linux/drivers/usb/gadget/fsl_qe_udc.c

2737 lines
63 KiB
C

/*
* driver/usb/gadget/fsl_qe_udc.c
*
* Copyright (c) 2006-2008 Freescale Semiconductor, Inc. All rights reserved.
*
* Xie Xiaobo <X.Xie@freescale.com>
* Li Yang <leoli@freescale.com>
* Based on bareboard code from Shlomi Gridish.
*
* Description:
* Freescle QE/CPM USB Pheripheral Controller Driver
* The controller can be found on MPC8360, MPC8272, and etc.
* MPC8360 Rev 1.1 may need QE mircocode update
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#undef USB_TRACE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/moduleparam.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <asm/qe.h>
#include <asm/cpm.h>
#include <asm/dma.h>
#include <asm/reg.h>
#include "fsl_qe_udc.h"
#define DRIVER_DESC "Freescale QE/CPM USB Device Controller driver"
#define DRIVER_AUTHOR "Xie XiaoBo"
#define DRIVER_VERSION "1.0"
#define DMA_ADDR_INVALID (~(dma_addr_t)0)
static const char driver_name[] = "fsl_qe_udc";
static const char driver_desc[] = DRIVER_DESC;
/*ep name is important in gadget, it should obey the convention of ep_match()*/
static const char *const ep_name[] = {
"ep0-control", /* everyone has ep0 */
/* 3 configurable endpoints */
"ep1",
"ep2",
"ep3",
};
static struct usb_endpoint_descriptor qe_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = USB_MAX_CTRL_PAYLOAD,
};
/********************************************************************
* Internal Used Function Start
********************************************************************/
/*-----------------------------------------------------------------
* done() - retire a request; caller blocked irqs
*--------------------------------------------------------------*/
static void done(struct qe_ep *ep, struct qe_req *req, int status)
{
struct qe_udc *udc = ep->udc;
unsigned char stopped = ep->stopped;
/* the req->queue pointer is used by ep_queue() func, in which
* the request will be added into a udc_ep->queue 'd tail
* so here the req will be dropped from the ep->queue
*/
list_del_init(&req->queue);
/* req.status should be set as -EINPROGRESS in ep_queue() */
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
if (req->mapped) {
dma_unmap_single(udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
} else
dma_sync_single_for_cpu(udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
if (status && (status != -ESHUTDOWN))
dev_vdbg(udc->dev, "complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
spin_unlock(&udc->lock);
/* this complete() should a func implemented by gadget layer,
* eg fsg->bulk_in_complete() */
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
ep->stopped = stopped;
}
/*-----------------------------------------------------------------
* nuke(): delete all requests related to this ep
*--------------------------------------------------------------*/
static void nuke(struct qe_ep *ep, int status)
{
/* Whether this eq has request linked */
while (!list_empty(&ep->queue)) {
struct qe_req *req = NULL;
req = list_entry(ep->queue.next, struct qe_req, queue);
done(ep, req, status);
}
}
/*---------------------------------------------------------------------------*
* USB and Endpoint manipulate process, include parameter and register *
*---------------------------------------------------------------------------*/
/* @value: 1--set stall 0--clean stall */
static int qe_eprx_stall_change(struct qe_ep *ep, int value)
{
u16 tem_usep;
u8 epnum = ep->epnum;
struct qe_udc *udc = ep->udc;
tem_usep = in_be16(&udc->usb_regs->usb_usep[epnum]);
tem_usep = tem_usep & ~USB_RHS_MASK;
if (value == 1)
tem_usep |= USB_RHS_STALL;
else if (ep->dir == USB_DIR_IN)
tem_usep |= USB_RHS_IGNORE_OUT;
out_be16(&udc->usb_regs->usb_usep[epnum], tem_usep);
return 0;
}
static int qe_eptx_stall_change(struct qe_ep *ep, int value)
{
u16 tem_usep;
u8 epnum = ep->epnum;
struct qe_udc *udc = ep->udc;
tem_usep = in_be16(&udc->usb_regs->usb_usep[epnum]);
tem_usep = tem_usep & ~USB_THS_MASK;
if (value == 1)
tem_usep |= USB_THS_STALL;
else if (ep->dir == USB_DIR_OUT)
tem_usep |= USB_THS_IGNORE_IN;
out_be16(&udc->usb_regs->usb_usep[epnum], tem_usep);
return 0;
}
static int qe_ep0_stall(struct qe_udc *udc)
{
qe_eptx_stall_change(&udc->eps[0], 1);
qe_eprx_stall_change(&udc->eps[0], 1);
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = 0;
return 0;
}
static int qe_eprx_nack(struct qe_ep *ep)
{
u8 epnum = ep->epnum;
struct qe_udc *udc = ep->udc;
if (ep->state == EP_STATE_IDLE) {
/* Set the ep's nack */
clrsetbits_be16(&udc->usb_regs->usb_usep[epnum],
USB_RHS_MASK, USB_RHS_NACK);
/* Mask Rx and Busy interrupts */
clrbits16(&udc->usb_regs->usb_usbmr,
(USB_E_RXB_MASK | USB_E_BSY_MASK));
ep->state = EP_STATE_NACK;
}
return 0;
}
static int qe_eprx_normal(struct qe_ep *ep)
{
struct qe_udc *udc = ep->udc;
if (ep->state == EP_STATE_NACK) {
clrsetbits_be16(&udc->usb_regs->usb_usep[ep->epnum],
USB_RTHS_MASK, USB_THS_IGNORE_IN);
/* Unmask RX interrupts */
out_be16(&udc->usb_regs->usb_usber,
USB_E_BSY_MASK | USB_E_RXB_MASK);
setbits16(&udc->usb_regs->usb_usbmr,
(USB_E_RXB_MASK | USB_E_BSY_MASK));
ep->state = EP_STATE_IDLE;
ep->has_data = 0;
}
return 0;
}
static int qe_ep_cmd_stoptx(struct qe_ep *ep)
{
if (ep->udc->soc_type == PORT_CPM)
cpm_command(CPM_USB_STOP_TX | (ep->epnum << CPM_USB_EP_SHIFT),
CPM_USB_STOP_TX_OPCODE);
else
qe_issue_cmd(QE_USB_STOP_TX, QE_CR_SUBBLOCK_USB,
ep->epnum, 0);
return 0;
}
static int qe_ep_cmd_restarttx(struct qe_ep *ep)
{
if (ep->udc->soc_type == PORT_CPM)
cpm_command(CPM_USB_RESTART_TX | (ep->epnum <<
CPM_USB_EP_SHIFT), CPM_USB_RESTART_TX_OPCODE);
else
qe_issue_cmd(QE_USB_RESTART_TX, QE_CR_SUBBLOCK_USB,
ep->epnum, 0);
return 0;
}
static int qe_ep_flushtxfifo(struct qe_ep *ep)
{
struct qe_udc *udc = ep->udc;
int i;
i = (int)ep->epnum;
qe_ep_cmd_stoptx(ep);
out_8(&udc->usb_regs->usb_uscom,
USB_CMD_FLUSH_FIFO | (USB_CMD_EP_MASK & (ep->epnum)));
out_be16(&udc->ep_param[i]->tbptr, in_be16(&udc->ep_param[i]->tbase));
out_be32(&udc->ep_param[i]->tstate, 0);
out_be16(&udc->ep_param[i]->tbcnt, 0);
ep->c_txbd = ep->txbase;
ep->n_txbd = ep->txbase;
qe_ep_cmd_restarttx(ep);
return 0;
}
static int qe_ep_filltxfifo(struct qe_ep *ep)
{
struct qe_udc *udc = ep->udc;
out_8(&udc->usb_regs->usb_uscom,
USB_CMD_STR_FIFO | (USB_CMD_EP_MASK & (ep->epnum)));
return 0;
}
static int qe_epbds_reset(struct qe_udc *udc, int pipe_num)
{
struct qe_ep *ep;
u32 bdring_len;
struct qe_bd __iomem *bd;
int i;
ep = &udc->eps[pipe_num];
if (ep->dir == USB_DIR_OUT)
bdring_len = USB_BDRING_LEN_RX;
else
bdring_len = USB_BDRING_LEN;
bd = ep->rxbase;
for (i = 0; i < (bdring_len - 1); i++) {
out_be32((u32 __iomem *)bd, R_E | R_I);
bd++;
}
out_be32((u32 __iomem *)bd, R_E | R_I | R_W);
bd = ep->txbase;
for (i = 0; i < USB_BDRING_LEN_TX - 1; i++) {
out_be32(&bd->buf, 0);
out_be32((u32 __iomem *)bd, 0);
bd++;
}
out_be32((u32 __iomem *)bd, T_W);
return 0;
}
static int qe_ep_reset(struct qe_udc *udc, int pipe_num)
{
struct qe_ep *ep;
u16 tmpusep;
ep = &udc->eps[pipe_num];
tmpusep = in_be16(&udc->usb_regs->usb_usep[pipe_num]);
tmpusep &= ~USB_RTHS_MASK;
switch (ep->dir) {
case USB_DIR_BOTH:
qe_ep_flushtxfifo(ep);
break;
case USB_DIR_OUT:
tmpusep |= USB_THS_IGNORE_IN;
break;
case USB_DIR_IN:
qe_ep_flushtxfifo(ep);
tmpusep |= USB_RHS_IGNORE_OUT;
break;
default:
break;
}
out_be16(&udc->usb_regs->usb_usep[pipe_num], tmpusep);
qe_epbds_reset(udc, pipe_num);
return 0;
}
static int qe_ep_toggledata01(struct qe_ep *ep)
{
ep->data01 ^= 0x1;
return 0;
}
static int qe_ep_bd_init(struct qe_udc *udc, unsigned char pipe_num)
{
