mirror of https://gitee.com/openkylin/linux.git
1352 lines
37 KiB
C
1352 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ptp_classify.h>
|
|
|
|
#include "igb.h"
|
|
|
|
#define INCVALUE_MASK 0x7fffffff
|
|
#define ISGN 0x80000000
|
|
|
|
/* The 82580 timesync updates the system timer every 8ns by 8ns,
|
|
* and this update value cannot be reprogrammed.
|
|
*
|
|
* Neither the 82576 nor the 82580 offer registers wide enough to hold
|
|
* nanoseconds time values for very long. For the 82580, SYSTIM always
|
|
* counts nanoseconds, but the upper 24 bits are not available. The
|
|
* frequency is adjusted by changing the 32 bit fractional nanoseconds
|
|
* register, TIMINCA.
|
|
*
|
|
* For the 82576, the SYSTIM register time unit is affect by the
|
|
* choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
|
|
* field are needed to provide the nominal 16 nanosecond period,
|
|
* leaving 19 bits for fractional nanoseconds.
|
|
*
|
|
* We scale the NIC clock cycle by a large factor so that relatively
|
|
* small clock corrections can be added or subtracted at each clock
|
|
* tick. The drawbacks of a large factor are a) that the clock
|
|
* register overflows more quickly (not such a big deal) and b) that
|
|
* the increment per tick has to fit into 24 bits. As a result we
|
|
* need to use a shift of 19 so we can fit a value of 16 into the
|
|
* TIMINCA register.
|
|
*
|
|
*
|
|
* SYSTIMH SYSTIML
|
|
* +--------------+ +---+---+------+
|
|
* 82576 | 32 | | 8 | 5 | 19 |
|
|
* +--------------+ +---+---+------+
|
|
* \________ 45 bits _______/ fract
|
|
*
|
|
* +----------+---+ +--------------+
|
|
* 82580 | 24 | 8 | | 32 |
|
|
* +----------+---+ +--------------+
|
|
* reserved \______ 40 bits _____/
|
|
*
|
|
*
|
|
* The 45 bit 82576 SYSTIM overflows every
|
|
* 2^45 * 10^-9 / 3600 = 9.77 hours.
|
|
*
|
|
* The 40 bit 82580 SYSTIM overflows every
|
|
* 2^40 * 10^-9 / 60 = 18.3 minutes.
|
|
*
|
|
* SYSTIM is converted to real time using a timecounter. As
|
|
* timecounter_cyc2time() allows old timestamps, the timecounter needs
|
|
* to be updated at least once per half of the SYSTIM interval.
|
|
* Scheduling of delayed work is not very accurate, and also the NIC
|
|
* clock can be adjusted to run up to 6% faster and the system clock
|
|
* up to 10% slower, so we aim for 6 minutes to be sure the actual
|
|
* interval in the NIC time is shorter than 9.16 minutes.
|
|
*/
|
|
|
|
#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
|
|
#define IGB_PTP_TX_TIMEOUT (HZ * 15)
|
|
#define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
|
|
#define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
|
|
#define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
|
|
#define IGB_NBITS_82580 40
|
|
|
|
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
|
|
|
|
/* SYSTIM read access for the 82576 */
|
|
static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
|
|
{
|
|
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
u64 val;
|
|
u32 lo, hi;
|
|
|
|
lo = rd32(E1000_SYSTIML);
|
|
hi = rd32(E1000_SYSTIMH);
|
|
|
|
val = ((u64) hi) << 32;
|
|
val |= lo;
|
|
|
|
return val;
|
|
}
|
|
|
|
/* SYSTIM read access for the 82580 */
|
|
static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
|
|
{
|
|
struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
u32 lo, hi;
|
|
u64 val;
|
|
|
|
/* The timestamp latches on lowest register read. For the 82580
|
|
* the lowest register is SYSTIMR instead of SYSTIML. However we only
|
|
* need to provide nanosecond resolution, so we just ignore it.
|
|
*/
|
|
rd32(E1000_SYSTIMR);
|
|
lo = rd32(E1000_SYSTIML);
|
|
hi = rd32(E1000_SYSTIMH);
|
|
|
|
val = ((u64) hi) << 32;
|
|
val |= lo;
|
|
|
|
return val;
|
|
}
|
|
|
|
/* SYSTIM read access for I210/I211 */
|
|
static void igb_ptp_read_i210(struct igb_adapter *adapter,
|
|
struct timespec64 *ts)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 sec, nsec;
|
|
|
|
/* The timestamp latches on lowest register read. For I210/I211, the
|
|
* lowest register is SYSTIMR. Since we only need to provide nanosecond
|
|
* resolution, we can ignore it.
