linux/fs/btrfs/tree-checker.c

706 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Qu Wenruo 2017. All rights reserved.
*/
/*
* The module is used to catch unexpected/corrupted tree block data.
* Such behavior can be caused either by a fuzzed image or bugs.
*
* The objective is to do leaf/node validation checks when tree block is read
* from disk, and check *every* possible member, so other code won't
* need to checking them again.
*
* Due to the potential and unwanted damage, every checker needs to be
* carefully reviewed otherwise so it does not prevent mount of valid images.
*/
#include "ctree.h"
#include "tree-checker.h"
#include "disk-io.h"
#include "compression.h"
#include "volumes.h"
/*
* Error message should follow the following format:
* corrupt <type>: <identifier>, <reason>[, <bad_value>]
*
* @type: leaf or node
* @identifier: the necessary info to locate the leaf/node.
* It's recommened to decode key.objecitd/offset if it's
* meaningful.
* @reason: describe the error
* @bad_value: optional, it's recommened to output bad value and its
* expected value (range).
*
* Since comma is used to separate the components, only space is allowed
* inside each component.
*/
/*
* Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
* Allows callers to customize the output.
*/
__printf(4, 5)
__cold
static void generic_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
va_end(args);
}
/*
* Customized reporter for extent data item, since its key objectid and
* offset has its own meaning.
*/
__printf(4, 5)
__cold
static void file_extent_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
}
/*
* Return 0 if the btrfs_file_extent_##name is aligned to @alignment
* Else return 1
*/
#define CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, name, alignment) \
({ \
if (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))) \
file_extent_err((fs_info), (leaf), (slot), \
"invalid %s for file extent, have %llu, should be aligned to %u", \
(#name), btrfs_file_extent_##name((leaf), (fi)), \
(alignment)); \
(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
})
static int check_extent_data_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_file_extent_item *fi;
u32 sectorsize = fs_info->sectorsize;
u32 item_size = btrfs_item_size_nr(leaf, slot);
if (!IS_ALIGNED(key->offset, sectorsize)) {
file_extent_err(fs_info, leaf, slot,
"unaligned file_offset for file extent, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) > BTRFS_FILE_EXTENT_TYPES) {
file_extent_err(fs_info, leaf, slot,
"invalid type for file extent, have %u expect range [0, %u]",
btrfs_file_extent_type(leaf, fi),
BTRFS_FILE_EXTENT_TYPES);
return -EUCLEAN;
}
/*
* Support for new compression/encrption must introduce incompat flag,
* and must be caught in open_ctree().
*/
if (btrfs_file_extent_compression(leaf, fi) > BTRFS_COMPRESS_TYPES) {
file_extent_err(fs_info, leaf, slot,
"invalid compression for file extent, have %u expect range [0, %u]",
btrfs_file_extent_compression(leaf, fi),
BTRFS_COMPRESS_TYPES);
return -EUCLEAN;
}
if (btrfs_file_extent_encryption(leaf, fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid encryption for file extent, have %u expect 0",
btrfs_file_extent_encryption(leaf, fi));
return -EUCLEAN;
}
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
/* Inline extent must have 0 as key offset */
if (key->offset) {
file_extent_err(fs_info, leaf, slot,
"invalid file_offset for inline file extent, have %llu expect 0",
key->offset);
return -EUCLEAN;
}
/* Compressed inline extent has no on-disk size, skip it */
if (btrfs_file_extent_compression(leaf, fi) !=
BTRFS_COMPRESS_NONE)
return 0;
/* Uncompressed inline extent size must match item size */
if (item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi));
return -EUCLEAN;
}
return 0;
}
/* Regular or preallocated extent has fixed item size */
if (item_size != sizeof(*fi)) {
file_extent_err(fs_info, leaf, slot,
"invalid item size for reg/prealloc file extent, have %u expect %zu",
item_size, sizeof(*fi));
return -EUCLEAN;
}
if (CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, ram_bytes, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_bytenr, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, disk_num_bytes, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, offset, sectorsize) ||
CHECK_FE_ALIGNED(fs_info, leaf, slot, fi, num_bytes, sectorsize))