struct qe_ep *ep = &udc->eps[pipe_num];
unsigned long tmp_addr = 0;
struct usb_ep_para __iomem *epparam;
int i;
struct qe_bd __iomem *bd;
int bdring_len;
if (ep->dir == USB_DIR_OUT)
bdring_len = USB_BDRING_LEN_RX;
else
bdring_len = USB_BDRING_LEN;
epparam = udc->ep_param[pipe_num];
/* alloc multi-ram for BD rings and set the ep parameters */
tmp_addr = cpm_muram_alloc(sizeof(struct qe_bd) * (bdring_len +
USB_BDRING_LEN_TX), QE_ALIGNMENT_OF_BD);
if (IS_ERR_VALUE(tmp_addr))
return -ENOMEM;
out_be16(&epparam->rbase, (u16)tmp_addr);
out_be16(&epparam->tbase, (u16)(tmp_addr +
(sizeof(struct qe_bd) * bdring_len)));
out_be16(&epparam->rbptr, in_be16(&epparam->rbase));
out_be16(&epparam->tbptr, in_be16(&epparam->tbase));
ep->rxbase = cpm_muram_addr(tmp_addr);
ep->txbase = cpm_muram_addr(tmp_addr + (sizeof(struct qe_bd)
* bdring_len));
ep->n_rxbd = ep->rxbase;
ep->e_rxbd = ep->rxbase;
ep->n_txbd = ep->txbase;
ep->c_txbd = ep->txbase;
ep->data01 = 0; /* data0 */
/* Init TX and RX bds */
bd = ep->rxbase;
for (i = 0; i < bdring_len - 1; i++) {
out_be32(&bd->buf, 0);
out_be32((u32 __iomem *)bd, 0);
bd++;
}
out_be32(&bd->buf, 0);
out_be32((u32 __iomem *)bd, R_W);
bd = ep->txbase;
for (i = 0; i < USB_BDRING_LEN_TX - 1; i++) {
out_be32(&bd->buf, 0);
out_be32((u32 __iomem *)bd, 0);
bd++;
}
out_be32(&bd->buf, 0);
out_be32((u32 __iomem *)bd, T_W);
return 0;
}
static int qe_ep_rxbd_update(struct qe_ep *ep)
{
unsigned int size;
int i;
unsigned int tmp;
struct qe_bd __iomem *bd;
unsigned int bdring_len;
if (ep->rxbase == NULL)
return -EINVAL;
bd = ep->rxbase;
ep->rxframe = kmalloc(sizeof(*ep->rxframe), GFP_ATOMIC);
if (ep->rxframe == NULL) {
dev_err(ep->udc->dev, "malloc rxframe failed\n");
return -ENOMEM;
}
qe_frame_init(ep->rxframe);
if (ep->dir == USB_DIR_OUT)
bdring_len = USB_BDRING_LEN_RX;
else
bdring_len = USB_BDRING_LEN;
size = (ep->ep.maxpacket + USB_CRC_SIZE + 2) * (bdring_len + 1);
ep->rxbuffer = kzalloc(size, GFP_ATOMIC);
if (ep->rxbuffer == NULL) {
dev_err(ep->udc->dev, "malloc rxbuffer failed,size=%d\n",
size);
kfree(ep->rxframe);
return -ENOMEM;
}
ep->rxbuf_d = virt_to_phys((void *)ep->rxbuffer);
if (ep->rxbuf_d == DMA_ADDR_INVALID) {
ep->rxbuf_d = dma_map_single(ep->udc->gadget.dev.parent,
ep->rxbuffer,
size,
DMA_FROM_DEVICE);
ep->rxbufmap = 1;
} else {
dma_sync_single_for_device(ep->udc->gadget.dev.parent,
ep->rxbuf_d, size,
DMA_FROM_DEVICE);
ep->rxbufmap = 0;
}
size = ep->ep.maxpacket + USB_CRC_SIZE + 2;
tmp = ep->rxbuf_d;
tmp = (u32)(((tmp >> 2) << 2) + 4);
for (i = 0; i < bdring_len - 1; i++) {
out_be32(&bd->buf, tmp);
out_be32((u32 __iomem *)bd, (R_E | R_I));
tmp = tmp + size;
bd++;
}
out_be32(&bd->buf, tmp);
out_be32((u32 __iomem *)bd, (R_E | R_I | R_W));
return 0;
}
static int qe_ep_register_init(struct qe_udc *udc, unsigned char pipe_num)
{
struct qe_ep *ep = &udc->eps[pipe_num];
struct usb_ep_para __iomem *epparam;
u16 usep, logepnum;
u16 tmp;
u8 rtfcr = 0;
epparam = udc->ep_param[pipe_num];
usep = 0;
logepnum = (ep->ep.desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
usep |= (logepnum << USB_EPNUM_SHIFT);
switch (ep->ep.desc->bmAttributes & 0x03) {
case USB_ENDPOINT_XFER_BULK:
usep |= USB_TRANS_BULK;
break;
case USB_ENDPOINT_XFER_ISOC:
usep |= USB_TRANS_ISO;
break;
case USB_ENDPOINT_XFER_INT:
usep |= USB_TRANS_INT;
break;
default:
usep |= USB_TRANS_CTR;
break;
}
switch (ep->dir) {
case USB_DIR_OUT:
usep |= USB_THS_IGNORE_IN;
break;
case USB_DIR_IN:
usep |= USB_RHS_IGNORE_OUT;
break;
default:
break;
}
out_be16(&udc->usb_regs->usb_usep[pipe_num], usep);
rtfcr = 0x30;
out_8(&epparam->rbmr, rtfcr);
out_8(&epparam->tbmr, rtfcr);
tmp = (u16)(ep->ep.maxpacket + USB_CRC_SIZE);
/* MRBLR must be divisble by 4 */
tmp = (u16)(((tmp >> 2) << 2) + 4);
out_be16(&epparam->mrblr, tmp);
return 0;
}
static int qe_ep_init(struct qe_udc *udc,
unsigned char pipe_num,
const struct usb_endpoint_descriptor *desc)
{
struct qe_ep *ep = &udc->eps[pipe_num];
unsigned long flags;
int reval = 0;
u16 max = 0;
max = usb_endpoint_maxp(desc);
/* check the max package size validate for this endpoint */
/* Refer to USB2.0 spec table 9-13,
*/
if (pipe_num != 0) {
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_BULK:
if (strstr(ep->ep.name, "-iso")
|| strstr(ep->ep.name, "-int"))
goto en_done;
switch (udc->gadget.speed) {
case USB_SPEED_HIGH:
if ((max == 128) || (max == 256) || (max == 512))
break;
default:
switch (max) {
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
case USB_SPEED_LOW:
goto en_done;
}
}
break;
case USB_ENDPOINT_XFER_INT:
if (strstr(ep->ep.name, "-iso")) /* bulk is ok */
goto en_done;
switch (udc->gadget.speed) {
case USB_SPEED_HIGH:
if (max <= 1024)
break;
case USB_SPEED_FULL:
if (max <= 64)
break;
default:
if (max <= 8)
break;
goto en_done;
}
break;
case USB_ENDPOINT_XFER_ISOC:
if (strstr(ep->ep.name, "-bulk")
|| strstr(ep->ep.name, "-int"))
goto en_done;
switch (udc->gadget.speed) {
case USB_SPEED_HIGH:
if (max <= 1024)
break;
case USB_SPEED_FULL:
if (max <= 1023)
break;
default:
goto en_done;
}
break;
case USB_ENDPOINT_XFER_CONTROL:
if (strstr(ep->ep.name, "-iso")
|| strstr(ep->ep.name, "-int"))
goto en_done;
switch (udc->gadget.speed) {
case USB_SPEED_HIGH:
case USB_SPEED_FULL:
switch (max) {
case 1:
case 2:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
goto en_done;
}
case USB_SPEED_LOW:
switch (max) {
case 1:
case 2:
case 4:
case 8:
break;
default:
goto en_done;
}
default:
goto en_done;
}
break;
default:
goto en_done;
}
} /* if ep0*/
spin_lock_irqsave(&udc->lock, flags);
/* initialize ep structure */
ep->ep.maxpacket = max;
ep->tm = (u8)(desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
ep->ep.desc = desc;
ep->stopped = 0;
ep->init = 1;
if (pipe_num == 0) {
ep->dir = USB_DIR_BOTH;
udc->ep0_dir = USB_DIR_OUT;
udc->ep0_state = WAIT_FOR_SETUP;
} else {
switch (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) {
case USB_DIR_OUT:
ep->dir = USB_DIR_OUT;
break;
case USB_DIR_IN:
ep->dir = USB_DIR_IN;
default:
break;
}
}
/* hardware special operation */
qe_ep_bd_init(udc, pipe_num);
if ((ep->tm == USBP_TM_CTL) || (ep->dir == USB_DIR_OUT)) {
reval = qe_ep_rxbd_update(ep);
if (reval)
goto en_done1;
}
if ((ep->tm == USBP_TM_CTL) || (ep->dir == USB_DIR_IN)) {
ep->txframe = kmalloc(sizeof(*ep->txframe), GFP_ATOMIC);
if (ep->txframe == NULL) {
dev_err(udc->dev, "malloc txframe failed\n");
goto en_done2;
}
qe_frame_init(ep->txframe);
}
qe_ep_register_init(udc, pipe_num);
/* Now HW will be NAKing transfers to that EP,
* until a buffer is queued to it. */
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
en_done2:
kfree(ep->rxbuffer);
kfree(ep->rxframe);
en_done1:
spin_unlock_irqrestore(&udc->lock, flags);
en_done:
dev_err(udc->dev, "failed to initialize %s\n", ep->ep.name);
return -ENODEV;
}
static inline void qe_usb_enable(struct qe_udc *udc)
{
setbits8(&udc->usb_regs->usb_usmod, USB_MODE_EN);
}
static inline void qe_usb_disable(struct qe_udc *udc)
{
clrbits8(&udc->usb_regs->usb_usmod, USB_MODE_EN);
}
/*----------------------------------------------------------------------------*
* USB and EP basic manipulate function end *
*----------------------------------------------------------------------------*/
/******************************************************************************
UDC transmit and receive process
******************************************************************************/
static void recycle_one_rxbd(struct qe_ep *ep)
{
u32 bdstatus;
bdstatus = in_be32((u32 __iomem *)ep->e_rxbd);
bdstatus = R_I | R_E | (bdstatus & R_W);
out_be32((u32 __iomem *)ep->e_rxbd, bdstatus);