|
|
*/
|
|
rd32(E1000_SYSTIMR);
|
|
nsec = rd32(E1000_SYSTIML);
|
|
sec = rd32(E1000_SYSTIMH);
|
|
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
|
|
static void igb_ptp_write_i210(struct igb_adapter *adapter,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* Writing the SYSTIMR register is not necessary as it only provides
|
|
* sub-nanosecond resolution.
|
|
*/
|
|
wr32(E1000_SYSTIML, ts->tv_nsec);
|
|
wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
|
|
* @adapter: board private structure
|
|
* @hwtstamps: timestamp structure to update
|
|
* @systim: unsigned 64bit system time value.
|
|
*
|
|
* We need to convert the system time value stored in the RX/TXSTMP registers
|
|
* into a hwtstamp which can be used by the upper level timestamping functions.
|
|
*
|
|
* The 'tmreg_lock' spinlock is used to protect the consistency of the
|
|
* system time value. This is needed because reading the 64 bit time
|
|
* value involves reading two (or three) 32 bit registers. The first
|
|
* read latches the value. Ditto for writing.
|
|
*
|
|
* In addition, here have extended the system time with an overflow
|
|
* counter in software.
|
|
**/
|
|
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
u64 systim)
|
|
{
|
|
unsigned long flags;
|
|
u64 ns;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
case e1000_82580:
|
|
case e1000_i354:
|
|
case e1000_i350:
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
|
ns = timecounter_cyc2time(&adapter->tc, systim);
|
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
break;
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
/* Upper 32 bits contain s, lower 32 bits contain ns. */
|
|
hwtstamps->hwtstamp = ktime_set(systim >> 32,
|
|
systim & 0xFFFFFFFF);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* PTP clock operations */
|
|
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
int neg_adj = 0;
|
|
u64 rate;
|
|
u32 incvalue;
|
|
|
|
if (ppb < 0) {
|
|
neg_adj = 1;
|
|
ppb = -ppb;
|
|
}
|
|
rate = ppb;
|
|
rate <<= 14;
|
|
rate = div_u64(rate, 1953125);
|
|
|
|
incvalue = 16 << IGB_82576_TSYNC_SHIFT;
|
|
|
|
if (neg_adj)
|
|
incvalue -= rate;
|
|
else
|
|
incvalue += rate;
|
|
|
|
wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
int neg_adj = 0;
|
|
u64 rate;
|
|
u32 inca;
|
|
|
|
if (scaled_ppm < 0) {
|
|
neg_adj = 1;
|
|
scaled_ppm = -scaled_ppm;
|
|
}
|
|
rate = scaled_ppm;
|
|
rate <<= 13;
|
|
rate = div_u64(rate, 15625);
|
|
|
|
inca = rate & INCVALUE_MASK;
|
|
if (neg_adj)
|
|
inca |= ISGN;
|
|
|
|
wr32(E1000_TIMINCA, inca);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
timecounter_adjtime(&igb->tc, delta);
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
unsigned long flags;
|
|
struct timespec64 now, then = ns_to_timespec64(delta);
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
igb_ptp_read_i210(igb, &now);
|
|
now = timespec64_add(now, then);
|
|
igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
unsigned long flags;
|
|
u32 lo, hi;
|
|
u64 ns;
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
ptp_read_system_prets(sts);
|
|
lo = rd32(E1000_SYSTIML);
|
|
ptp_read_system_postts(sts);
|
|
hi = rd32(E1000_SYSTIMH);
|
|
|
|
ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
*ts = ns_to_timespec64(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
unsigned long flags;
|
|
u32 lo, hi;
|
|
u64 ns;
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
ptp_read_system_prets(sts);
|
|
rd32(E1000_SYSTIMR);
|
|
ptp_read_system_postts(sts);
|
|
lo = rd32(E1000_SYSTIML);
|
|
hi = rd32(E1000_SYSTIMH);
|
|
|
|
ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
*ts = ns_to_timespec64(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
ptp_read_system_prets(sts);
|
|
rd32(E1000_SYSTIMR);
|
|
ptp_read_system_postts(sts);
|
|
ts->tv_nsec = rd32(E1000_SYSTIML);
|
|
ts->tv_sec = rd32(E1000_SYSTIMH);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
unsigned long flags;
|
|
u64 ns;
|
|
|
|
ns = timespec64_to_ns(ts);
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
timecounter_init(&igb->tc, &igb->cc, ns);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
|
|
ptp_caps);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
|
|
igb_ptp_write_i210(igb, ts);
|
|
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
|
|
{
|
|
u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
|
|
static const u32 mask[IGB_N_SDP] = {
|
|
E1000_CTRL_SDP0_DIR,
|
|
E1000_CTRL_SDP1_DIR,
|
|
E1000_CTRL_EXT_SDP2_DIR,
|
|
E1000_CTRL_EXT_SDP3_DIR,
