linux/drivers/mtd/nand/atmel_nand.c

2390 lines
61 KiB
C

/*
* Copyright © 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* © Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mtd.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_data/atmel.h>
static int use_dma = 1;
module_param(use_dma, int, 0);
static int on_flash_bbt = 0;
module_param(on_flash_bbt, int, 0);
/* Register access macros */
#define ecc_readl(add, reg) \
__raw_readl(add + ATMEL_ECC_##reg)
#define ecc_writel(add, reg, value) \
__raw_writel((value), add + ATMEL_ECC_##reg)
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
/* oob layout for large page size
* bad block info is on bytes 0 and 1
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout atmel_oobinfo_large = {
.eccbytes = 4,
.eccpos = {60, 61, 62, 63},
.oobfree = {
{2, 58}
},
};
/* oob layout for small page size
* bad block info is on bytes 4 and 5
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout atmel_oobinfo_small = {
.eccbytes = 4,
.eccpos = {0, 1, 2, 3},
.oobfree = {
{6, 10}
},
};
struct atmel_nfc {
void __iomem *base_cmd_regs;
void __iomem *hsmc_regs;
void *sram_bank0;
dma_addr_t sram_bank0_phys;
bool use_nfc_sram;
bool write_by_sram;
struct clk *clk;
bool is_initialized;
struct completion comp_ready;
struct completion comp_cmd_done;
struct completion comp_xfer_done;
/* Point to the sram bank which include readed data via NFC */
void *data_in_sram;
bool will_write_sram;
};
static struct atmel_nfc nand_nfc;
struct atmel_nand_host {
struct nand_chip nand_chip;
struct mtd_info mtd;
void __iomem *io_base;
dma_addr_t io_phys;
struct atmel_nand_data board;
struct device *dev;
void __iomem *ecc;
struct completion comp;
struct dma_chan *dma_chan;
struct atmel_nfc *nfc;
bool has_pmecc;
u8 pmecc_corr_cap;
u16 pmecc_sector_size;
bool has_no_lookup_table;
u32 pmecc_lookup_table_offset;
u32 pmecc_lookup_table_offset_512;
u32 pmecc_lookup_table_offset_1024;
int pmecc_degree; /* Degree of remainders */
int pmecc_cw_len; /* Length of codeword */
void __iomem *pmerrloc_base;
void __iomem *pmecc_rom_base;
/* lookup table for alpha_to and index_of */
void __iomem *pmecc_alpha_to;
void __iomem *pmecc_index_of;
/* data for pmecc computation */
int16_t *pmecc_partial_syn;
int16_t *pmecc_si;
int16_t *pmecc_smu; /* Sigma table */
int16_t *pmecc_lmu; /* polynomal order */
int *pmecc_mu;
int *pmecc_dmu;
int *pmecc_delta;
};
static struct nand_ecclayout atmel_pmecc_oobinfo;
/*
* Enable NAND.
*/
static void atmel_nand_enable(struct atmel_nand_host *host)
{
if (gpio_is_valid(host->board.enable_pin))
gpio_set_value(host->board.enable_pin, 0);
}
/*
* Disable NAND.
*/
static void atmel_nand_disable(struct atmel_nand_host *host)
{
if (gpio_is_valid(host->board.enable_pin))
gpio_set_value(host->board.enable_pin, 1);
}
/*
* Hardware specific access to control-lines
*/
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_NCE)
atmel_nand_enable(host);
else
atmel_nand_disable(host);
}
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, host->io_base + (1 << host->board.cle));
else
writeb(cmd, host->io_base + (1 << host->board.ale));
}
/*
* Read the Device Ready pin.