return -EUCLEAN;
return 0;
}
static int check_csum_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
u32 sectorsize = fs_info->sectorsize;
u32 csumsize = btrfs_super_csum_size(fs_info->super_copy);
if (key->objectid != BTRFS_EXTENT_CSUM_OBJECTID) {
generic_err(fs_info, leaf, slot,
"invalid key objectid for csum item, have %llu expect %llu",
key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
return -EUCLEAN;
}
if (!IS_ALIGNED(key->offset, sectorsize)) {
generic_err(fs_info, leaf, slot,
"unaligned key offset for csum item, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
if (!IS_ALIGNED(btrfs_item_size_nr(leaf, slot), csumsize)) {
generic_err(fs_info, leaf, slot,
"unaligned item size for csum item, have %u should be aligned to %u",
btrfs_item_size_nr(leaf, slot), csumsize);
return -EUCLEAN;
}
return 0;
}
/*
* Customized reported for dir_item, only important new info is key->objectid,
* which represents inode number
*/
__printf(4, 5)
__cold
static void dir_item_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, &vaf);
va_end(args);
}
static int check_dir_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_dir_item *di;
u32 item_size = btrfs_item_size_nr(leaf, slot);
u32 cur = 0;
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
while (cur < item_size) {
u32 name_len;
u32 data_len;
u32 max_name_len;
u32 total_size;
u32 name_hash;
u8 dir_type;
/* header itself should not cross item boundary */
if (cur + sizeof(*di) > item_size) {
dir_item_err(fs_info, leaf, slot,
"dir item header crosses item boundary, have %zu boundary %u",
cur + sizeof(*di), item_size);
return -EUCLEAN;
}
/* dir type check */
dir_type = btrfs_dir_type(leaf, di);
if (dir_type >= BTRFS_FT_MAX) {
dir_item_err(fs_info, leaf, slot,
"invalid dir item type, have %u expect [0, %u)",
dir_type, BTRFS_FT_MAX);
return -EUCLEAN;
}
if (key->type == BTRFS_XATTR_ITEM_KEY &&
dir_type != BTRFS_FT_XATTR) {
dir_item_err(fs_info, leaf, slot,
"invalid dir item type for XATTR key, have %u expect %u",
dir_type, BTRFS_FT_XATTR);
return -EUCLEAN;
}
if (dir_type == BTRFS_FT_XATTR &&
key->type != BTRFS_XATTR_ITEM_KEY) {
dir_item_err(fs_info, leaf, slot,
"xattr dir type found for non-XATTR key");
return -EUCLEAN;
}
if (dir_type == BTRFS_FT_XATTR)
max_name_len = XATTR_NAME_MAX;
else
max_name_len = BTRFS_NAME_LEN;
/* Name/data length check */
name_len = btrfs_dir_name_len(leaf, di);
data_len = btrfs_dir_data_len(leaf, di);
if (name_len > max_name_len) {
dir_item_err(fs_info, leaf, slot,
"dir item name len too long, have %u max %u",
name_len, max_name_len);
return -EUCLEAN;
}
if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info)) {
dir_item_err(fs_info, leaf, slot,
"dir item name and data len too long, have %u max %u",
name_len + data_len,
BTRFS_MAX_XATTR_SIZE(fs_info));
return -EUCLEAN;
}
if (data_len && dir_type != BTRFS_FT_XATTR) {
dir_item_err(fs_info, leaf, slot,
"dir item with invalid data len, have %u expect 0",
data_len);
return -EUCLEAN;
}
total_size = sizeof(*di) + name_len + data_len;
/* header and name/data should not cross item boundary */
if (cur + total_size > item_size) {
dir_item_err(fs_info, leaf, slot,
"dir item data crosses item boundary, have %u boundary %u",
cur + total_size, item_size);
return -EUCLEAN;
}
/*
* Special check for XATTR/DIR_ITEM, as key->offset is name
* hash, should match its name
*/
if (key->type == BTRFS_DIR_ITEM_KEY ||
key->type == BTRFS_XATTR_ITEM_KEY) {
char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
read_extent_buffer(leaf, namebuf,
(unsigned long)(di + 1), name_len);
name_hash = btrfs_name_hash(namebuf, name_len);
if (key->offset != name_hash) {
dir_item_err(fs_info, leaf, slot,
"name hash mismatch with key, have 0x%016x expect 0x%016llx",
name_hash, key->offset);
return -EUCLEAN;
}
}
cur += total_size;
di = (struct btrfs_dir_item *)((void *)di + total_size);
}
return 0;
}
__printf(4, 5)
__cold
static void block_group_err(const struct btrfs_fs_info *fs_info,
const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
}
static int check_block_group_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_block_group_item bgi;
u32 item_size = btrfs_item_size_nr(leaf, slot);
u64 flags;
u64 type;
/*
* Here we don't really care about alignment since extent allocator can
* handle it. We care more about the size, as if one block group is
* larger than maximum size, it's must be some obvious corruption.