|
|
};
|
|
|
|
if (input)
|
|
*ptr &= ~mask[pin];
|
|
else
|
|
*ptr |= mask[pin];
|
|
}
|
|
|
|
static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
|
|
{
|
|
static const u32 aux0_sel_sdp[IGB_N_SDP] = {
|
|
AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
|
|
};
|
|
static const u32 aux1_sel_sdp[IGB_N_SDP] = {
|
|
AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
|
|
};
|
|
static const u32 ts_sdp_en[IGB_N_SDP] = {
|
|
TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
|
|
};
|
|
struct e1000_hw *hw = &igb->hw;
|
|
u32 ctrl, ctrl_ext, tssdp = 0;
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
tssdp = rd32(E1000_TSSDP);
|
|
|
|
igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
|
|
|
|
/* Make sure this pin is not enabled as an output. */
|
|
tssdp &= ~ts_sdp_en[pin];
|
|
|
|
if (chan == 1) {
|
|
tssdp &= ~AUX1_SEL_SDP3;
|
|
tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
|
|
} else {
|
|
tssdp &= ~AUX0_SEL_SDP3;
|
|
tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
|
|
}
|
|
|
|
wr32(E1000_TSSDP, tssdp);
|
|
wr32(E1000_CTRL, ctrl);
|
|
wr32(E1000_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
|
|
{
|
|
static const u32 aux0_sel_sdp[IGB_N_SDP] = {
|
|
AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
|
|
};
|
|
static const u32 aux1_sel_sdp[IGB_N_SDP] = {
|
|
AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
|
|
};
|
|
static const u32 ts_sdp_en[IGB_N_SDP] = {
|
|
TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
|
|
};
|
|
static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
|
|
TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
|
|
TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
|
|
};
|
|
static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
|
|
TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
|
|
TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
|
|
};
|
|
static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
|
|
TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
|
|
TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
|
|
};
|
|
static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
|
|
TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
|
|
TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
|
|
};
|
|
static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
|
|
TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
|
|
TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
|
|
};
|
|
struct e1000_hw *hw = &igb->hw;
|
|
u32 ctrl, ctrl_ext, tssdp = 0;
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
ctrl_ext = rd32(E1000_CTRL_EXT);
|
|
tssdp = rd32(E1000_TSSDP);
|
|
|
|
igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
|
|
|
|
/* Make sure this pin is not enabled as an input. */
|
|
if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
|
|
tssdp &= ~AUX0_TS_SDP_EN;
|
|
|
|
if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
|
|
tssdp &= ~AUX1_TS_SDP_EN;
|
|
|
|
tssdp &= ~ts_sdp_sel_clr[pin];
|
|
if (freq) {
|
|
if (chan == 1)
|
|
tssdp |= ts_sdp_sel_fc1[pin];
|
|
else
|
|
tssdp |= ts_sdp_sel_fc0[pin];
|
|
} else {
|
|
if (chan == 1)
|
|
tssdp |= ts_sdp_sel_tt1[pin];
|
|
else
|
|
tssdp |= ts_sdp_sel_tt0[pin];
|
|
}
|
|
tssdp |= ts_sdp_en[pin];
|
|
|
|
wr32(E1000_TSSDP, tssdp);
|
|
wr32(E1000_CTRL, ctrl);
|
|
wr32(E1000_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
struct igb_adapter *igb =
|
|
container_of(ptp, struct igb_adapter, ptp_caps);
|
|
struct e1000_hw *hw = &igb->hw;
|
|
u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
|
|
unsigned long flags;
|
|
struct timespec64 ts;
|
|
int use_freq = 0, pin = -1;
|
|
s64 ns;
|
|
|
|
switch (rq->type) {
|
|
case PTP_CLK_REQ_EXTTS:
|
|
if (on) {
|
|
pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
|
|
rq->extts.index);
|
|
if (pin < 0)
|
|
return -EBUSY;
|
|
}
|
|
if (rq->extts.index == 1) {
|
|
tsauxc_mask = TSAUXC_EN_TS1;
|
|
tsim_mask = TSINTR_AUTT1;
|
|
} else {
|
|
tsauxc_mask = TSAUXC_EN_TS0;
|
|
tsim_mask = TSINTR_AUTT0;
|
|
}
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
tsauxc = rd32(E1000_TSAUXC);
|
|
tsim = rd32(E1000_TSIM);
|
|
if (on) {
|
|
igb_pin_extts(igb, rq->extts.index, pin);
|
|
tsauxc |= tsauxc_mask;
|
|
tsim |= tsim_mask;
|
|
} else {
|
|
tsauxc &= ~tsauxc_mask;
|
|
tsim &= ~tsim_mask;
|
|
}
|
|
wr32(E1000_TSAUXC, tsauxc);
|
|
wr32(E1000_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
return 0;
|
|
|
|
case PTP_CLK_REQ_PEROUT:
|
|
if (on) {
|
|
pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