if (bdstatus & R_W)
ep->e_rxbd = ep->rxbase;
else
ep->e_rxbd++;
}
static void recycle_rxbds(struct qe_ep *ep, unsigned char stopatnext)
{
u32 bdstatus;
struct qe_bd __iomem *bd, *nextbd;
unsigned char stop = 0;
nextbd = ep->n_rxbd;
bd = ep->e_rxbd;
bdstatus = in_be32((u32 __iomem *)bd);
while (!(bdstatus & R_E) && !(bdstatus & BD_LENGTH_MASK) && !stop) {
bdstatus = R_E | R_I | (bdstatus & R_W);
out_be32((u32 __iomem *)bd, bdstatus);
if (bdstatus & R_W)
bd = ep->rxbase;
else
bd++;
bdstatus = in_be32((u32 __iomem *)bd);
if (stopatnext && (bd == nextbd))
stop = 1;
}
ep->e_rxbd = bd;
}
static void ep_recycle_rxbds(struct qe_ep *ep)
{
struct qe_bd __iomem *bd = ep->n_rxbd;
u32 bdstatus;
u8 epnum = ep->epnum;
struct qe_udc *udc = ep->udc;
bdstatus = in_be32((u32 __iomem *)bd);
if (!(bdstatus & R_E) && !(bdstatus & BD_LENGTH_MASK)) {
bd = ep->rxbase +
((in_be16(&udc->ep_param[epnum]->rbptr) -
in_be16(&udc->ep_param[epnum]->rbase))
>> 3);
bdstatus = in_be32((u32 __iomem *)bd);
if (bdstatus & R_W)
bd = ep->rxbase;
else
bd++;
ep->e_rxbd = bd;
recycle_rxbds(ep, 0);
ep->e_rxbd = ep->n_rxbd;
} else
recycle_rxbds(ep, 1);
if (in_be16(&udc->usb_regs->usb_usber) & USB_E_BSY_MASK)
out_be16(&udc->usb_regs->usb_usber, USB_E_BSY_MASK);
if (ep->has_data <= 0 && (!list_empty(&ep->queue)))
qe_eprx_normal(ep);
ep->localnack = 0;
}
static void setup_received_handle(struct qe_udc *udc,
struct usb_ctrlrequest *setup);
static int qe_ep_rxframe_handle(struct qe_ep *ep);
static void ep0_req_complete(struct qe_udc *udc, struct qe_req *req);
/* when BD PID is setup, handle the packet */
static int ep0_setup_handle(struct qe_udc *udc)
{
struct qe_ep *ep = &udc->eps[0];
struct qe_frame *pframe;
unsigned int fsize;
u8 *cp;
pframe = ep->rxframe;
if ((frame_get_info(pframe) & PID_SETUP)
&& (udc->ep0_state == WAIT_FOR_SETUP)) {
fsize = frame_get_length(pframe);
if (unlikely(fsize != 8))
return -EINVAL;
cp = (u8 *)&udc->local_setup_buff;
memcpy(cp, pframe->data, fsize);
ep->data01 = 1;
/* handle the usb command base on the usb_ctrlrequest */
setup_received_handle(udc, &udc->local_setup_buff);
return 0;
}
return -EINVAL;
}
static int qe_ep0_rx(struct qe_udc *udc)
{
struct qe_ep *ep = &udc->eps[0];
struct qe_frame *pframe;
struct qe_bd __iomem *bd;
u32 bdstatus, length;
u32 vaddr;
pframe = ep->rxframe;
if (ep->dir == USB_DIR_IN) {
dev_err(udc->dev, "ep0 not a control endpoint\n");
return -EINVAL;
}
bd = ep->n_rxbd;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
while (!(bdstatus & R_E) && length) {
if ((bdstatus & R_F) && (bdstatus & R_L)
&& !(bdstatus & R_ERROR)) {
if (length == USB_CRC_SIZE) {
udc->ep0_state = WAIT_FOR_SETUP;
dev_vdbg(udc->dev,
"receive a ZLP in status phase\n");
} else {
qe_frame_clean(pframe);
vaddr = (u32)phys_to_virt(in_be32(&bd->buf));
frame_set_data(pframe, (u8 *)vaddr);
frame_set_length(pframe,
(length - USB_CRC_SIZE));
frame_set_status(pframe, FRAME_OK);
switch (bdstatus & R_PID) {
case R_PID_SETUP:
frame_set_info(pframe, PID_SETUP);
break;
case R_PID_DATA1:
frame_set_info(pframe, PID_DATA1);
break;
default:
frame_set_info(pframe, PID_DATA0);
break;
}
if ((bdstatus & R_PID) == R_PID_SETUP)
ep0_setup_handle(udc);
else
qe_ep_rxframe_handle(ep);
}
} else {
dev_err(udc->dev, "The receive frame with error!\n");
}
/* note: don't clear the rxbd's buffer address */
recycle_one_rxbd(ep);
/* Get next BD */
if (bdstatus & R_W)
bd = ep->rxbase;
else
bd++;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
}
ep->n_rxbd = bd;
return 0;
}
static int qe_ep_rxframe_handle(struct qe_ep *ep)
{
struct qe_frame *pframe;
u8 framepid = 0;
unsigned int fsize;
u8 *cp;
struct qe_req *req;
pframe = ep->rxframe;
if (frame_get_info(pframe) & PID_DATA1)
framepid = 0x1;
if (framepid != ep->data01) {
dev_err(ep->udc->dev, "the data01 error!\n");
return -EIO;
}
fsize = frame_get_length(pframe);
if (list_empty(&ep->queue)) {
dev_err(ep->udc->dev, "the %s have no requeue!\n", ep->name);
} else {
req = list_entry(ep->queue.next, struct qe_req, queue);
cp = (u8 *)(req->req.buf) + req->req.actual;
if (cp) {
memcpy(cp, pframe->data, fsize);
req->req.actual += fsize;
if ((fsize < ep->ep.maxpacket) ||
(req->req.actual >= req->req.length)) {
if (ep->epnum == 0)
ep0_req_complete(ep->udc, req);
else
done(ep, req, 0);
if (list_empty(&ep->queue) && ep->epnum != 0)
qe_eprx_nack(ep);
}
}
}
qe_ep_toggledata01(ep);
return 0;
}
static void ep_rx_tasklet(unsigned long data)
{
struct qe_udc *udc = (struct qe_udc *)data;
struct qe_ep *ep;
struct qe_frame *pframe;
struct qe_bd __iomem *bd;
unsigned long flags;
u32 bdstatus, length;
u32 vaddr, i;
spin_lock_irqsave(&udc->lock, flags);
for (i = 1; i < USB_MAX_ENDPOINTS; i++) {
ep = &udc->eps[i];
if (ep->dir == USB_DIR_IN || ep->enable_tasklet == 0) {
dev_dbg(udc->dev,
"This is a transmit ep or disable tasklet!\n");
continue;
}
pframe = ep->rxframe;
bd = ep->n_rxbd;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
while (!(bdstatus & R_E) && length) {
if (list_empty(&ep->queue)) {
qe_eprx_nack(ep);
dev_dbg(udc->dev,
"The rxep have noreq %d\n",
ep->has_data);
break;
}
if ((bdstatus & R_F) && (bdstatus & R_L)
&& !(bdstatus & R_ERROR)) {
qe_frame_clean(pframe);
vaddr = (u32)phys_to_virt(in_be32(&bd->buf));
frame_set_data(pframe, (u8 *)vaddr);
frame_set_length(pframe,
(length - USB_CRC_SIZE));
frame_set_status(pframe, FRAME_OK);
switch (bdstatus & R_PID) {
case R_PID_DATA1:
frame_set_info(pframe, PID_DATA1);
break;
case R_PID_SETUP:
frame_set_info(pframe, PID_SETUP);
break;
default:
frame_set_info(pframe, PID_DATA0);
break;
}
/* handle the rx frame */
qe_ep_rxframe_handle(ep);
} else {
dev_err(udc->dev,
"error in received frame\n");
}
/* note: don't clear the rxbd's buffer address */
/*clear the length */
out_be32((u32 __iomem *)bd, bdstatus & BD_STATUS_MASK);
ep->has_data--;
if (!(ep->localnack))
recycle_one_rxbd(ep);
/* Get next BD */
if (bdstatus & R_W)
bd = ep->rxbase;
else
bd++;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
}
ep->n_rxbd = bd;
if (ep->localnack)
ep_recycle_rxbds(ep);
ep->enable_tasklet = 0;
} /* for i=1 */
spin_unlock_irqrestore(&udc->lock, flags);
}
static int qe_ep_rx(struct qe_ep *ep)
{
struct qe_udc *udc;
struct qe_frame *pframe;
struct qe_bd __iomem *bd;
u16 swoffs, ucoffs, emptybds;
udc = ep->udc;
pframe = ep->rxframe;
if (ep->dir == USB_DIR_IN) {
dev_err(udc->dev, "transmit ep in rx function\n");
return -EINVAL;
}
bd = ep->n_rxbd;
swoffs = (u16)(bd - ep->rxbase);
ucoffs = (u16)((in_be16(&udc->ep_param[ep->epnum]->rbptr) -
in_be16(&udc->ep_param[ep->epnum]->rbase)) >> 3);
if (swoffs < ucoffs)
emptybds = USB_BDRING_LEN_RX - ucoffs + swoffs;
else
emptybds = swoffs - ucoffs;
if (emptybds < MIN_EMPTY_BDS) {
qe_eprx_nack(ep);
ep->localnack = 1;
dev_vdbg(udc->dev, "%d empty bds, send NACK\n", emptybds);
}
ep->has_data = USB_BDRING_LEN_RX - emptybds;
if (list_empty(&ep->queue)) {
qe_eprx_nack(ep);
dev_vdbg(udc->dev, "The rxep have no req queued with %d BDs\n",
ep->has_data);
return 0;
}
tasklet_schedule(&udc->rx_tasklet);
ep->enable_tasklet = 1;
return 0;
}
/* send data from a frame, no matter what tx_req */
static int qe_ep_tx(struct qe_ep *ep, struct qe_frame *frame)
{
struct qe_udc *udc = ep->udc;
struct qe_bd __iomem *bd;
u16 saveusbmr;
u32 bdstatus, pidmask;
u32 paddr;
if (ep->dir == USB_DIR_OUT) {
dev_err(udc->dev, "receive ep passed to tx function\n");
return -EINVAL;
}
/* Disable the Tx interrupt */
saveusbmr = in_be16(&udc->usb_regs->usb_usbmr);
out_be16(&udc->usb_regs->usb_usbmr,
saveusbmr & ~(USB_E_TXB_MASK | USB_E_TXE_MASK));