*/
static int atmel_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
return gpio_get_value(host->board.rdy_pin) ^
!!host->board.rdy_pin_active_low;
}
/* Set up for hardware ready pin and enable pin. */
static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
int res = 0;
if (gpio_is_valid(host->board.rdy_pin)) {
res = devm_gpio_request(host->dev,
host->board.rdy_pin, "nand_rdy");
if (res < 0) {
dev_err(host->dev,
"can't request rdy gpio %d\n",
host->board.rdy_pin);
return res;
}
res = gpio_direction_input(host->board.rdy_pin);
if (res < 0) {
dev_err(host->dev,
"can't request input direction rdy gpio %d\n",
host->board.rdy_pin);
return res;
}
chip->dev_ready = atmel_nand_device_ready;
}
if (gpio_is_valid(host->board.enable_pin)) {
res = devm_gpio_request(host->dev,
host->board.enable_pin, "nand_enable");
if (res < 0) {
dev_err(host->dev,
"can't request enable gpio %d\n",
host->board.enable_pin);
return res;
}
res = gpio_direction_output(host->board.enable_pin, 1);
if (res < 0) {
dev_err(host->dev,
"can't request output direction enable gpio %d\n",
host->board.enable_pin);
return res;
}
}
return res;
}
/*
* Minimal-overhead PIO for data access.
*/
static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
memcpy(buf, host->nfc->data_in_sram, len);
host->nfc->data_in_sram += len;
} else {
__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
}
}
static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
memcpy(buf, host->nfc->data_in_sram, len);
host->nfc->data_in_sram += len;
} else {
__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
}
}
static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
}
static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
}
static void dma_complete_func(void *completion)
{
complete(completion);
}
static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
{
/* NFC only has two banks. Must be 0 or 1 */
if (bank > 1)
return -EINVAL;
if (bank) {
/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
if (host->mtd.writesize > 2048)
return -EINVAL;
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
} else {
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
}
return 0;
}
static uint nfc_get_sram_off(struct atmel_nand_host *host)
{
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
return NFC_SRAM_BANK1_OFFSET;
else
return 0;
}
static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
{
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
else
return host->nfc->sram_bank0_phys;
}
static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
int is_read)
{
struct dma_device *dma_dev;
enum dma_ctrl_flags flags;
dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
struct dma_async_tx_descriptor *tx = NULL;
dma_cookie_t cookie;
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
void *p = buf;
int err = -EIO;
enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
struct atmel_nfc *nfc = host->nfc;
if (buf >= high_memory)
goto err_buf;
dma_dev = host->dma_chan->device;
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
if (dma_mapping_error(dma_dev->dev, phys_addr)) {
dev_err(host->dev, "Failed to dma_map_single\n");
goto err_buf;
}
if (is_read) {
if (nfc && nfc->data_in_sram)
dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
- (nfc->sram_bank0 + nfc_get_sram_off(host)));
else
dma_src_addr = host->io_phys;
dma_dst_addr = phys_addr;
} else {
dma_src_addr = phys_addr;
if (nfc && nfc->write_by_sram)
dma_dst_addr = nfc_sram_phys(host);
else
dma_dst_addr = host->io_phys;
}
tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
dma_src_addr, len, flags);
if (!tx) {
dev_err(host->dev, "Failed to prepare DMA memcpy\n");
goto err_dma;
}
init_completion(&host->comp);
tx->callback = dma_complete_func;
tx->callback_param = &host->comp;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(host->dev, "Failed to do DMA tx_submit\n");