*/
if (key->offset > BTRFS_MAX_DATA_CHUNK_SIZE || key->offset == 0) {
block_group_err(fs_info, leaf, slot,
"invalid block group size, have %llu expect (0, %llu]",
key->offset, BTRFS_MAX_DATA_CHUNK_SIZE);
return -EUCLEAN;
}
if (item_size != sizeof(bgi)) {
block_group_err(fs_info, leaf, slot,
"invalid item size, have %u expect %zu",
item_size, sizeof(bgi));
return -EUCLEAN;
}
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
sizeof(bgi));
if (btrfs_block_group_chunk_objectid(&bgi) !=
BTRFS_FIRST_CHUNK_TREE_OBJECTID) {
block_group_err(fs_info, leaf, slot,
"invalid block group chunk objectid, have %llu expect %llu",
btrfs_block_group_chunk_objectid(&bgi),
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
return -EUCLEAN;
}
if (btrfs_block_group_used(&bgi) > key->offset) {
block_group_err(fs_info, leaf, slot,
"invalid block group used, have %llu expect [0, %llu)",
btrfs_block_group_used(&bgi), key->offset);
return -EUCLEAN;
}
flags = btrfs_block_group_flags(&bgi);
if (hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1) {
block_group_err(fs_info, leaf, slot,
"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
return -EUCLEAN;
}
type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
if (type != BTRFS_BLOCK_GROUP_DATA &&
type != BTRFS_BLOCK_GROUP_METADATA &&
type != BTRFS_BLOCK_GROUP_SYSTEM &&
type != (BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA)) {
block_group_err(fs_info, leaf, slot,
"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
type, hweight64(type),
BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
return -EUCLEAN;
}
return 0;
}
/*
* Common point to switch the item-specific validation.
*/
static int check_leaf_item(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
int ret = 0;
switch (key->type) {
case BTRFS_EXTENT_DATA_KEY:
ret = check_extent_data_item(fs_info, leaf, key, slot);
break;
case BTRFS_EXTENT_CSUM_KEY:
ret = check_csum_item(fs_info, leaf, key, slot);
break;
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_XATTR_ITEM_KEY:
ret = check_dir_item(fs_info, leaf, key, slot);
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
ret = check_block_group_item(fs_info, leaf, key, slot);
break;
}
return ret;
}
static int check_leaf(struct btrfs_fs_info *fs_info, struct extent_buffer *leaf,
bool check_item_data)
{
/* No valid key type is 0, so all key should be larger than this key */
struct btrfs_key prev_key = {0, 0, 0};
struct btrfs_key key;
u32 nritems = btrfs_header_nritems(leaf);
int slot;
if (btrfs_header_level(leaf) != 0) {
generic_err(fs_info, leaf, 0,
"invalid level for leaf, have %d expect 0",
btrfs_header_level(leaf));
return -EUCLEAN;
}
/*
* Extent buffers from a relocation tree have a owner field that
* corresponds to the subvolume tree they are based on. So just from an
* extent buffer alone we can not find out what is the id of the
* corresponding subvolume tree, so we can not figure out if the extent
* buffer corresponds to the root of the relocation tree or not. So
* skip this check for relocation trees.
*/
if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
u64 owner = btrfs_header_owner(leaf);
struct btrfs_root *check_root;
/* These trees must never be empty */
if (owner == BTRFS_ROOT_TREE_OBJECTID ||
owner == BTRFS_CHUNK_TREE_OBJECTID ||
owner == BTRFS_EXTENT_TREE_OBJECTID ||
owner == BTRFS_DEV_TREE_OBJECTID ||
owner == BTRFS_FS_TREE_OBJECTID ||
owner == BTRFS_DATA_RELOC_TREE_OBJECTID) {
generic_err(fs_info, leaf, 0,
"invalid root, root %llu must never be empty",
owner);
return -EUCLEAN;
}
key.objectid = owner;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
check_root = btrfs_get_fs_root(fs_info, &key, false);
/*
* The only reason we also check NULL here is that during
* open_ctree() some roots has not yet been set up.
