linux/drivers/gpu/drm/i915/i915_scheduler.c

480 lines
12 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/mutex.h>
#include "i915_drv.h"
#include "i915_globals.h"
#include "i915_request.h"
#include "i915_scheduler.h"
static struct i915_global_scheduler {
struct i915_global base;
struct kmem_cache *slab_dependencies;
struct kmem_cache *slab_priorities;
} global;
static DEFINE_SPINLOCK(schedule_lock);
static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
return container_of(node, const struct i915_request, sched);
}
static inline bool node_started(const struct i915_sched_node *node)
{
return i915_request_started(node_to_request(node));
}
static inline bool node_signaled(const struct i915_sched_node *node)
{
return i915_request_completed(node_to_request(node));
}
void i915_sched_node_init(struct i915_sched_node *node)
{
INIT_LIST_HEAD(&node->signalers_list);
INIT_LIST_HEAD(&node->waiters_list);
INIT_LIST_HEAD(&node->link);
node->attr.priority = I915_PRIORITY_INVALID;
node->semaphores = 0;
node->flags = 0;
}
static struct i915_dependency *
i915_dependency_alloc(void)
{
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
}
static void
i915_dependency_free(struct i915_dependency *dep)
{
kmem_cache_free(global.slab_dependencies, dep);
}
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags)
{
bool ret = false;
spin_lock_irq(&schedule_lock);
if (!node_signaled(signal)) {
INIT_LIST_HEAD(&dep->dfs_link);
list_add(&dep->wait_link, &signal->waiters_list);
list_add(&dep->signal_link, &node->signalers_list);
dep->signaler = signal;
dep->flags = flags;
/* Keep track of whether anyone on this chain has a semaphore */
if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
!node_started(signal))
node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
ret = true;
}
spin_unlock_irq(&schedule_lock);
return ret;
}
int i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal)
{
struct i915_dependency *dep;
dep = i915_dependency_alloc();
if (!dep)
return -ENOMEM;
if (!__i915_sched_node_add_dependency(node, signal, dep,
I915_DEPENDENCY_ALLOC))
i915_dependency_free(dep);
return 0;
}
void i915_sched_node_fini(struct i915_sched_node *node)
{
struct i915_dependency *dep, *tmp;
GEM_BUG_ON(!list_empty(&node->link));
spin_lock_irq(&schedule_lock);
/*
* Everyone we depended upon (the fences we wait to be signaled)
* should retire before us and remove themselves from our list.
* However, retirement is run independently on each timeline and
* so we may be called out-of-order.
*/
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
GEM_BUG_ON(!node_signaled(dep->signaler));
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->wait_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
/* Remove ourselves from everyone who depends upon us */
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
GEM_BUG_ON(dep->signaler != node);
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->signal_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
spin_unlock_irq(&schedule_lock);
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static void assert_priolists(struct intel_engine_execlists * const execlists)
{
struct rb_node *rb;
long last_prio, i;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
rb_first(&execlists->queue.rb_root));
last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
const struct i915_priolist *p = to_priolist(rb);
GEM_BUG_ON(p->priority >= last_prio);
last_prio = p->priority;
GEM_BUG_ON(!p->used);
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
if (list_empty(&p->requests[i]))
continue;
GEM_BUG_ON(!(p->used & BIT(i)));
}
}
}
struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
int idx, i;
lockdep_assert_held(&engine->timeline.lock);
assert_priolists(execlists);
/* buckets sorted from highest [in slot 0] to lowest priority */
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
prio >>= I915_USER_PRIORITY_SHIFT;
if (unlikely(execlists->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &execlists->queue.rb_root.rb_node;
while (*parent) {
rb = *parent;
p = to_priolist(rb);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
goto out;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &execlists->default_priolist;
} else {
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
execlists->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
INIT_LIST_HEAD(&p->requests[i]);
rb_link_node(&p->node, rb, parent);
rb_insert_color_cached(&p->node, &execlists->queue, first);
p->used = 0;
out:
p->used |= BIT(idx);
return &p->requests[idx];
}
struct sched_cache {
struct list_head *priolist;
};
static struct intel_engine_cs *
sched_lock_engine(const struct i915_sched_node *node,
struct intel_engine_cs *locked,
struct sched_cache *cache)
{