bd = ep->n_txbd;
bdstatus = in_be32((u32 __iomem *)bd);
if (!(bdstatus & (T_R | BD_LENGTH_MASK))) {
if (frame_get_length(frame) == 0) {
frame_set_data(frame, udc->nullbuf);
frame_set_length(frame, 2);
frame->info |= (ZLP | NO_CRC);
dev_vdbg(udc->dev, "the frame size = 0\n");
}
paddr = virt_to_phys((void *)frame->data);
out_be32(&bd->buf, paddr);
bdstatus = (bdstatus&T_W);
if (!(frame_get_info(frame) & NO_CRC))
bdstatus |= T_R | T_I | T_L | T_TC
| frame_get_length(frame);
else
bdstatus |= T_R | T_I | T_L | frame_get_length(frame);
/* if the packet is a ZLP in status phase */
if ((ep->epnum == 0) && (udc->ep0_state == DATA_STATE_NEED_ZLP))
ep->data01 = 0x1;
if (ep->data01) {
pidmask = T_PID_DATA1;
frame->info |= PID_DATA1;
} else {
pidmask = T_PID_DATA0;
frame->info |= PID_DATA0;
}
bdstatus |= T_CNF;
bdstatus |= pidmask;
out_be32((u32 __iomem *)bd, bdstatus);
qe_ep_filltxfifo(ep);
/* enable the TX interrupt */
out_be16(&udc->usb_regs->usb_usbmr, saveusbmr);
qe_ep_toggledata01(ep);
if (bdstatus & T_W)
ep->n_txbd = ep->txbase;
else
ep->n_txbd++;
return 0;
} else {
out_be16(&udc->usb_regs->usb_usbmr, saveusbmr);
dev_vdbg(udc->dev, "The tx bd is not ready!\n");
return -EBUSY;
}
}
/* when a bd was transmitted, the function can
* handle the tx_req, not include ep0 */
static int txcomplete(struct qe_ep *ep, unsigned char restart)
{
if (ep->tx_req != NULL) {
struct qe_req *req = ep->tx_req;
unsigned zlp = 0, last_len = 0;
last_len = min_t(unsigned, req->req.length - ep->sent,
ep->ep.maxpacket);
if (!restart) {
int asent = ep->last;
ep->sent += asent;
ep->last -= asent;
} else {
ep->last = 0;
}
/* zlp needed when req->re.zero is set */
if (req->req.zero) {
if (last_len == 0 ||
(req->req.length % ep->ep.maxpacket) != 0)
zlp = 0;
else
zlp = 1;
} else
zlp = 0;
/* a request already were transmitted completely */
if (((ep->tx_req->req.length - ep->sent) <= 0) && !zlp) {
done(ep, ep->tx_req, 0);
ep->tx_req = NULL;
ep->last = 0;
ep->sent = 0;
}
}
/* we should gain a new tx_req fot this endpoint */
if (ep->tx_req == NULL) {
if (!list_empty(&ep->queue)) {
ep->tx_req = list_entry(ep->queue.next, struct qe_req,
queue);
ep->last = 0;
ep->sent = 0;
}
}
return 0;
}
/* give a frame and a tx_req, send some data */
static int qe_usb_senddata(struct qe_ep *ep, struct qe_frame *frame)
{
unsigned int size;
u8 *buf;
qe_frame_clean(frame);
size = min_t(u32, (ep->tx_req->req.length - ep->sent),
ep->ep.maxpacket);
buf = (u8 *)ep->tx_req->req.buf + ep->sent;
if (buf && size) {
ep->last = size;
ep->tx_req->req.actual += size;
frame_set_data(frame, buf);
frame_set_length(frame, size);
frame_set_status(frame, FRAME_OK);
frame_set_info(frame, 0);
return qe_ep_tx(ep, frame);
}
return -EIO;
}
/* give a frame struct,send a ZLP */
static int sendnulldata(struct qe_ep *ep, struct qe_frame *frame, uint infor)
{
struct qe_udc *udc = ep->udc;
if (frame == NULL)
return -ENODEV;
qe_frame_clean(frame);
frame_set_data(frame, (u8 *)udc->nullbuf);
frame_set_length(frame, 2);
frame_set_status(frame, FRAME_OK);
frame_set_info(frame, (ZLP | NO_CRC | infor));
return qe_ep_tx(ep, frame);
}
static int frame_create_tx(struct qe_ep *ep, struct qe_frame *frame)
{
struct qe_req *req = ep->tx_req;
int reval;
if (req == NULL)
return -ENODEV;
if ((req->req.length - ep->sent) > 0)
reval = qe_usb_senddata(ep, frame);
else
reval = sendnulldata(ep, frame, 0);
return reval;
}
/* if direction is DIR_IN, the status is Device->Host
* if direction is DIR_OUT, the status transaction is Device<-Host
* in status phase, udc create a request and gain status */
static int ep0_prime_status(struct qe_udc *udc, int direction)
{
struct qe_ep *ep = &udc->eps[0];
if (direction == USB_DIR_IN) {
udc->ep0_state = DATA_STATE_NEED_ZLP;
udc->ep0_dir = USB_DIR_IN;
sendnulldata(ep, ep->txframe, SETUP_STATUS | NO_REQ);
} else {
udc->ep0_dir = USB_DIR_OUT;
udc->ep0_state = WAIT_FOR_OUT_STATUS;
}
return 0;
}
/* a request complete in ep0, whether gadget request or udc request */
static void ep0_req_complete(struct qe_udc *udc, struct qe_req *req)
{
struct qe_ep *ep = &udc->eps[0];
/* because usb and ep's status already been set in ch9setaddress() */
switch (udc->ep0_state) {
case DATA_STATE_XMIT:
done(ep, req, 0);
/* receive status phase */
if (ep0_prime_status(udc, USB_DIR_OUT))
qe_ep0_stall(udc);
break;
case DATA_STATE_NEED_ZLP:
done(ep, req, 0);
udc->ep0_state = WAIT_FOR_SETUP;
break;
case DATA_STATE_RECV:
done(ep, req, 0);
/* send status phase */
if (ep0_prime_status(udc, USB_DIR_IN))
qe_ep0_stall(udc);
break;
case WAIT_FOR_OUT_STATUS:
done(ep, req, 0);
udc->ep0_state = WAIT_FOR_SETUP;
break;
case WAIT_FOR_SETUP:
dev_vdbg(udc->dev, "Unexpected interrupt\n");
break;
default:
qe_ep0_stall(udc);
break;
}
}
static int ep0_txcomplete(struct qe_ep *ep, unsigned char restart)
{
struct qe_req *tx_req = NULL;
struct qe_frame *frame = ep->txframe;
if ((frame_get_info(frame) & (ZLP | NO_REQ)) == (ZLP | NO_REQ)) {
if (!restart)
ep->udc->ep0_state = WAIT_FOR_SETUP;
else
sendnulldata(ep, ep->txframe, SETUP_STATUS | NO_REQ);
return 0;
}
tx_req = ep->tx_req;
if (tx_req != NULL) {
if (!restart) {
int asent = ep->last;
ep->sent += asent;
ep->last -= asent;
} else {
ep->last = 0;
}
/* a request already were transmitted completely */
if ((ep->tx_req->req.length - ep->sent) <= 0) {
ep->tx_req->req.actual = (unsigned int)ep->sent;
ep0_req_complete(ep->udc, ep->tx_req);
ep->tx_req = NULL;
ep->last = 0;
ep->sent = 0;
}
} else {
dev_vdbg(ep->udc->dev, "the ep0_controller have no req\n");
}
return 0;
}
static int ep0_txframe_handle(struct qe_ep *ep)
{
/* if have error, transmit again */
if (frame_get_status(ep->txframe) & FRAME_ERROR) {
qe_ep_flushtxfifo(ep);
dev_vdbg(ep->udc->dev, "The EP0 transmit data have error!\n");
if (frame_get_info(ep->txframe) & PID_DATA0)
ep->data01 = 0;
else
ep->data01 = 1;
ep0_txcomplete(ep, 1);
} else
ep0_txcomplete(ep, 0);
frame_create_tx(ep, ep->txframe);
return 0;
}
static int qe_ep0_txconf(struct qe_ep *ep)
{
struct qe_bd __iomem *bd;
struct qe_frame *pframe;
u32 bdstatus;
bd = ep->c_txbd;
bdstatus = in_be32((u32 __iomem *)bd);
while (!(bdstatus & T_R) && (bdstatus & ~T_W)) {
pframe = ep->txframe;
/* clear and recycle the BD */
out_be32((u32 __iomem *)bd, bdstatus & T_W);
out_be32(&bd->buf, 0);
if (bdstatus & T_W)
ep->c_txbd = ep->txbase;
else
ep->c_txbd++;
if (ep->c_txbd == ep->n_txbd) {
if (bdstatus & DEVICE_T_ERROR) {
frame_set_status(pframe, FRAME_ERROR);
if (bdstatus & T_TO)
pframe->status |= TX_ER_TIMEOUT;
if (bdstatus & T_UN)
pframe->status |= TX_ER_UNDERUN;
}
ep0_txframe_handle(ep);
}
bd = ep->c_txbd;
bdstatus = in_be32((u32 __iomem *)bd);
}
return 0;
}
static int ep_txframe_handle(struct qe_ep *ep)
{
if (frame_get_status(ep->txframe) & FRAME_ERROR) {
qe_ep_flushtxfifo(ep);
dev_vdbg(ep->udc->dev, "The EP0 transmit data have error!\n");
if (frame_get_info(ep->txframe) & PID_DATA0)
ep->data01 = 0;
else
ep->data01 = 1;
txcomplete(ep, 1);
} else
txcomplete(ep, 0);
frame_create_tx(ep, ep->txframe); /* send the data */
return 0;
}
/* confirm the already trainsmited bd */
static int qe_ep_txconf(struct qe_ep *ep)
{
struct qe_bd __iomem *bd;
struct qe_frame *pframe = NULL;
u32 bdstatus;
unsigned char breakonrxinterrupt = 0;
bd = ep->c_txbd;
bdstatus = in_be32((u32 __iomem *)bd);
while (!(bdstatus & T_R) && (bdstatus & ~T_W)) {
pframe = ep->txframe;
if (bdstatus & DEVICE_T_ERROR) {
frame_set_status(pframe, FRAME_ERROR);
if (bdstatus & T_TO)
pframe->status |= TX_ER_TIMEOUT;
if (bdstatus & T_UN)
pframe->status |= TX_ER_UNDERUN;
}
/* clear and recycle the BD */