*/
if (!IS_ERR_OR_NULL(check_root)) {
struct extent_buffer *eb;
eb = btrfs_root_node(check_root);
/* if leaf is the root, then it's fine */
if (leaf != eb) {
generic_err(fs_info, leaf, 0,
"invalid nritems, have %u should not be 0 for non-root leaf",
nritems);
free_extent_buffer(eb);
return -EUCLEAN;
}
free_extent_buffer(eb);
}
return 0;
}
if (nritems == 0)
return 0;
/*
* Check the following things to make sure this is a good leaf, and
* leaf users won't need to bother with similar sanity checks:
*
* 1) key ordering
* 2) item offset and size
* No overlap, no hole, all inside the leaf.
* 3) item content
* If possible, do comprehensive sanity check.
* NOTE: All checks must only rely on the item data itself.
*/
for (slot = 0; slot < nritems; slot++) {
u32 item_end_expected;
int ret;
btrfs_item_key_to_cpu(leaf, &key, slot);
/* Make sure the keys are in the right order */
if (btrfs_comp_cpu_keys(&prev_key, &key) >= 0) {
generic_err(fs_info, leaf, slot,
"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
prev_key.objectid, prev_key.type,
prev_key.offset, key.objectid, key.type,
key.offset);
return -EUCLEAN;
}
/*
* Make sure the offset and ends are right, remember that the
* item data starts at the end of the leaf and grows towards the
* front.
*/
if (slot == 0)
item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
else
item_end_expected = btrfs_item_offset_nr(leaf,
slot - 1);
if (btrfs_item_end_nr(leaf, slot) != item_end_expected) {
generic_err(fs_info, leaf, slot,
"unexpected item end, have %u expect %u",
btrfs_item_end_nr(leaf, slot),
item_end_expected);
return -EUCLEAN;
}
/*
* Check to make sure that we don't point outside of the leaf,
* just in case all the items are consistent to each other, but
* all point outside of the leaf.
*/
if (btrfs_item_end_nr(leaf, slot) >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
generic_err(fs_info, leaf, slot,
"slot end outside of leaf, have %u expect range [0, %u]",
btrfs_item_end_nr(leaf, slot),
BTRFS_LEAF_DATA_SIZE(fs_info));
return -EUCLEAN;
}
/* Also check if the item pointer overlaps with btrfs item. */
if (btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item) >
btrfs_item_ptr_offset(leaf, slot)) {
generic_err(fs_info, leaf, slot,
"slot overlaps with its data, item end %lu data start %lu",
btrfs_item_nr_offset(slot) +
sizeof(struct btrfs_item),
btrfs_item_ptr_offset(leaf, slot));
return -EUCLEAN;
}
if (check_item_data) {
/*
* Check if the item size and content meet other
* criteria
*/
ret = check_leaf_item(fs_info, leaf, &key, slot);
if (ret < 0)
return ret;
}
prev_key.objectid = key.objectid;
prev_key.type = key.type;
prev_key.offset = key.offset;
}
return 0;
}
int btrfs_check_leaf_full(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf)
{
return check_leaf(fs_info, leaf, true);
}
int btrfs_check_leaf_relaxed(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf)
{
return check_leaf(fs_info, leaf, false);
}
int btrfs_check_node(struct btrfs_fs_info *fs_info, struct extent_buffer *node)
{
unsigned long nr = btrfs_header_nritems(node);
struct btrfs_key key, next_key;
int slot;
int level = btrfs_header_level(node);
u64 bytenr;
int ret = 0;
if (level <= 0 || level >= BTRFS_MAX_LEVEL) {
generic_err(fs_info, node, 0,
"invalid level for node, have %d expect [1, %d]",
level, BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info)) {
btrfs_crit(fs_info,
"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
btrfs_header_owner(node), node->start,
nr == 0 ? "small" : "large", nr,
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
return -EUCLEAN;
}
for (slot = 0; slot < nr - 1; slot++) {
bytenr = btrfs_node_blockptr(node, slot);
btrfs_node_key_to_cpu(node, &key, slot);
btrfs_node_key_to_cpu(node, &next_key, slot + 1);
if (!bytenr) {
generic_err(fs_info, node, slot,
"invalid NULL node pointer");
ret = -EUCLEAN;
goto out;
}
if (!IS_ALIGNED(bytenr, fs_info->sectorsize)) {
generic_err(fs_info, node, slot,
"unaligned pointer, have %llu should be aligned to %u",
bytenr, fs_info->sectorsize);
ret = -EUCLEAN;
goto out;
}
if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
generic_err(fs_info, node, slot,
"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
key.objectid, key.type, key.offset,
next_key.objectid, next_key.type,
next_key.offset);
ret = -EUCLEAN;
goto out;
}
}
out:
return ret;
}