struct intel_engine_cs *engine = node_to_request(node)->engine;
GEM_BUG_ON(!locked);
if (engine != locked) {
spin_unlock(&locked->timeline.lock);
memset(cache, 0, sizeof(*cache));
spin_lock(&engine->timeline.lock);
}
return engine;
}
static bool inflight(const struct i915_request *rq,
const struct intel_engine_cs *engine)
{
const struct i915_request *active;
if (!i915_request_is_active(rq))
return false;
active = port_request(engine->execlists.port);
return active->hw_context == rq->hw_context;
}
static void __i915_schedule(struct i915_request *rq,
const struct i915_sched_attr *attr)
{
struct intel_engine_cs *engine;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
const int prio = attr->priority;
struct sched_cache cache;
LIST_HEAD(dfs);
/* Needed in order to use the temporary link inside i915_dependency */
lockdep_assert_held(&schedule_lock);
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
if (i915_request_completed(rq))
return;
if (prio <= READ_ONCE(rq->sched.attr.priority))
return;
stack.signaler = &rq->sched;
list_add(&stack.dfs_link, &dfs);
/*
* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_sched_node *node, prio) {
* list_for_each_entry(dep, &node->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* queue_request(node);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry(dep, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
/* If we are already flying, we know we have no signalers */
if (node_started(node))
continue;
/*
* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &node->signalers_list, signal_link) {
GEM_BUG_ON(p == dep); /* no cycles! */
if (node_signaled(p->signaler))
continue;
if (prio > READ_ONCE(p->signaler->attr.priority))
list_move_tail(&p->dfs_link, &dfs);
}
}
/*
* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
GEM_BUG_ON(!list_empty(&rq->sched.link));
rq->sched.attr = *attr;
if (stack.dfs_link.next == stack.dfs_link.prev)
return;
__list_del_entry(&stack.dfs_link);
}
memset(&cache, 0, sizeof(cache));
engine = rq->engine;
spin_lock(&engine->timeline.lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
INIT_LIST_HEAD(&dep->dfs_link);
engine = sched_lock_engine(node, engine, &cache);
lockdep_assert_held(&engine->timeline.lock);
/* Recheck after acquiring the engine->timeline.lock */
if (prio <= node->attr.priority || node_signaled(node))
continue;
node->attr.priority = prio;
if (!list_empty(&node->link)) {
if (!cache.priolist)
cache.priolist =
i915_sched_lookup_priolist(engine,
prio);
list_move_tail(&node->link, cache.priolist);
} else {
/*
* If the request is not in the priolist queue because
* it is not yet runnable, then it doesn't contribute
* to our preemption decisions. On the other hand,
* if the request is on the HW, it too is not in the
* queue; but in that case we may still need to reorder
* the inflight requests.
*/
if (!i915_sw_fence_done(&node_to_request(node)->submit))
continue;
}
if (prio <= engine->execlists.queue_priority_hint)
continue;
engine->execlists.queue_priority_hint = prio;
/*
* If we are already the currently executing context, don't
* bother evaluating if we should preempt ourselves.
*/
if (inflight(node_to_request(node), engine))
continue;
/* Defer (tasklet) submission until after all of our updates. */
tasklet_hi_schedule(&engine->execlists.tasklet);
}
spin_unlock(&engine->timeline.lock);
}
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
spin_lock_irq(&schedule_lock);
__i915_schedule(rq, attr);
spin_unlock_irq(&schedule_lock);
}
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
{
struct i915_sched_attr attr;
unsigned long flags;
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID)
return;
spin_lock_irqsave(&schedule_lock, flags);
attr = rq->sched.attr;
attr.priority |= bump;
__i915_schedule(rq, &attr);
spin_unlock_irqrestore(&schedule_lock, flags);
}
void __i915_priolist_free(struct i915_priolist *p)
{
kmem_cache_free(global.slab_priorities, p);
}
static void i915_global_scheduler_shrink(void)
{
kmem_cache_shrink(global.slab_dependencies);
kmem_cache_shrink(global.slab_priorities);
}
static void i915_global_scheduler_exit(void)
{
kmem_cache_destroy(global.slab_dependencies);
kmem_cache_destroy(global.slab_priorities);
}
static struct i915_global_scheduler global = { {
.shrink = i915_global_scheduler_shrink,
.exit = i915_global_scheduler_exit,
} };
int __init i915_global_scheduler_init(void)
{
global.slab_dependencies = KMEM_CACHE(i915_dependency,
SLAB_HWCACHE_ALIGN);
if (!global.slab_dependencies)
return -ENOMEM;
global.slab_priorities = KMEM_CACHE(i915_priolist,
SLAB_HWCACHE_ALIGN);
if (!global.slab_priorities)
goto err_priorities;
i915_global_register(&global.base);
return 0;
err_priorities:
kmem_cache_destroy(global.slab_priorities);
return -ENOMEM;
}