out_be32((u32 __iomem *)bd, bdstatus & T_W);
out_be32(&bd->buf, 0);
if (bdstatus & T_W)
ep->c_txbd = ep->txbase;
else
ep->c_txbd++;
/* handle the tx frame */
ep_txframe_handle(ep);
bd = ep->c_txbd;
bdstatus = in_be32((u32 __iomem *)bd);
}
if (breakonrxinterrupt)
return -EIO;
else
return 0;
}
/* Add a request in queue, and try to transmit a packet */
static int ep_req_send(struct qe_ep *ep, struct qe_req *req)
{
int reval = 0;
if (ep->tx_req == NULL) {
ep->sent = 0;
ep->last = 0;
txcomplete(ep, 0); /* can gain a new tx_req */
reval = frame_create_tx(ep, ep->txframe);
}
return reval;
}
/* Maybe this is a good ideal */
static int ep_req_rx(struct qe_ep *ep, struct qe_req *req)
{
struct qe_udc *udc = ep->udc;
struct qe_frame *pframe = NULL;
struct qe_bd __iomem *bd;
u32 bdstatus, length;
u32 vaddr, fsize;
u8 *cp;
u8 finish_req = 0;
u8 framepid;
if (list_empty(&ep->queue)) {
dev_vdbg(udc->dev, "the req already finish!\n");
return 0;
}
pframe = ep->rxframe;
bd = ep->n_rxbd;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
while (!(bdstatus & R_E) && length) {
if (finish_req)
break;
if ((bdstatus & R_F) && (bdstatus & R_L)
&& !(bdstatus & R_ERROR)) {
qe_frame_clean(pframe);
vaddr = (u32)phys_to_virt(in_be32(&bd->buf));
frame_set_data(pframe, (u8 *)vaddr);
frame_set_length(pframe, (length - USB_CRC_SIZE));
frame_set_status(pframe, FRAME_OK);
switch (bdstatus & R_PID) {
case R_PID_DATA1:
frame_set_info(pframe, PID_DATA1); break;
default:
frame_set_info(pframe, PID_DATA0); break;
}
/* handle the rx frame */
if (frame_get_info(pframe) & PID_DATA1)
framepid = 0x1;
else
framepid = 0;
if (framepid != ep->data01) {
dev_vdbg(udc->dev, "the data01 error!\n");
} else {
fsize = frame_get_length(pframe);
cp = (u8 *)(req->req.buf) + req->req.actual;
if (cp) {
memcpy(cp, pframe->data, fsize);
req->req.actual += fsize;
if ((fsize < ep->ep.maxpacket)
|| (req->req.actual >=
req->req.length)) {
finish_req = 1;
done(ep, req, 0);
if (list_empty(&ep->queue))
qe_eprx_nack(ep);
}
}
qe_ep_toggledata01(ep);
}
} else {
dev_err(udc->dev, "The receive frame with error!\n");
}
/* note: don't clear the rxbd's buffer address *
* only Clear the length */
out_be32((u32 __iomem *)bd, (bdstatus & BD_STATUS_MASK));
ep->has_data--;
/* Get next BD */
if (bdstatus & R_W)
bd = ep->rxbase;
else
bd++;
bdstatus = in_be32((u32 __iomem *)bd);
length = bdstatus & BD_LENGTH_MASK;
}
ep->n_rxbd = bd;
ep_recycle_rxbds(ep);
return 0;
}
/* only add the request in queue */
static int ep_req_receive(struct qe_ep *ep, struct qe_req *req)
{
if (ep->state == EP_STATE_NACK) {
if (ep->has_data <= 0) {
/* Enable rx and unmask rx interrupt */
qe_eprx_normal(ep);
} else {
/* Copy the exist BD data */
ep_req_rx(ep, req);
}
}
return 0;
}
/********************************************************************
Internal Used Function End
********************************************************************/
/*-----------------------------------------------------------------------
Endpoint Management Functions For Gadget
-----------------------------------------------------------------------*/
static int qe_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct qe_udc *udc;
struct qe_ep *ep;
int retval = 0;
unsigned char epnum;
ep = container_of(_ep, struct qe_ep, ep);
/* catch various bogus parameters */
if (!_ep || !desc || _ep->name == ep_name[0] ||
(desc->bDescriptorType != USB_DT_ENDPOINT))
return -EINVAL;
udc = ep->udc;
if (!udc->driver || (udc->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
epnum = (u8)desc->bEndpointAddress & 0xF;
retval = qe_ep_init(udc, epnum, desc);
if (retval != 0) {
cpm_muram_free(cpm_muram_offset(ep->rxbase));
dev_dbg(udc->dev, "enable ep%d failed\n", ep->epnum);
return -EINVAL;
}
dev_dbg(udc->dev, "enable ep%d successful\n", ep->epnum);
return 0;
}
static int qe_ep_disable(struct usb_ep *_ep)
{
struct qe_udc *udc;
struct qe_ep *ep;
unsigned long flags;
unsigned int size;
ep = container_of(_ep, struct qe_ep, ep);
udc = ep->udc;
if (!_ep || !ep->ep.desc) {
dev_dbg(udc->dev, "%s not enabled\n", _ep ? ep->ep.name : NULL);
return -EINVAL;
}
spin_lock_irqsave(&udc->lock, flags);
/* Nuke all pending requests (does flush) */
nuke(ep, -ESHUTDOWN);
ep->ep.desc = NULL;
ep->stopped = 1;
ep->tx_req = NULL;
qe_ep_reset(udc, ep->epnum);
spin_unlock_irqrestore(&udc->lock, flags);
cpm_muram_free(cpm_muram_offset(ep->rxbase));
if (ep->dir == USB_DIR_OUT)
size = (ep->ep.maxpacket + USB_CRC_SIZE + 2) *
(USB_BDRING_LEN_RX + 1);
else
size = (ep->ep.maxpacket + USB_CRC_SIZE + 2) *
(USB_BDRING_LEN + 1);
if (ep->dir != USB_DIR_IN) {
kfree(ep->rxframe);
if (ep->rxbufmap) {
dma_unmap_single(udc->gadget.dev.parent,
ep->rxbuf_d, size,
DMA_FROM_DEVICE);
ep->rxbuf_d = DMA_ADDR_INVALID;
} else {
dma_sync_single_for_cpu(
udc->gadget.dev.parent,
ep->rxbuf_d, size,
DMA_FROM_DEVICE);
}
kfree(ep->rxbuffer);
}
if (ep->dir != USB_DIR_OUT)
kfree(ep->txframe);
dev_dbg(udc->dev, "disabled %s OK\n", _ep->name);
return 0;
}
static struct usb_request *qe_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct qe_req *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void qe_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct qe_req *req;
req = container_of(_req, struct qe_req, req);
if (_req)
kfree(req);
}
static int __qe_ep_queue(struct usb_ep *_ep, struct usb_request *_req)
{
struct qe_ep *ep = container_of(_ep, struct qe_ep, ep);
struct qe_req *req = container_of(_req, struct qe_req, req);
struct qe_udc *udc;
int reval;
udc = ep->udc;
/* catch various bogus parameters */
if (!_req || !req->req.complete || !req->req.buf
|| !list_empty(&req->queue)) {
dev_dbg(udc->dev, "bad params\n");
return -EINVAL;
}
if (!_ep || (!ep->ep.desc && ep_index(ep))) {
dev_dbg(udc->dev, "bad ep\n");
return -EINVAL;
}
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
req->ep = ep;
/* map virtual address to hardware */
if (req->req.dma == DMA_ADDR_INVALID) {
req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
req->req.buf,
req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
req->mapped = 0;
}
req->req.status = -EINPROGRESS;
req->req.actual = 0;
list_add_tail(&req->queue, &ep->queue);
dev_vdbg(udc->dev, "gadget have request in %s! %d\n",
ep->name, req->req.length);
/* push the request to device */
if (ep_is_in(ep))
reval = ep_req_send(ep, req);
/* EP0 */
if (ep_index(ep) == 0 && req->req.length > 0) {
if (ep_is_in(ep))
udc->ep0_state = DATA_STATE_XMIT;
else
udc->ep0_state = DATA_STATE_RECV;
}
if (ep->dir == USB_DIR_OUT)
reval = ep_req_receive(ep, req);
return 0;
}
/* queues (submits) an I/O request to an endpoint */
static int qe_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct qe_ep *ep = container_of(_ep, struct qe_ep, ep);
struct qe_udc *udc = ep->udc;
unsigned long flags;
int ret;
spin_lock_irqsave(&udc->lock, flags);
ret = __qe_ep_queue(_ep, _req);
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
/* dequeues (cancels, unlinks) an I/O request from an endpoint */
static int qe_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct qe_ep *ep = container_of(_ep, struct qe_ep, ep);
struct qe_req *req;
unsigned long flags;
if (!_ep || !_req)
return -EINVAL;
spin_lock_irqsave(&ep->udc->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&ep->udc->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&ep->udc->lock, flags);
return 0;
}
/*-----------------------------------------------------------------
* modify the endpoint halt feature
* @ep: the non-isochronous endpoint being stalled
* @value: 1--set halt 0--clear halt
* Returns zero, or a negative error code.
