */
|
|
#define CE_ATTR_FLAGS 0
|
|
|
|
/*
|
|
* Configuration information for a Copy Engine pipe.
|
|
* Passed from Host to Target during startup (one per CE).
|
|
*
|
|
* NOTE: Structure is shared between Host software and Target firmware!
|
|
*/
|
|
struct ce_pipe_config {
|
|
u32 pipenum;
|
|
u32 pipedir;
|
|
u32 nentries;
|
|
u32 nbytes_max;
|
|
u32 flags;
|
|
u32 reserved;
|
|
};
|
|
|
|
/*
|
|
* Directions for interconnect pipe configuration.
|
|
* These definitions may be used during configuration and are shared
|
|
* between Host and Target.
|
|
*
|
|
* Pipe Directions are relative to the Host, so PIPEDIR_IN means
|
|
* "coming IN over air through Target to Host" as with a WiFi Rx operation.
|
|
* Conversely, PIPEDIR_OUT means "going OUT from Host through Target over air"
|
|
* as with a WiFi Tx operation. This is somewhat awkward for the "middle-man"
|
|
* Target since things that are "PIPEDIR_OUT" are coming IN to the Target
|
|
* over the interconnect.
|
|
*/
|
|
#define PIPEDIR_NONE 0
|
|
#define PIPEDIR_IN 1 /* Target-->Host, WiFi Rx direction */
|
|
#define PIPEDIR_OUT 2 /* Host->Target, WiFi Tx direction */
|
|
#define PIPEDIR_INOUT 3 /* bidirectional */
|
|
|
|
/* Establish a mapping between a service/direction and a pipe. */
|
|
struct service_to_pipe {
|
|
u32 service_id;
|
|
u32 pipedir;
|
|
u32 pipenum;
|
|
};
|
|
|
|
enum ath10k_pci_features {
|
|
ATH10K_PCI_FEATURE_MSI_X = 0,
|
|
ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND = 1,
|
|
ATH10K_PCI_FEATURE_SOC_POWER_SAVE = 2,
|
|
|
|
/* keep last */
|
|
ATH10K_PCI_FEATURE_COUNT
|
|
};
|
|
|
|
/* Per-pipe state. */
|
|
struct hif_ce_pipe_info {
|
|
/* Handle of underlying Copy Engine */
|
|
struct ce_state *ce_hdl;
|
|
|
|
/* Our pipe number; facilitiates use of pipe_info ptrs. */
|
|
u8 pipe_num;
|
|
|
|
/* Convenience back pointer to hif_ce_state. */
|
|
struct ath10k *hif_ce_state;
|
|
|
|
size_t buf_sz;
|
|
|
|
/* protects compl_free and num_send_allowed */
|
|
spinlock_t pipe_lock;
|
|
|
|
/* List of free CE completion slots */
|
|
struct list_head compl_free;
|
|
|
|
/* Limit the number of outstanding send requests. */
|
|
int num_sends_allowed;
|
|
|
|
struct ath10k_pci *ar_pci;
|
|
struct tasklet_struct intr;
|
|
};
|
|
|
|
struct ath10k_pci {
|
|
struct pci_dev *pdev;
|
|
struct device *dev;
|
|
struct ath10k *ar;
|
|
void __iomem *mem;
|
|
int cacheline_sz;
|
|
|
|
DECLARE_BITMAP(features, ATH10K_PCI_FEATURE_COUNT);
|
|
|
|
/*
|
|
* Number of MSI interrupts granted, 0 --> using legacy PCI line
|
|
* interrupts.
|
|
*/
|
|
int num_msi_intrs;
|
|
|
|
struct tasklet_struct intr_tq;
|
|
struct tasklet_struct msi_fw_err;
|
|
|
|
/* Number of Copy Engines supported */
|
|
unsigned int ce_count;
|
|
|
|
int started;
|
|
|
|
atomic_t keep_awake_count;
|
|
bool verified_awake;
|
|
|
|
/* List of CE completions to be processed */
|
|
struct list_head compl_process;
|
|
|
|
/* protects compl_processing and compl_process */
|
|
spinlock_t compl_lock;
|
|
|
|
bool compl_processing;
|
|
|
|
struct hif_ce_pipe_info pipe_info[CE_COUNT_MAX];
|
|
|
|
struct ath10k_hif_cb msg_callbacks_current;
|
|
|
|
/* Target address used to signal a pending firmware event */
|
|
u32 fw_indicator_address;
|
|
|
|
/* Copy Engine used for Diagnostic Accesses */
|
|
struct ce_state *ce_diag;
|
|
|
|
/* FIXME: document what this really protects */
|
|
spinlock_t ce_lock;
|
|
|
|
/* Map CE id to ce_state */
|
|
struct ce_state *ce_id_to_state[CE_COUNT_MAX];
|
|
|
|
/* makes sure that dummy reads are atomic */
|
|
spinlock_t hw_v1_workaround_lock;
|
|
};
|
|
|
|
static inline struct ath10k_pci *ath10k_pci_priv(struct ath10k *ar)
|
|
{
|
|
return ar->hif.priv;
|
|
}
|
|
|
|
static inline u32 ath10k_pci_reg_read32(void __iomem *mem, u32 addr)
|
|
{
|
|
return ioread32(mem + PCIE_LOCAL_BASE_ADDRESS + addr);
|
|
}
|
|
|
|
static inline void ath10k_pci_reg_write32(void __iomem *mem, u32 addr, u32 val)
|
|
{
|
|
iowrite32(val, mem + PCIE_LOCAL_BASE_ADDRESS + addr);
|
|
}
|
|
|
|
#define ATH_PCI_RESET_WAIT_MAX 10 /* ms */
|
|
#define PCIE_WAKE_TIMEOUT 5000 /* 5ms */
|
|
|
|
#define BAR_NUM 0
|
|
|
|
#define CDC_WAR_MAGIC_STR 0xceef0000
|
|
#define CDC_WAR_DATA_CE 4
|
|
|
|
/*
|
|
* TODO: Should be a function call specific to each Target-type.