|
|
rq->perout.index);
|
|
if (pin < 0)
|
|
return -EBUSY;
|
|
}
|
|
ts.tv_sec = rq->perout.period.sec;
|
|
ts.tv_nsec = rq->perout.period.nsec;
|
|
ns = timespec64_to_ns(&ts);
|
|
ns = ns >> 1;
|
|
if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
|
|
(ns == 250000000LL) || (ns == 500000000LL))) {
|
|
if (ns < 8LL)
|
|
return -EINVAL;
|
|
use_freq = 1;
|
|
}
|
|
ts = ns_to_timespec64(ns);
|
|
if (rq->perout.index == 1) {
|
|
if (use_freq) {
|
|
tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
|
|
tsim_mask = 0;
|
|
} else {
|
|
tsauxc_mask = TSAUXC_EN_TT1;
|
|
tsim_mask = TSINTR_TT1;
|
|
}
|
|
trgttiml = E1000_TRGTTIML1;
|
|
trgttimh = E1000_TRGTTIMH1;
|
|
freqout = E1000_FREQOUT1;
|
|
} else {
|
|
if (use_freq) {
|
|
tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
|
|
tsim_mask = 0;
|
|
} else {
|
|
tsauxc_mask = TSAUXC_EN_TT0;
|
|
tsim_mask = TSINTR_TT0;
|
|
}
|
|
trgttiml = E1000_TRGTTIML0;
|
|
trgttimh = E1000_TRGTTIMH0;
|
|
freqout = E1000_FREQOUT0;
|
|
}
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
tsauxc = rd32(E1000_TSAUXC);
|
|
tsim = rd32(E1000_TSIM);
|
|
if (rq->perout.index == 1) {
|
|
tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
|
|
tsim &= ~TSINTR_TT1;
|
|
} else {
|
|
tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
|
|
tsim &= ~TSINTR_TT0;
|
|
}
|
|
if (on) {
|
|
int i = rq->perout.index;
|
|
igb_pin_perout(igb, i, pin, use_freq);
|
|
igb->perout[i].start.tv_sec = rq->perout.start.sec;
|
|
igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
|
|
igb->perout[i].period.tv_sec = ts.tv_sec;
|
|
igb->perout[i].period.tv_nsec = ts.tv_nsec;
|
|
wr32(trgttimh, rq->perout.start.sec);
|
|
wr32(trgttiml, rq->perout.start.nsec);
|
|
if (use_freq)
|
|
wr32(freqout, ns);
|
|
tsauxc |= tsauxc_mask;
|
|
tsim |= tsim_mask;
|
|
}
|
|
wr32(E1000_TSAUXC, tsauxc);
|
|
wr32(E1000_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
return 0;
|
|
|
|
case PTP_CLK_REQ_PPS:
|
|
spin_lock_irqsave(&igb->tmreg_lock, flags);
|
|
tsim = rd32(E1000_TSIM);
|
|
if (on)
|
|
tsim |= TSINTR_SYS_WRAP;
|
|
else
|
|
tsim &= ~TSINTR_SYS_WRAP;
|
|
igb->pps_sys_wrap_on = !!on;
|
|
wr32(E1000_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igb->tmreg_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
|
|
enum ptp_pin_function func, unsigned int chan)
|
|
{
|
|
switch (func) {
|
|
case PTP_PF_NONE:
|
|
case PTP_PF_EXTTS:
|
|
case PTP_PF_PEROUT:
|
|
break;
|
|
case PTP_PF_PHYSYNC:
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_tx_work
|
|
* @work: pointer to work struct
|
|
*
|
|
* This work function polls the TSYNCTXCTL valid bit to determine when a
|
|
* timestamp has been taken for the current stored skb.
|
|
**/
|
|
static void igb_ptp_tx_work(struct work_struct *work)
|
|
{
|
|
struct igb_adapter *adapter = container_of(work, struct igb_adapter,
|
|
ptp_tx_work);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tsynctxctl;
|
|
|
|
if (!adapter->ptp_tx_skb)
|
|
return;
|
|
|
|
if (time_is_before_jiffies(adapter->ptp_tx_start +
|
|
IGB_PTP_TX_TIMEOUT)) {
|
|
dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
adapter->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
adapter->tx_hwtstamp_timeouts++;
|
|
/* Clear the tx valid bit in TSYNCTXCTL register to enable
|
|
* interrupt
|
|
*/
|
|
rd32(E1000_TXSTMPH);
|
|
dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
|
|
return;
|
|
}
|
|
|
|
tsynctxctl = rd32(E1000_TSYNCTXCTL);
|
|
if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
|
|
igb_ptp_tx_hwtstamp(adapter);
|
|
else
|
|
/* reschedule to check later */
|
|
schedule_work(&adapter->ptp_tx_work);
|
|
}
|
|
|
|
static void igb_ptp_overflow_check(struct work_struct *work)
|
|
{
|
|
struct igb_adapter *igb =
|
|
container_of(work, struct igb_adapter, ptp_overflow_work.work);
|
|
struct timespec64 ts;
|
|
u64 ns;
|
|
|
|
/* Update the timecounter */
|
|
ns = timecounter_read(&igb->tc);
|
|
|
|
ts = ns_to_timespec64(ns);
|
|
pr_debug("igb overflow check at %lld.%09lu\n",
|
|
(long long) ts.tv_sec, ts.tv_nsec);
|
|
|
|
schedule_delayed_work(&igb->ptp_overflow_work,
|
|
IGB_SYSTIM_OVERFLOW_PERIOD);
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
|
|
* @adapter: private network adapter structure
|
|
*
|
|
* This watchdog task is scheduled to detect error case where hardware has
|
|
* dropped an Rx packet that was timestamped when the ring is full. The
|
|
* particular error is rare but leaves the device in a state unable to timestamp
|
|
* any future packets.