goto err_dma;
}
dma_async_issue_pending(host->dma_chan);
wait_for_completion(&host->comp);
if (is_read && nfc && nfc->data_in_sram)
/* After read data from SRAM, need to increase the position */
nfc->data_in_sram += len;
err = 0;
err_dma:
dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
err_buf:
if (err != 0)
dev_dbg(host->dev, "Fall back to CPU I/O\n");
return err;
}
static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
return;
if (host->board.bus_width_16)
atmel_read_buf16(mtd, buf, len);
else
atmel_read_buf8(mtd, buf, len);
}
static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
return;
if (host->board.bus_width_16)
atmel_write_buf16(mtd, buf, len);
else
atmel_write_buf8(mtd, buf, len);
}
/*
* Return number of ecc bytes per sector according to sector size and
* correction capability
*
* Following table shows what at91 PMECC supported:
* Correction Capability Sector_512_bytes Sector_1024_bytes
* ===================== ================ =================
* 2-bits 4-bytes 4-bytes
* 4-bits 7-bytes 7-bytes
* 8-bits 13-bytes 14-bytes
* 12-bits 20-bytes 21-bytes
* 24-bits 39-bytes 42-bytes
*/
static int pmecc_get_ecc_bytes(int cap, int sector_size)
{
int m = 12 + sector_size / 512;
return (m * cap + 7) / 8;
}
static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
int oobsize, int ecc_len)
{
int i;
layout->eccbytes = ecc_len;
/* ECC will occupy the last ecc_len bytes continuously */
for (i = 0; i < ecc_len; i++)
layout->eccpos[i] = oobsize - ecc_len + i;
layout->oobfree[0].offset = 2;
layout->oobfree[0].length =
oobsize - ecc_len - layout->oobfree[0].offset;
}
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
{
int table_size;
table_size = host->pmecc_sector_size == 512 ?
PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
table_size * sizeof(int16_t);
}
static int pmecc_data_alloc(struct atmel_nand_host *host)
{
const int cap = host->pmecc_corr_cap;
int size;
size = (2 * cap + 1) * sizeof(int16_t);
host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_lmu = devm_kzalloc(host->dev,
(cap + 1) * sizeof(int16_t), GFP_KERNEL);
host->pmecc_smu = devm_kzalloc(host->dev,
(cap + 2) * size, GFP_KERNEL);
size = (cap + 1) * sizeof(int);
host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
if (!host->pmecc_partial_syn ||
!host->pmecc_si ||
!host->pmecc_lmu ||
!host->pmecc_smu ||
!host->pmecc_mu ||
!host->pmecc_dmu ||
!host->pmecc_delta)
return -ENOMEM;
return 0;
}
static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
int i;
uint32_t value;
/* Fill odd syndromes */
for (i = 0; i < host->pmecc_corr_cap; i++) {
value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
if (i & 1)
value >>= 16;
value &= 0xffff;
host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
}
}
static void pmecc_substitute(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
int16_t __iomem *index_of = host->pmecc_index_of;
int16_t *partial_syn = host->pmecc_partial_syn;
const int cap = host->pmecc_corr_cap;
int16_t *si;
int i, j;
/* si[] is a table that holds the current syndrome value,
* an element of that table belongs to the field
*/
si = host->pmecc_si;
memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
/* Computation 2t syndromes based on S(x) */
/* Odd syndromes */
for (i = 1; i < 2 * cap; i += 2) {
for (j = 0; j < host->pmecc_degree; j++) {
if (partial_syn[i] & ((unsigned short)0x1 << j))
si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
}
}
/* Even syndrome = (Odd syndrome) ** 2 */
for (i = 2, j = 1; j <= cap; i = ++j << 1) {
if (si[j] == 0) {
si[i] = 0;
} else {
int16_t tmp;
tmp = readw_relaxed(index_of + si[j]);
tmp = (tmp * 2) % host->pmecc_cw_len;
si[i] = readw_relaxed(alpha_to + tmp);
}
}
return;
}
static void pmecc_get_sigma(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