|
|
* This convoluted macro converts from Target CPU Virtual Address Space to CE
|
|
* Address Space. As part of this process, we conservatively fetch the current
|
|
* PCIE_BAR. MOST of the time, this should match the upper bits of PCI space
|
|
* for this device; but that's not guaranteed.
|
|
*/
|
|
#define TARG_CPU_SPACE_TO_CE_SPACE(ar, pci_addr, addr) \
|
|
(((ioread32((pci_addr)+(SOC_CORE_BASE_ADDRESS| \
|
|
CORE_CTRL_ADDRESS)) & 0x7ff) << 21) | \
|
|
0x100000 | ((addr) & 0xfffff))
|
|
|
|
/* Wait up to this many Ms for a Diagnostic Access CE operation to complete */
|
|
#define DIAG_ACCESS_CE_TIMEOUT_MS 10
|
|
|
|
/*
|
|
* This API allows the Host to access Target registers directly
|
|
* and relatively efficiently over PCIe.
|
|
* This allows the Host to avoid extra overhead associated with
|
|
* sending a message to firmware and waiting for a response message
|
|
* from firmware, as is done on other interconnects.
|
|
*
|
|
* Yet there is some complexity with direct accesses because the
|
|
* Target's power state is not known a priori. The Host must issue
|
|
* special PCIe reads/writes in order to explicitly wake the Target
|
|
* and to verify that it is awake and will remain awake.
|
|
*
|
|
* Usage:
|
|
*
|
|
* Use ath10k_pci_read32 and ath10k_pci_write32 to access Target space.
|
|
* These calls must be bracketed by ath10k_pci_wake and
|
|
* ath10k_pci_sleep. A single BEGIN/END pair is adequate for
|
|
* multiple READ/WRITE operations.
|
|
*
|
|
* Use ath10k_pci_wake to put the Target in a state in
|
|
* which it is legal for the Host to directly access it. This
|
|
* may involve waking the Target from a low power state, which
|
|
* may take up to 2Ms!
|
|
*
|
|
* Use ath10k_pci_sleep to tell the Target that as far as
|
|
* this code path is concerned, it no longer needs to remain
|
|
* directly accessible. BEGIN/END is under a reference counter;
|
|
* multiple code paths may issue BEGIN/END on a single targid.
|
|
*/
|
|
static inline void ath10k_pci_write32(struct ath10k *ar, u32 offset,
|
|
u32 value)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
void __iomem *addr = ar_pci->mem;
|
|
|
|
if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features)) {
|
|
unsigned long irq_flags;
|
|
|
|
spin_lock_irqsave(&ar_pci->hw_v1_workaround_lock, irq_flags);
|
|
|
|
ioread32(addr+offset+4); /* 3rd read prior to write */
|
|
ioread32(addr+offset+4); /* 2nd read prior to write */
|
|
ioread32(addr+offset+4); /* 1st read prior to write */
|
|
iowrite32(value, addr+offset);
|
|
|
|
spin_unlock_irqrestore(&ar_pci->hw_v1_workaround_lock,
|
|
irq_flags);
|
|
} else {
|
|
iowrite32(value, addr+offset);
|
|
}
|
|
}
|
|
|
|
static inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
return ioread32(ar_pci->mem + offset);
|
|
}
|
|
|
|
void ath10k_do_pci_wake(struct ath10k *ar);
|
|
void ath10k_do_pci_sleep(struct ath10k *ar);
|
|
|
|
static inline void ath10k_pci_wake(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
|
|
ath10k_do_pci_wake(ar);
|
|
}
|
|
|
|
static inline void ath10k_pci_sleep(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
|
|
ath10k_do_pci_sleep(ar);
|
|
}
|
|
|
|
#endif /* _PCI_H_ */
|