*----------------------------------------------------------------*/
static int qe_ep_set_halt(struct usb_ep *_ep, int value)
{
struct qe_ep *ep;
unsigned long flags;
int status = -EOPNOTSUPP;
struct qe_udc *udc;
ep = container_of(_ep, struct qe_ep, ep);
if (!_ep || !ep->ep.desc) {
status = -EINVAL;
goto out;
}
udc = ep->udc;
/* Attempt to halt IN ep will fail if any transfer requests
* are still queue */
if (value && ep_is_in(ep) && !list_empty(&ep->queue)) {
status = -EAGAIN;
goto out;
}
status = 0;
spin_lock_irqsave(&ep->udc->lock, flags);
qe_eptx_stall_change(ep, value);
qe_eprx_stall_change(ep, value);
spin_unlock_irqrestore(&ep->udc->lock, flags);
if (ep->epnum == 0) {
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = 0;
}
/* set data toggle to DATA0 on clear halt */
if (value == 0)
ep->data01 = 0;
out:
dev_vdbg(udc->dev, "%s %s halt stat %d\n", ep->ep.name,
value ? "set" : "clear", status);
return status;
}
static struct usb_ep_ops qe_ep_ops = {
.enable = qe_ep_enable,
.disable = qe_ep_disable,
.alloc_request = qe_alloc_request,
.free_request = qe_free_request,
.queue = qe_ep_queue,
.dequeue = qe_ep_dequeue,
.set_halt = qe_ep_set_halt,
};
/*------------------------------------------------------------------------
Gadget Driver Layer Operations
------------------------------------------------------------------------*/
/* Get the current frame number */
static int qe_get_frame(struct usb_gadget *gadget)
{
struct qe_udc *udc = container_of(gadget, struct qe_udc, gadget);
u16 tmp;
tmp = in_be16(&udc->usb_param->frame_n);
if (tmp & 0x8000)
tmp = tmp & 0x07ff;
else
tmp = -EINVAL;
return (int)tmp;
}
static int fsl_qe_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int fsl_qe_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
/* defined in usb_gadget.h */
static const struct usb_gadget_ops qe_gadget_ops = {
.get_frame = qe_get_frame,
.udc_start = fsl_qe_start,
.udc_stop = fsl_qe_stop,
};
/*-------------------------------------------------------------------------
USB ep0 Setup process in BUS Enumeration
-------------------------------------------------------------------------*/
static int udc_reset_ep_queue(struct qe_udc *udc, u8 pipe)
{
struct qe_ep *ep = &udc->eps[pipe];
nuke(ep, -ECONNRESET);
ep->tx_req = NULL;
return 0;
}
static int reset_queues(struct qe_udc *udc)
{
u8 pipe;
for (pipe = 0; pipe < USB_MAX_ENDPOINTS; pipe++)
udc_reset_ep_queue(udc, pipe);
/* report disconnect; the driver is already quiesced */
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
return 0;
}
static void ch9setaddress(struct qe_udc *udc, u16 value, u16 index,
u16 length)
{
/* Save the new address to device struct */
udc->device_address = (u8) value;
/* Update usb state */
udc->usb_state = USB_STATE_ADDRESS;
/* Status phase , send a ZLP */
if (ep0_prime_status(udc, USB_DIR_IN))
qe_ep0_stall(udc);
}
static void ownercomplete(struct usb_ep *_ep, struct usb_request *_req)
{
struct qe_req *req = container_of(_req, struct qe_req, req);
req->req.buf = NULL;
kfree(req);
}
static void ch9getstatus(struct qe_udc *udc, u8 request_type, u16 value,
u16 index, u16 length)
{
u16 usb_status = 0;
struct qe_req *req;
struct qe_ep *ep;
int status = 0;
ep = &udc->eps[0];
if ((request_type & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
/* Get device status */
usb_status = 1 << USB_DEVICE_SELF_POWERED;
} else if ((request_type & USB_RECIP_MASK) == USB_RECIP_INTERFACE) {
/* Get interface status */
/* We don't have interface information in udc driver */
usb_status = 0;
} else if ((request_type & USB_RECIP_MASK) == USB_RECIP_ENDPOINT) {
/* Get endpoint status */
int pipe = index & USB_ENDPOINT_NUMBER_MASK;
struct qe_ep *target_ep = &udc->eps[pipe];
u16 usep;
/* stall if endpoint doesn't exist */
if (!target_ep->ep.desc)
goto stall;
usep = in_be16(&udc->usb_regs->usb_usep[pipe]);
if (index & USB_DIR_IN) {
if (target_ep->dir != USB_DIR_IN)
goto stall;
if ((usep & USB_THS_MASK) == USB_THS_STALL)
usb_status = 1 << USB_ENDPOINT_HALT;
} else {
if (target_ep->dir != USB_DIR_OUT)
goto stall;
if ((usep & USB_RHS_MASK) == USB_RHS_STALL)
usb_status = 1 << USB_ENDPOINT_HALT;
}
}
req = container_of(qe_alloc_request(&ep->ep, GFP_KERNEL),
struct qe_req, req);
req->req.length = 2;
req->req.buf = udc->statusbuf;
*(u16 *)req->req.buf = cpu_to_le16(usb_status);
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->req.complete = ownercomplete;
udc->ep0_dir = USB_DIR_IN;
/* data phase */
status = __qe_ep_queue(&ep->ep, &req->req);
if (status == 0)
return;
stall:
dev_err(udc->dev, "Can't respond to getstatus request \n");
qe_ep0_stall(udc);
}
/* only handle the setup request, suppose the device in normal status */
static void setup_received_handle(struct qe_udc *udc,
struct usb_ctrlrequest *setup)
{
/* Fix Endian (udc->local_setup_buff is cpu Endian now)*/
u16 wValue = le16_to_cpu(setup->wValue);
u16 wIndex = le16_to_cpu(setup->wIndex);
u16 wLength = le16_to_cpu(setup->wLength);
/* clear the previous request in the ep0 */
udc_reset_ep_queue(udc, 0);
if (setup->bRequestType & USB_DIR_IN)
udc->ep0_dir = USB_DIR_IN;
else
udc->ep0_dir = USB_DIR_OUT;
switch (setup->bRequest) {
case USB_REQ_GET_STATUS:
/* Data+Status phase form udc */
if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
!= (USB_DIR_IN | USB_TYPE_STANDARD))
break;
ch9getstatus(udc, setup->bRequestType, wValue, wIndex,
wLength);
return;
case USB_REQ_SET_ADDRESS:
/* Status phase from udc */
if (setup->bRequestType != (USB_DIR_OUT | USB_TYPE_STANDARD |
USB_RECIP_DEVICE))
break;
ch9setaddress(udc, wValue, wIndex, wLength);
return;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
/* Requests with no data phase, status phase from udc */
if ((setup->bRequestType & USB_TYPE_MASK)
!= USB_TYPE_STANDARD)
break;
if ((setup->bRequestType & USB_RECIP_MASK)
== USB_RECIP_ENDPOINT) {
int pipe = wIndex & USB_ENDPOINT_NUMBER_MASK;
struct qe_ep *ep;
if (wValue != 0 || wLength != 0
|| pipe > USB_MAX_ENDPOINTS)
break;
ep = &udc->eps[pipe];
spin_unlock(&udc->lock);
qe_ep_set_halt(&ep->ep,
(setup->bRequest == USB_REQ_SET_FEATURE)
? 1 : 0);
spin_lock(&udc->lock);
}
ep0_prime_status(udc, USB_DIR_IN);
return;
default:
break;
}
if (wLength) {
/* Data phase from gadget, status phase from udc */
if (setup->bRequestType & USB_DIR_IN) {
udc->ep0_state = DATA_STATE_XMIT;
udc->ep0_dir = USB_DIR_IN;
} else {
udc->ep0_state = DATA_STATE_RECV;
udc->ep0_dir = USB_DIR_OUT;
}
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
qe_ep0_stall(udc);
spin_lock(&udc->lock);
} else {
/* No data phase, IN status from gadget */
udc->ep0_dir = USB_DIR_IN;
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
qe_ep0_stall(udc);
spin_lock(&udc->lock);
udc->ep0_state = DATA_STATE_NEED_ZLP;
}
}
/*-------------------------------------------------------------------------
USB Interrupt handlers
-------------------------------------------------------------------------*/