int16_t *lmu = host->pmecc_lmu;
int16_t *si = host->pmecc_si;
int *mu = host->pmecc_mu;
int *dmu = host->pmecc_dmu; /* Discrepancy */
int *delta = host->pmecc_delta; /* Delta order */
int cw_len = host->pmecc_cw_len;
const int16_t cap = host->pmecc_corr_cap;
const int num = 2 * cap + 1;
int16_t __iomem *index_of = host->pmecc_index_of;
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
int i, j, k;
uint32_t dmu_0_count, tmp;
int16_t *smu = host->pmecc_smu;
/* index of largest delta */
int ro;
int largest;
int diff;
dmu_0_count = 0;
/* First Row */
/* Mu */
mu[0] = -1;
memset(smu, 0, sizeof(int16_t) * num);
smu[0] = 1;
/* discrepancy set to 1 */
dmu[0] = 1;
/* polynom order set to 0 */
lmu[0] = 0;
delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
/* Second Row */
/* Mu */
mu[1] = 0;
/* Sigma(x) set to 1 */
memset(&smu[num], 0, sizeof(int16_t) * num);
smu[num] = 1;
/* discrepancy set to S1 */
dmu[1] = si[1];
/* polynom order set to 0 */
lmu[1] = 0;
delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
/* Init the Sigma(x) last row */
memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
for (i = 1; i <= cap; i++) {
mu[i + 1] = i << 1;
/* Begin Computing Sigma (Mu+1) and L(mu) */
/* check if discrepancy is set to 0 */
if (dmu[i] == 0) {
dmu_0_count++;
tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
if ((cap - (lmu[i] >> 1) - 1) & 0x1)
tmp += 2;
else
tmp += 1;
if (dmu_0_count == tmp) {
for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
smu[(cap + 1) * num + j] =
smu[i * num + j];
lmu[cap + 1] = lmu[i];
return;
}
/* copy polynom */
for (j = 0; j <= lmu[i] >> 1; j++)
smu[(i + 1) * num + j] = smu[i * num + j];
/* copy previous polynom order to the next */
lmu[i + 1] = lmu[i];
} else {
ro = 0;
largest = -1;
/* find largest delta with dmu != 0 */
for (j = 0; j < i; j++) {
if ((dmu[j]) && (delta[j] > largest)) {
largest = delta[j];
ro = j;
}
}
/* compute difference */
diff = (mu[i] - mu[ro]);
/* Compute degree of the new smu polynomial */
if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
lmu[i + 1] = lmu[i];
else
lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
/* Init smu[i+1] with 0 */
for (k = 0; k < num; k++)
smu[(i + 1) * num + k] = 0;
/* Compute smu[i+1] */
for (k = 0; k <= lmu[ro] >> 1; k++) {
int16_t a, b, c;
if (!(smu[ro * num + k] && dmu[i]))
continue;
a = readw_relaxed(index_of + dmu[i]);
b = readw_relaxed(index_of + dmu[ro]);
c = readw_relaxed(index_of + smu[ro * num + k]);
tmp = a + (cw_len - b) + c;
a = readw_relaxed(alpha_to + tmp % cw_len);
smu[(i + 1) * num + (k + diff)] = a;
}
for (k = 0; k <= lmu[i] >> 1; k++)
smu[(i + 1) * num + k] ^= smu[i * num + k];
}
/* End Computing Sigma (Mu+1) and L(mu) */
/* In either case compute delta */
delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
/* Do not compute discrepancy for the last iteration */
if (i >= cap)
continue;
for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
tmp = 2 * (i - 1);
if (k == 0) {
dmu[i + 1] = si[tmp + 3];
} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
int16_t a, b, c;
a = readw_relaxed(index_of +
smu[(i + 1) * num + k]);
b = si[2 * (i - 1) + 3 - k];
c = readw_relaxed(index_of + b);
tmp = a + c;
tmp %= cw_len;
dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
dmu[i + 1];
}
}
}
return;
}
static int pmecc_err_location(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
unsigned long end_time;
const int cap = host->pmecc_corr_cap;
const int num = 2 * cap + 1;
int sector_size = host->pmecc_sector_size;
int err_nbr = 0; /* number of error */
int roots_nbr; /* number of roots */
int i;
uint32_t val;
int16_t *smu = host->pmecc_smu;
pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
smu[(cap + 1) * num + i]);
err_nbr++;
}
val = (err_nbr - 1) << 16;
if (sector_size == 1024)
val |= 1;
pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