|
|
**/
|
|
void igb_ptp_rx_hang(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
|
|
unsigned long rx_event;
|
|
|
|
/* Other hardware uses per-packet timestamps */
|
|
if (hw->mac.type != e1000_82576)
|
|
return;
|
|
|
|
/* If we don't have a valid timestamp in the registers, just update the
|
|
* timeout counter and exit
|
|
*/
|
|
if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
|
|
adapter->last_rx_ptp_check = jiffies;
|
|
return;
|
|
}
|
|
|
|
/* Determine the most recent watchdog or rx_timestamp event */
|
|
rx_event = adapter->last_rx_ptp_check;
|
|
if (time_after(adapter->last_rx_timestamp, rx_event))
|
|
rx_event = adapter->last_rx_timestamp;
|
|
|
|
/* Only need to read the high RXSTMP register to clear the lock */
|
|
if (time_is_before_jiffies(rx_event + 5 * HZ)) {
|
|
rd32(E1000_RXSTMPH);
|
|
adapter->last_rx_ptp_check = jiffies;
|
|
adapter->rx_hwtstamp_cleared++;
|
|
dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
|
|
* @adapter: private network adapter structure
|
|
*/
|
|
void igb_ptp_tx_hang(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
|
|
IGB_PTP_TX_TIMEOUT);
|
|
|
|
if (!adapter->ptp_tx_skb)
|
|
return;
|
|
|
|
if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
|
|
return;
|
|
|
|
/* If we haven't received a timestamp within the timeout, it is
|
|
* reasonable to assume that it will never occur, so we can unlock the
|
|
* timestamp bit when this occurs.
|
|
*/
|
|
if (timeout) {
|
|
cancel_work_sync(&adapter->ptp_tx_work);
|
|
dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
adapter->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
adapter->tx_hwtstamp_timeouts++;
|
|
/* Clear the tx valid bit in TSYNCTXCTL register to enable
|
|
* interrupt
|
|
*/
|
|
rd32(E1000_TXSTMPH);
|
|
dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
|
|
* @adapter: Board private structure.
|
|
*
|
|
* If we were asked to do hardware stamping and such a time stamp is
|
|
* available, then it must have been for this skb here because we only
|
|
* allow only one such packet into the queue.
|
|
**/
|
|
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
|
|
{
|
|
struct sk_buff *skb = adapter->ptp_tx_skb;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
u64 regval;
|
|
int adjust = 0;
|
|
|
|
regval = rd32(E1000_TXSTMPL);
|
|
regval |= (u64)rd32(E1000_TXSTMPH) << 32;
|
|
|
|
igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
|
|
/* adjust timestamp for the TX latency based on link speed */
|
|
if (adapter->hw.mac.type == e1000_i210) {
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adjust = IGB_I210_TX_LATENCY_10;
|
|
break;
|
|
case SPEED_100:
|
|
adjust = IGB_I210_TX_LATENCY_100;
|
|
break;
|
|
case SPEED_1000:
|
|
adjust = IGB_I210_TX_LATENCY_1000;
|
|
break;
|
|
}
|
|
}
|
|
|
|
shhwtstamps.hwtstamp =
|
|
ktime_add_ns(shhwtstamps.hwtstamp, adjust);
|
|
|
|
/* Clear the lock early before calling skb_tstamp_tx so that
|
|
* applications are not woken up before the lock bit is clear. We use
|
|
* a copy of the skb pointer to ensure other threads can't change it
|
|
* while we're notifying the stack.
|
|
*/
|
|
adapter->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
|
|
/* Notify the stack and free the skb after we've unlocked */
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
|
|
* @q_vector: Pointer to interrupt specific structure
|
|
* @va: Pointer to address containing Rx buffer
|
|
* @skb: Buffer containing timestamp and packet
|
|
*
|
|
* This function is meant to retrieve a timestamp from the first buffer of an
|
|
* incoming frame. The value is stored in little endian format starting on
|
|
* byte 8.