static void suspend_irq(struct qe_udc *udc)
{
udc->resume_state = udc->usb_state;
udc->usb_state = USB_STATE_SUSPENDED;
/* report suspend to the driver ,serial.c not support this*/
if (udc->driver->suspend)
udc->driver->suspend(&udc->gadget);
}
static void resume_irq(struct qe_udc *udc)
{
udc->usb_state = udc->resume_state;
udc->resume_state = 0;
/* report resume to the driver , serial.c not support this*/
if (udc->driver->resume)
udc->driver->resume(&udc->gadget);
}
static void idle_irq(struct qe_udc *udc)
{
u8 usbs;
usbs = in_8(&udc->usb_regs->usb_usbs);
if (usbs & USB_IDLE_STATUS_MASK) {
if ((udc->usb_state) != USB_STATE_SUSPENDED)
suspend_irq(udc);
} else {
if (udc->usb_state == USB_STATE_SUSPENDED)
resume_irq(udc);
}
}
static int reset_irq(struct qe_udc *udc)
{
unsigned char i;
if (udc->usb_state == USB_STATE_DEFAULT)
return 0;
qe_usb_disable(udc);
out_8(&udc->usb_regs->usb_usadr, 0);
for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
if (udc->eps[i].init)
qe_ep_reset(udc, i);
}
reset_queues(udc);
udc->usb_state = USB_STATE_DEFAULT;
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = USB_DIR_OUT;
qe_usb_enable(udc);
return 0;
}
static int bsy_irq(struct qe_udc *udc)
{
return 0;
}
static int txe_irq(struct qe_udc *udc)
{
return 0;
}
/* ep0 tx interrupt also in here */
static int tx_irq(struct qe_udc *udc)
{
struct qe_ep *ep;
struct qe_bd __iomem *bd;
int i, res = 0;
if ((udc->usb_state == USB_STATE_ADDRESS)
&& (in_8(&udc->usb_regs->usb_usadr) == 0))
out_8(&udc->usb_regs->usb_usadr, udc->device_address);
for (i = (USB_MAX_ENDPOINTS-1); ((i >= 0) && (res == 0)); i--) {
ep = &udc->eps[i];
if (ep && ep->init && (ep->dir != USB_DIR_OUT)) {
bd = ep->c_txbd;
if (!(in_be32((u32 __iomem *)bd) & T_R)
&& (in_be32(&bd->buf))) {
/* confirm the transmitted bd */
if (ep->epnum == 0)
res = qe_ep0_txconf(ep);
else
res = qe_ep_txconf(ep);
}
}
}
return res;
}
/* setup packect's rx is handle in the function too */
static void rx_irq(struct qe_udc *udc)
{
struct qe_ep *ep;
struct qe_bd __iomem *bd;
int i;
for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
ep = &udc->eps[i];
if (ep && ep->init && (ep->dir != USB_DIR_IN)) {
bd = ep->n_rxbd;
if (!(in_be32((u32 __iomem *)bd) & R_E)
&& (in_be32(&bd->buf))) {
if (ep->epnum == 0) {
qe_ep0_rx(udc);
} else {
/*non-setup package receive*/
qe_ep_rx(ep);
}
}
}
}
}
static irqreturn_t qe_udc_irq(int irq, void *_udc)
{
struct qe_udc *udc = (struct qe_udc *)_udc;
u16 irq_src;
irqreturn_t status = IRQ_NONE;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
irq_src = in_be16(&udc->usb_regs->usb_usber) &
in_be16(&udc->usb_regs->usb_usbmr);
/* Clear notification bits */
out_be16(&udc->usb_regs->usb_usber, irq_src);
/* USB Interrupt */
if (irq_src & USB_E_IDLE_MASK) {
idle_irq(udc);
irq_src &= ~USB_E_IDLE_MASK;
status = IRQ_HANDLED;
}
if (irq_src & USB_E_TXB_MASK) {
tx_irq(udc);
irq_src &= ~USB_E_TXB_MASK;
status = IRQ_HANDLED;
}
if (irq_src & USB_E_RXB_MASK) {
rx_irq(udc);
irq_src &= ~USB_E_RXB_MASK;
status = IRQ_HANDLED;
}
if (irq_src & USB_E_RESET_MASK) {
reset_irq(udc);
irq_src &= ~USB_E_RESET_MASK;
status = IRQ_HANDLED;
}
if (irq_src & USB_E_BSY_MASK) {
bsy_irq(udc);
irq_src &= ~USB_E_BSY_MASK;
status = IRQ_HANDLED;
}
if (irq_src & USB_E_TXE_MASK) {
txe_irq(udc);
irq_src &= ~USB_E_TXE_MASK;
status = IRQ_HANDLED;
}
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
/*-------------------------------------------------------------------------
Gadget driver probe and unregister.
--------------------------------------------------------------------------*/
static int fsl_qe_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct qe_udc *udc;
unsigned long flags;
udc = container_of(gadget, struct qe_udc, gadget);
/* lock is needed but whether should use this lock or another */
spin_lock_irqsave(&udc->lock, flags);
driver->driver.bus = NULL;
/* hook up the driver */
udc->driver = driver;
udc->gadget.speed = driver->max_speed;
/* Enable IRQ reg and Set usbcmd reg EN bit */
qe_usb_enable(udc);
out_be16(&udc->usb_regs->usb_usber, 0xffff);
out_be16(&udc->usb_regs->usb_usbmr, USB_E_DEFAULT_DEVICE);
udc->usb_state = USB_STATE_ATTACHED;
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = USB_DIR_OUT;
spin_unlock_irqrestore(&udc->lock, flags);
dev_info(udc->dev, "%s bind to driver %s\n", udc->gadget.name,
driver->driver.name);
return 0;
}
static int fsl_qe_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct qe_udc *udc;
struct qe_ep *loop_ep;
unsigned long flags;
udc = container_of(gadget, struct qe_udc, gadget);
/* stop usb controller, disable intr */
qe_usb_disable(udc);
/* in fact, no needed */
udc->usb_state = USB_STATE_ATTACHED;
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = 0;
/* stand operation */
spin_lock_irqsave(&udc->lock, flags);
udc->gadget.speed = USB_SPEED_UNKNOWN;
nuke(&udc->eps[0], -ESHUTDOWN);
list_for_each_entry(loop_ep, &udc->gadget.ep_list, ep.ep_list)
nuke(loop_ep, -ESHUTDOWN);
spin_unlock_irqrestore(&udc->lock, flags);
udc->driver = NULL;
dev_info(udc->dev, "unregistered gadget driver '%s'\r\n",
driver->driver.name);
return 0;
}
/* udc structure's alloc and setup, include ep-param alloc */
static struct qe_udc *qe_udc_config(struct platform_device *ofdev)
{
struct qe_udc *udc;
struct device_node *np = ofdev->dev.of_node;
unsigned int tmp_addr = 0;
struct usb_device_para __iomem *usbpram;
unsigned int i;
u64 size;
u32 offset;
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (udc == NULL) {
dev_err(&ofdev->dev, "malloc udc failed\n");
goto cleanup;
}
udc->dev = &ofdev->dev;
/* get default address of usb parameter in MURAM from device tree */
offset = *of_get_address(np, 1, &size, NULL);
udc->usb_param = cpm_muram_addr(offset);
memset_io(udc->usb_param, 0, size);
usbpram = udc->usb_param;
out_be16(&usbpram->frame_n, 0);
out_be32(&usbpram->rstate, 0);
tmp_addr = cpm_muram_alloc((USB_MAX_ENDPOINTS *
sizeof(struct usb_ep_para)),
USB_EP_PARA_ALIGNMENT);
if (IS_ERR_VALUE(tmp_addr))
goto cleanup;
for (i = 0; i < USB_MAX_ENDPOINTS; i++) {
out_be16(&usbpram->epptr[i], (u16)tmp_addr);
udc->ep_param[i] = cpm_muram_addr(tmp_addr);
tmp_addr += 32;
}
memset_io(udc->ep_param[0], 0,
USB_MAX_ENDPOINTS * sizeof(struct usb_ep_para));
udc->resume_state = USB_STATE_NOTATTACHED;
udc->usb_state = USB_STATE_POWERED;
udc->ep0_dir = 0;
spin_lock_init(&udc->lock);
return udc;
cleanup:
kfree(udc);
return NULL;
}
/* USB Controller register init */
static int qe_udc_reg_init(struct qe_udc *udc)
{
struct usb_ctlr __iomem *qe_usbregs;
qe_usbregs = udc->usb_regs;
/* Spec says that we must enable the USB controller to change mode. */
out_8(&qe_usbregs->usb_usmod, 0x01);
/* Mode changed, now disable it, since muram isn't initialized yet. */
out_8(&qe_usbregs->usb_usmod, 0x00);
/* Initialize the rest. */
out_be16(&qe_usbregs->usb_usbmr, 0);