pmerrloc_writel(host->pmerrloc_base, ELEN,
sector_size * 8 + host->pmecc_degree * cap);
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
& PMERRLOC_CALC_DONE)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
return -1;
}
cpu_relax();
}
roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
& PMERRLOC_ERR_NUM_MASK) >> 8;
/* Number of roots == degree of smu hence <= cap */
if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
return err_nbr - 1;
/* Number of roots does not match the degree of smu
* unable to correct error */
return -1;
}
static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
int sector_num, int extra_bytes, int err_nbr)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
int i = 0;
int byte_pos, bit_pos, sector_size, pos;
uint32_t tmp;
uint8_t err_byte;
sector_size = host->pmecc_sector_size;
while (err_nbr) {
tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
byte_pos = tmp / 8;
bit_pos = tmp % 8;
if (byte_pos >= (sector_size + extra_bytes))
BUG(); /* should never happen */
if (byte_pos < sector_size) {
err_byte = *(buf + byte_pos);
*(buf + byte_pos) ^= (1 << bit_pos);
pos = sector_num * host->pmecc_sector_size + byte_pos;
dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
pos, bit_pos, err_byte, *(buf + byte_pos));
} else {
/* Bit flip in OOB area */
tmp = sector_num * nand_chip->ecc.bytes
+ (byte_pos - sector_size);
err_byte = ecc[tmp];
ecc[tmp] ^= (1 << bit_pos);
pos = tmp + nand_chip->ecc.layout->eccpos[0];
dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
pos, bit_pos, err_byte, ecc[tmp]);
}
i++;
err_nbr--;
}
return;
}
static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
u8 *ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
int i, err_nbr;
uint8_t *buf_pos;
int total_err = 0;
for (i = 0; i < nand_chip->ecc.total; i++)
if (ecc[i] != 0xff)
goto normal_check;
/* Erased page, return OK */
return 0;
normal_check:
for (i = 0; i < nand_chip->ecc.steps; i++) {
err_nbr = 0;
if (pmecc_stat & 0x1) {
buf_pos = buf + i * host->pmecc_sector_size;
pmecc_gen_syndrome(mtd, i);
pmecc_substitute(mtd);
pmecc_get_sigma(mtd);
err_nbr = pmecc_err_location(mtd);
if (err_nbr == -1) {
dev_err(host->dev, "PMECC: Too many errors\n");
mtd->ecc_stats.failed++;
return -EIO;
} else {
pmecc_correct_data(mtd, buf_pos, ecc, i,
nand_chip->ecc.bytes, err_nbr);
mtd->ecc_stats.corrected += err_nbr;
total_err += err_nbr;
}
}
pmecc_stat >>= 1;
}
return total_err;
}
static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
{
u32 val;
if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
return;
}
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
val = pmecc_readl_relaxed(host->ecc, CFG);
if (ecc_op == NAND_ECC_READ)
pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
| PMECC_CFG_AUTO_ENABLE);
else
pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
& ~PMECC_CFG_AUTO_ENABLE);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
}
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
struct atmel_nand_host *host = chip->priv;
int eccsize = chip->ecc.size * chip->ecc.steps;
uint8_t *oob = chip->oob_poi;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint32_t stat;
unsigned long end_time;
int bitflips = 0;
if (!host->nfc || !host->nfc->use_nfc_sram)
pmecc_enable(host, NAND_ECC_READ);
chip->read_buf(mtd, buf, eccsize);
chip->read_buf(mtd, oob, mtd->oobsize);
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to get error status.\n");
return -EIO;
}
cpu_relax();
}
stat = pmecc_readl_relaxed(host->ecc, ISR);
if (stat != 0) {
bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
if (bitflips < 0)
/* uncorrectable errors */
return 0;
}
return bitflips;
}
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required)
{
struct atmel_nand_host *host = chip->priv;
uint32_t *eccpos = chip->ecc.layout->eccpos;