|
|
**/
|
|
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
|
|
struct sk_buff *skb)
|
|
{
|
|
__le64 *regval = (__le64 *)va;
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
int adjust = 0;
|
|
|
|
/* The timestamp is recorded in little endian format.
|
|
* DWORD: 0 1 2 3
|
|
* Field: Reserved Reserved SYSTIML SYSTIMH
|
|
*/
|
|
igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
|
|
le64_to_cpu(regval[1]));
|
|
|
|
/* adjust timestamp for the RX latency based on link speed */
|
|
if (adapter->hw.mac.type == e1000_i210) {
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adjust = IGB_I210_RX_LATENCY_10;
|
|
break;
|
|
case SPEED_100:
|
|
adjust = IGB_I210_RX_LATENCY_100;
|
|
break;
|
|
case SPEED_1000:
|
|
adjust = IGB_I210_RX_LATENCY_1000;
|
|
break;
|
|
}
|
|
}
|
|
skb_hwtstamps(skb)->hwtstamp =
|
|
ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
|
|
* @q_vector: Pointer to interrupt specific structure
|
|
* @skb: Buffer containing timestamp and packet
|
|
*
|
|
* This function is meant to retrieve a timestamp from the internal registers
|
|
* of the adapter and store it in the skb.
|
|
**/
|
|
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct igb_adapter *adapter = q_vector->adapter;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 regval;
|
|
int adjust = 0;
|
|
|
|
/* If this bit is set, then the RX registers contain the time stamp. No
|
|
* other packet will be time stamped until we read these registers, so
|
|
* read the registers to make them available again. Because only one
|
|
* packet can be time stamped at a time, we know that the register
|
|
* values must belong to this one here and therefore we don't need to
|
|
* compare any of the additional attributes stored for it.
|
|
*
|
|
* If nothing went wrong, then it should have a shared tx_flags that we
|
|
* can turn into a skb_shared_hwtstamps.
|
|
*/
|
|
if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
|
|
return;
|
|
|
|
regval = rd32(E1000_RXSTMPL);
|
|
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
|
|
|
|
igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
|
|
|
|
/* adjust timestamp for the RX latency based on link speed */
|
|
if (adapter->hw.mac.type == e1000_i210) {
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adjust = IGB_I210_RX_LATENCY_10;
|
|
break;
|
|
case SPEED_100:
|
|
adjust = IGB_I210_RX_LATENCY_100;
|
|
break;
|
|
case SPEED_1000:
|
|
adjust = IGB_I210_RX_LATENCY_1000;
|
|
break;
|
|
}
|
|
}
|
|
skb_hwtstamps(skb)->hwtstamp =
|
|
ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
|
|
|
|
/* Update the last_rx_timestamp timer in order to enable watchdog check
|
|
* for error case of latched timestamp on a dropped packet.
|
|
*/
|
|
adapter->last_rx_timestamp = jiffies;
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_get_ts_config - get hardware time stamping config
|
|
* @netdev:
|
|
* @ifreq:
|
|
*
|
|
* Get the hwtstamp_config settings to return to the user. Rather than attempt
|
|
* to deconstruct the settings from the registers, just return a shadow copy
|
|
* of the last known settings.
|
|
**/
|
|
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct hwtstamp_config *config = &adapter->tstamp_config;
|
|
|
|
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_set_timestamp_mode - setup hardware for timestamping
|
|
* @adapter: networking device structure
|
|
* @config: hwtstamp configuration
|
|
*
|
|
* Outgoing time stamping can be enabled and disabled. Play nice and
|
|
* disable it when requested, although it shouldn't case any overhead
|
|
* when no packet needs it. At most one packet in the queue may be
|
|
* marked for time stamping, otherwise it would be impossible to tell
|
|
* for sure to which packet the hardware time stamp belongs.
|
|
*
|
|
* Incoming time stamping has to be configured via the hardware
|
|
* filters. Not all combinations are supported, in particular event
|
|
* type has to be specified. Matching the kind of event packet is
|
|
* not supported, with the exception of "all V2 events regardless of
|
|
* level 2 or 4".
|
|
*/
|
|
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
|
|
struct hwtstamp_config *config)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
|
|
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
|
u32 tsync_rx_cfg = 0;
|
|
bool is_l4 = false;
|
|
bool is_l2 = false;
|
|
u32 regval;
|
|
|
|
/* reserved for future extensions */
|
|
if (config->flags)
|
|
return -EINVAL;
|
|
|
|
switch (config->tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
tsync_tx_ctl = 0;
|
|
case HWTSTAMP_TX_ON:
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
tsync_rx_ctl = 0;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
|
|
is_l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
|
|
is_l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
is_l2 = true;
|
|
is_l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_NTP_ALL:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
/* 82576 cannot timestamp all packets, which it needs to do to
|
|
* support both V1 Sync and Delay_Req messages
|
|
*/
|
|
if (hw->mac.type != e1000_82576) {
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
|
config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
config->rx_filter = HWTSTAMP_FILTER_NONE;
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (hw->mac.type == e1000_82575) {
|
|
if (tsync_rx_ctl | tsync_tx_ctl)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/* Per-packet timestamping only works if all packets are
|
|
* timestamped, so enable timestamping in all packets as
|
|
* long as one Rx filter was configured.