out_8(&qe_usbregs->usb_uscom, 0);
out_be16(&qe_usbregs->usb_usber, USBER_ALL_CLEAR);
return 0;
}
static int qe_ep_config(struct qe_udc *udc, unsigned char pipe_num)
{
struct qe_ep *ep = &udc->eps[pipe_num];
ep->udc = udc;
strcpy(ep->name, ep_name[pipe_num]);
ep->ep.name = ep_name[pipe_num];
ep->ep.ops = &qe_ep_ops;
ep->stopped = 1;
ep->ep.maxpacket = (unsigned short) ~0;
ep->ep.desc = NULL;
ep->dir = 0xff;
ep->epnum = (u8)pipe_num;
ep->sent = 0;
ep->last = 0;
ep->init = 0;
ep->rxframe = NULL;
ep->txframe = NULL;
ep->tx_req = NULL;
ep->state = EP_STATE_IDLE;
ep->has_data = 0;
/* the queue lists any req for this ep */
INIT_LIST_HEAD(&ep->queue);
/* gagdet.ep_list used for ep_autoconfig so no ep0*/
if (pipe_num != 0)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
ep->gadget = &udc->gadget;
return 0;
}
/*-----------------------------------------------------------------------
* UDC device Driver operation functions *
*----------------------------------------------------------------------*/
static void qe_udc_release(struct device *dev)
{
struct qe_udc *udc = container_of(dev, struct qe_udc, gadget.dev);
int i;
complete(udc->done);
cpm_muram_free(cpm_muram_offset(udc->ep_param[0]));
for (i = 0; i < USB_MAX_ENDPOINTS; i++)
udc->ep_param[i] = NULL;
kfree(udc);
}
/* Driver probe functions */
static const struct of_device_id qe_udc_match[];
static int qe_udc_probe(struct platform_device *ofdev)
{
struct qe_udc *udc;
const struct of_device_id *match;
struct device_node *np = ofdev->dev.of_node;
struct qe_ep *ep;
unsigned int ret = 0;
unsigned int i;
const void *prop;
match = of_match_device(qe_udc_match, &ofdev->dev);
if (!match)
return -EINVAL;
prop = of_get_property(np, "mode", NULL);
if (!prop || strcmp(prop, "peripheral"))
return -ENODEV;
/* Initialize the udc structure including QH member and other member */
udc = qe_udc_config(ofdev);
if (!udc) {
dev_err(&ofdev->dev, "failed to initialize\n");
return -ENOMEM;
}
udc->soc_type = (unsigned long)match->data;
udc->usb_regs = of_iomap(np, 0);
if (!udc->usb_regs) {
ret = -ENOMEM;
goto err1;
}
/* initialize usb hw reg except for regs for EP,
* leave usbintr reg untouched*/
qe_udc_reg_init(udc);
/* here comes the stand operations for probe
* set the qe_udc->gadget.xxx */
udc->gadget.ops = &qe_gadget_ops;
/* gadget.ep0 is a pointer */
udc->gadget.ep0 = &udc->eps[0].ep;
INIT_LIST_HEAD(&udc->gadget.ep_list);
/* modify in register gadget process */
udc->gadget.speed = USB_SPEED_UNKNOWN;
/* name: Identifies the controller hardware type. */
udc->gadget.name = driver_name;
udc->gadget.dev.parent = &ofdev->dev;
/* initialize qe_ep struct */
for (i = 0; i < USB_MAX_ENDPOINTS ; i++) {
/* because the ep type isn't decide here so
* qe_ep_init() should be called in ep_enable() */
/* setup the qe_ep struct and link ep.ep.list
* into gadget.ep_list */
qe_ep_config(udc, (unsigned char)i);
}
/* ep0 initialization in here */
ret = qe_ep_init(udc, 0, &qe_ep0_desc);
if (ret)
goto err2;
/* create a buf for ZLP send, need to remain zeroed */
udc->nullbuf = kzalloc(256, GFP_KERNEL);
if (udc->nullbuf == NULL) {
dev_err(udc->dev, "cannot alloc nullbuf\n");
ret = -ENOMEM;
goto err3;
}
/* buffer for data of get_status request */
udc->statusbuf = kzalloc(2, GFP_KERNEL);
if (udc->statusbuf == NULL) {
ret = -ENOMEM;
goto err4;
}
udc->nullp = virt_to_phys((void *)udc->nullbuf);
if (udc->nullp == DMA_ADDR_INVALID) {
udc->nullp = dma_map_single(
udc->gadget.dev.parent,
udc->nullbuf,
256,
DMA_TO_DEVICE);
udc->nullmap = 1;
} else {
dma_sync_single_for_device(udc->gadget.dev.parent,
udc->nullp, 256,
DMA_TO_DEVICE);
}
tasklet_init(&udc->rx_tasklet, ep_rx_tasklet,
(unsigned long)udc);
/* request irq and disable DR */
udc->usb_irq = irq_of_parse_and_map(np, 0);
if (!udc->usb_irq) {
ret = -EINVAL;
goto err_noirq;
}
ret = request_irq(udc->usb_irq, qe_udc_irq, 0,
driver_name, udc);
if (ret) {
dev_err(udc->dev, "cannot request irq %d err %d\n",
udc->usb_irq, ret);
goto err5;
}
ret = usb_add_gadget_udc_release(&ofdev->dev, &udc->gadget,
qe_udc_release);
if (ret)
goto err6;
platform_set_drvdata(ofdev, udc);
dev_info(udc->dev,
"%s USB controller initialized as device\n",
(udc->soc_type == PORT_QE) ? "QE" : "CPM");
return 0;
err6:
free_irq(udc->usb_irq, udc);
err5:
irq_dispose_mapping(udc->usb_irq);
err_noirq:
if (udc->nullmap) {
dma_unmap_single(udc->gadget.dev.parent,
udc->nullp, 256,
DMA_TO_DEVICE);
udc->nullp = DMA_ADDR_INVALID;
} else {
dma_sync_single_for_cpu(udc->gadget.dev.parent,
udc->nullp, 256,
DMA_TO_DEVICE);
}
kfree(udc->statusbuf);
err4:
kfree(udc->nullbuf);
err3:
ep = &udc->eps[0];
cpm_muram_free(cpm_muram_offset(ep->rxbase));
kfree(ep->rxframe);
kfree(ep->rxbuffer);
kfree(ep->txframe);
err2:
iounmap(udc->usb_regs);
err1:
kfree(udc);
return ret;
}
#ifdef CONFIG_PM
static int qe_udc_suspend(struct platform_device *dev, pm_message_t state)
{
return -ENOTSUPP;
}
static int qe_udc_resume(struct platform_device *dev)
{
return -ENOTSUPP;
}
#endif
static int qe_udc_remove(struct platform_device *ofdev)
{
struct qe_udc *udc = platform_get_drvdata(ofdev);
struct qe_ep *ep;
unsigned int size;
DECLARE_COMPLETION(done);
usb_del_gadget_udc(&udc->gadget);
udc->done = &done;
tasklet_disable(&udc->rx_tasklet);
if (udc->nullmap) {
dma_unmap_single(udc->gadget.dev.parent,
udc->nullp, 256,
DMA_TO_DEVICE);
udc->nullp = DMA_ADDR_INVALID;
} else {
dma_sync_single_for_cpu(udc->gadget.dev.parent,
udc->nullp, 256,
DMA_TO_DEVICE);
}
kfree(udc->statusbuf);
kfree(udc->nullbuf);
ep = &udc->eps[0];
cpm_muram_free(cpm_muram_offset(ep->rxbase));
size = (ep->ep.maxpacket + USB_CRC_SIZE + 2) * (USB_BDRING_LEN + 1);
kfree(ep->rxframe);
if (ep->rxbufmap) {
dma_unmap_single(udc->gadget.dev.parent,
ep->rxbuf_d, size,
DMA_FROM_DEVICE);
ep->rxbuf_d = DMA_ADDR_INVALID;
} else {
dma_sync_single_for_cpu(udc->gadget.dev.parent,
ep->rxbuf_d, size,
DMA_FROM_DEVICE);
}
kfree(ep->rxbuffer);
kfree(ep->txframe);
free_irq(udc->usb_irq, udc);
irq_dispose_mapping(udc->usb_irq);
tasklet_kill(&udc->rx_tasklet);
iounmap(udc->usb_regs);
/* wait for release() of gadget.dev to free udc */
wait_for_completion(&done);
return 0;
}
/*-------------------------------------------------------------------------*/
static const struct of_device_id qe_udc_match[] = {
{
.compatible = "fsl,mpc8323-qe-usb",
.data = (void *)PORT_QE,
},
{
.compatible = "fsl,mpc8360-qe-usb",
.data = (void *)PORT_QE,
},
{
.compatible = "fsl,mpc8272-cpm-usb",
.data = (void *)PORT_CPM,
},
{},
};
MODULE_DEVICE_TABLE(of, qe_udc_match);
static struct platform_driver udc_driver = {
.driver = {
.name = (char *)driver_name,
.owner = THIS_MODULE,
.of_match_table = qe_udc_match,
},
.probe = qe_udc_probe,
.remove = qe_udc_remove,
#ifdef CONFIG_PM
.suspend = qe_udc_suspend,
.resume = qe_udc_resume,
#endif
};
module_platform_driver(udc_driver);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");