int i, j;
unsigned long end_time;
if (!host->nfc || !host->nfc->write_by_sram) {
pmecc_enable(host, NAND_ECC_WRITE);
chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
}
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
return -EIO;
}
cpu_relax();
}
for (i = 0; i < chip->ecc.steps; i++) {
for (j = 0; j < chip->ecc.bytes; j++) {
int pos;
pos = i * chip->ecc.bytes + j;
chip->oob_poi[eccpos[pos]] =
pmecc_readb_ecc_relaxed(host->ecc, i, j);
}
}
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static void atmel_pmecc_core_init(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
uint32_t val = 0;
struct nand_ecclayout *ecc_layout;
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
switch (host->pmecc_corr_cap) {
case 2:
val = PMECC_CFG_BCH_ERR2;
break;
case 4:
val = PMECC_CFG_BCH_ERR4;
break;
case 8:
val = PMECC_CFG_BCH_ERR8;
break;
case 12:
val = PMECC_CFG_BCH_ERR12;
break;
case 24:
val = PMECC_CFG_BCH_ERR24;
break;
}
if (host->pmecc_sector_size == 512)
val |= PMECC_CFG_SECTOR512;
else if (host->pmecc_sector_size == 1024)
val |= PMECC_CFG_SECTOR1024;
switch (nand_chip->ecc.steps) {
case 1:
val |= PMECC_CFG_PAGE_1SECTOR;
break;
case 2:
val |= PMECC_CFG_PAGE_2SECTORS;
break;
case 4:
val |= PMECC_CFG_PAGE_4SECTORS;
break;
case 8:
val |= PMECC_CFG_PAGE_8SECTORS;
break;
}
val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
| PMECC_CFG_AUTO_DISABLE);
pmecc_writel(host->ecc, CFG, val);
ecc_layout = nand_chip->ecc.layout;
pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
pmecc_writel(host->ecc, EADDR,
ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
/* See datasheet about PMECC Clock Control Register */
pmecc_writel(host->ecc, CLK, 2);
pmecc_writel(host->ecc, IDR, 0xff);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
}
/*
* Get minimum ecc requirements from NAND.
* If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
* will set them according to minimum ecc requirement. Otherwise, use the
* value in DTS file.
* return 0 if success. otherwise return error code.
*/
static int pmecc_choose_ecc(struct atmel_nand_host *host,
int *cap, int *sector_size)
{
/* Get minimum ECC requirements */
if (host->nand_chip.ecc_strength_ds) {
*cap = host->nand_chip.ecc_strength_ds;
*sector_size = host->nand_chip.ecc_step_ds;
dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
*cap, *sector_size);
} else {
*cap = 2;
*sector_size = 512;
dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
}
/* If device tree doesn't specify, use NAND's minimum ECC parameters */
if (host->pmecc_corr_cap == 0) {
/* use the most fitable ecc bits (the near bigger one ) */
if (*cap <= 2)
host->pmecc_corr_cap = 2;
else if (*cap <= 4)
host->pmecc_corr_cap = 4;
else if (*cap <= 8)
host->pmecc_corr_cap = 8;
else if (*cap <= 12)
host->pmecc_corr_cap = 12;
else if (*cap <= 24)
host->pmecc_corr_cap = 24;
else
return -EINVAL;
}
if (host->pmecc_sector_size == 0) {
/* use the most fitable sector size (the near smaller one ) */
if (*sector_size >= 1024)
host->pmecc_sector_size = 1024;
else if (*sector_size >= 512)
host->pmecc_sector_size = 512;
else
return -EINVAL;
}
return 0;
}
static inline int deg(unsigned int poly)
{
/* polynomial degree is the most-significant bit index */
return fls(poly) - 1;
}
static int build_gf_tables(int mm, unsigned int poly,
int16_t *index_of, int16_t *alpha_to)
{
unsigned int i, x = 1;
const unsigned int k = 1 << deg(poly);
unsigned int nn = (1 << mm) - 1;
/* primitive polynomial must be of degree m */
if (k != (1u << mm))
return -EINVAL;
for (i = 0; i < nn; i++) {
alpha_to[i] = x;
index_of[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -EINVAL;
x <<= 1;
if (x & k)
x ^= poly;
}
alpha_to[nn] = 1;
index_of[0] = 0;
return 0;
}
static uint16_t *create_lookup_table(struct device *dev, int sector_size)
{
int degree = (sector_size == 512) ?