|
|
*/
|
|
if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
|
|
tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
|
config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
is_l2 = true;
|
|
is_l4 = true;
|
|
|
|
if ((hw->mac.type == e1000_i210) ||
|
|
(hw->mac.type == e1000_i211)) {
|
|
regval = rd32(E1000_RXPBS);
|
|
regval |= E1000_RXPBS_CFG_TS_EN;
|
|
wr32(E1000_RXPBS, regval);
|
|
}
|
|
}
|
|
|
|
/* enable/disable TX */
|
|
regval = rd32(E1000_TSYNCTXCTL);
|
|
regval &= ~E1000_TSYNCTXCTL_ENABLED;
|
|
regval |= tsync_tx_ctl;
|
|
wr32(E1000_TSYNCTXCTL, regval);
|
|
|
|
/* enable/disable RX */
|
|
regval = rd32(E1000_TSYNCRXCTL);
|
|
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
|
|
regval |= tsync_rx_ctl;
|
|
wr32(E1000_TSYNCRXCTL, regval);
|
|
|
|
/* define which PTP packets are time stamped */
|
|
wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
|
|
|
|
/* define ethertype filter for timestamped packets */
|
|
if (is_l2)
|
|
wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
|
|
(E1000_ETQF_FILTER_ENABLE | /* enable filter */
|
|
E1000_ETQF_1588 | /* enable timestamping */
|
|
ETH_P_1588)); /* 1588 eth protocol type */
|
|
else
|
|
wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
|
|
|
|
/* L4 Queue Filter[3]: filter by destination port and protocol */
|
|
if (is_l4) {
|
|
u32 ftqf = (IPPROTO_UDP /* UDP */
|
|
| E1000_FTQF_VF_BP /* VF not compared */
|
|
| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
|
|
| E1000_FTQF_MASK); /* mask all inputs */
|
|
ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
|
|
|
|
wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
|
|
wr32(E1000_IMIREXT(3),
|
|
(E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
|
|
if (hw->mac.type == e1000_82576) {
|
|
/* enable source port check */
|
|
wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
|
|
ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
|
|
}
|
|
wr32(E1000_FTQF(3), ftqf);
|
|
} else {
|
|
wr32(E1000_FTQF(3), E1000_FTQF_MASK);
|
|
}
|
|
wrfl();
|
|
|
|
/* clear TX/RX time stamp registers, just to be sure */
|
|
regval = rd32(E1000_TXSTMPL);
|
|
regval = rd32(E1000_TXSTMPH);
|
|
regval = rd32(E1000_RXSTMPL);
|
|
regval = rd32(E1000_RXSTMPH);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_set_ts_config - set hardware time stamping config
|
|
* @netdev:
|
|
* @ifreq:
|
|
*
|
|
**/
|
|
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
|
|
{
|
|
struct igb_adapter *adapter = netdev_priv(netdev);
|
|
struct hwtstamp_config config;
|
|
int err;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
err = igb_ptp_set_timestamp_mode(adapter, &config);
|
|
if (err)
|
|
return err;
|
|
|
|
/* save these settings for future reference */
|
|
memcpy(&adapter->tstamp_config, &config,
|
|
sizeof(adapter->tstamp_config));
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_init - Initialize PTP functionality
|
|
* @adapter: Board private structure
|
|
*
|
|
* This function is called at device probe to initialize the PTP
|
|
* functionality.
|
|
*/
|
|
void igb_ptp_init(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct net_device *netdev = adapter->netdev;
|
|
int i;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82576:
|
|
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
|
|
adapter->ptp_caps.owner = THIS_MODULE;
|
|
adapter->ptp_caps.max_adj = 999999881;
|
|
adapter->ptp_caps.n_ext_ts = 0;
|
|
adapter->ptp_caps.pps = 0;
|
|
adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
|
|
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
|
|
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
|
|
adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
|
|
adapter->ptp_caps.enable = igb_ptp_feature_enable;
|
|
adapter->cc.read = igb_ptp_read_82576;
|
|
adapter->cc.mask = CYCLECOUNTER_MASK(64);
|
|
adapter->cc.mult = 1;
|
|
adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
|
|
adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i354:
|
|
case e1000_i350:
|
|
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
|
|
adapter->ptp_caps.owner = THIS_MODULE;
|
|
adapter->ptp_caps.max_adj = 62499999;
|
|
adapter->ptp_caps.n_ext_ts = 0;
|
|
adapter->ptp_caps.pps = 0;
|
|
adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
|
|
adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
|
|
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
|
|
adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
|
|
adapter->ptp_caps.enable = igb_ptp_feature_enable;
|
|
adapter->cc.read = igb_ptp_read_82580;
|
|
adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
|
|
adapter->cc.mult = 1;
|
|
adapter->cc.shift = 0;
|
|
adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
|
|
break;
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
for (i = 0; i < IGB_N_SDP; i++) {
|
|
struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
|
|
|
|
snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
|
|
ppd->index = i;
|
|
ppd->func = PTP_PF_NONE;
|
|
}
|
|
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
|
|
adapter->ptp_caps.owner = THIS_MODULE;
|
|
adapter->ptp_caps.max_adj = 62499999;
|
|
adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
|
|
adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
|
|
adapter->ptp_caps.n_pins = IGB_N_SDP;
|
|
adapter->ptp_caps.pps = 1;
|
|
adapter->ptp_caps.pin_config = adapter->sdp_config;
|
|
adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
|
|
adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
|
|
adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
|
|
adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
|
|
adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
|
|
adapter->ptp_caps.verify = igb_ptp_verify_pin;
|
|
break;
|
|
default:
|
|
adapter->ptp_clock = NULL;
|
|
return;
|
|
}
|
|
|
|
spin_lock_init(&adapter->tmreg_lock);
|
|
INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
|
|
|
|
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
|
|
INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
|
|
igb_ptp_overflow_check);
|
|
|
|
adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
|
|
|
|
igb_ptp_reset(adapter);
|
|
|
|
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
|
|
&adapter->pdev->dev);
|
|
if (IS_ERR(adapter->ptp_clock)) {
|
|
adapter->ptp_clock = NULL;
|
|
dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
|
|
} else if (adapter->ptp_clock) {
|
|
dev_info(&adapter->pdev->dev, "added PHC on %s\n",
|
|
adapter->netdev->name);
|
|
adapter->ptp_flags |= IGB_PTP_ENABLED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_suspend - Disable PTP work items and prepare for suspend
|
|
* @adapter: Board private structure
|
|
*
|
|
* This function stops the overflow check work and PTP Tx timestamp work, and
|
|
* will prepare the device for OS suspend.
|
|
*/
|
|
void igb_ptp_suspend(struct igb_adapter *adapter)
|
|
{
|
|
if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
|
|
return;
|
|
|
|
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
|
|
cancel_delayed_work_sync(&adapter->ptp_overflow_work);
|
|
|
|
cancel_work_sync(&adapter->ptp_tx_work);
|
|
if (adapter->ptp_tx_skb) {
|
|
dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
adapter->ptp_tx_skb = NULL;
|
|
clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_stop - Disable PTP device and stop the overflow check.
|
|
* @adapter: Board private structure.
|
|
*
|
|
* This function stops the PTP support and cancels the delayed work.
|
|
**/
|
|
void igb_ptp_stop(struct igb_adapter *adapter)
|
|
{
|
|
igb_ptp_suspend(adapter);
|
|
|
|
if (adapter->ptp_clock) {
|
|
ptp_clock_unregister(adapter->ptp_clock);
|
|
dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
|
|
adapter->netdev->name);
|
|
adapter->ptp_flags &= ~IGB_PTP_ENABLED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igb_ptp_reset - Re-enable the adapter for PTP following a reset.
|
|
* @adapter: Board private structure.
|
|
*
|
|
* This function handles the reset work required to re-enable the PTP device.
|
|
**/
|
|
void igb_ptp_reset(struct igb_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
unsigned long flags;
|
|
|
|
/* reset the tstamp_config */
|
|
igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
|
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82576:
|
|
/* Dial the nominal frequency. */
|
|
wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i354:
|
|
case e1000_i350:
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
wr32(E1000_TSAUXC, 0x0);
|
|
wr32(E1000_TSSDP, 0x0);
|
|
wr32(E1000_TSIM,
|
|
TSYNC_INTERRUPTS |
|
|
(adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
|
|
wr32(E1000_IMS, E1000_IMS_TS);
|
|
break;
|
|
default:
|
|
/* No work to do. */
|
|
goto out;
|
|
}
|
|
|
|
/* Re-initialize the timer. */
|
|
if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
|
|
struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
|
|
|
|
igb_ptp_write_i210(adapter, &ts);
|
|
} else {
|
|
timecounter_init(&adapter->tc, &adapter->cc,
|
|
ktime_to_ns(ktime_get_real()));
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
wrfl();
|
|
|
|
if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
|
|
schedule_delayed_work(&adapter->ptp_overflow_work,
|
|
IGB_SYSTIM_OVERFLOW_PERIOD);
|
|
}
|