PMECC_GF_DIMENSION_13 :
PMECC_GF_DIMENSION_14;
unsigned int poly = (sector_size == 512) ?
PMECC_GF_13_PRIMITIVE_POLY :
PMECC_GF_14_PRIMITIVE_POLY;
int table_size = (sector_size == 512) ?
PMECC_LOOKUP_TABLE_SIZE_512 :
PMECC_LOOKUP_TABLE_SIZE_1024;
int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
GFP_KERNEL);
if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
return NULL;
return addr;
}
static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
struct mtd_info *mtd = &host->mtd;
struct nand_chip *nand_chip = &host->nand_chip;
struct resource *regs, *regs_pmerr, *regs_rom;
uint16_t *galois_table;
int cap, sector_size, err_no;
err_no = pmecc_choose_ecc(host, &cap, &sector_size);
if (err_no) {
dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
return err_no;
}
if (cap > host->pmecc_corr_cap ||
sector_size != host->pmecc_sector_size)
dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
cap = host->pmecc_corr_cap;
sector_size = host->pmecc_sector_size;
host->pmecc_lookup_table_offset = (sector_size == 512) ?
host->pmecc_lookup_table_offset_512 :
host->pmecc_lookup_table_offset_1024;
dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
cap, sector_size);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs) {
dev_warn(host->dev,
"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
nand_chip->ecc.mode = NAND_ECC_SOFT;
return 0;
}
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc)) {
err_no = PTR_ERR(host->ecc);
goto err;
}
regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
if (IS_ERR(host->pmerrloc_base)) {
err_no = PTR_ERR(host->pmerrloc_base);
goto err;
}
regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
if (IS_ERR(host->pmecc_rom_base)) {
if (!host->has_no_lookup_table)
/* Don't display the information again */
dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
host->has_no_lookup_table = true;
}
if (host->has_no_lookup_table) {
/* Build the look-up table in runtime */
galois_table = create_lookup_table(host->dev, sector_size);
if (!galois_table) {
dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
err_no = -EINVAL;
goto err;
}
host->pmecc_rom_base = (void __iomem *)galois_table;
host->pmecc_lookup_table_offset = 0;
}
nand_chip->ecc.size = sector_size;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
case 1024:
case 2048:
case 4096:
case 8192:
if (sector_size > mtd->writesize) {
dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
err_no = -EINVAL;
goto err;
}
host->pmecc_degree = (sector_size == 512) ?
PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
host->pmecc_alpha_to = pmecc_get_alpha_to(host);
host->pmecc_index_of = host->pmecc_rom_base +
host->pmecc_lookup_table_offset;
nand_chip->ecc.strength = cap;
nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
nand_chip->ecc.steps = mtd->writesize / sector_size;
nand_chip->ecc.total = nand_chip->ecc.bytes *
nand_chip->ecc.steps;
if (nand_chip->ecc.total > mtd->oobsize - 2) {
dev_err(host->dev, "No room for ECC bytes\n");
err_no = -EINVAL;
goto err;
}
pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
mtd->oobsize,
nand_chip->ecc.total);
nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
break;
default:
dev_warn(host->dev,
"Unsupported page size for PMECC, use Software ECC\n");
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
return 0;
}
/* Allocate data for PMECC computation */
err_no = pmecc_data_alloc(host);
if (err_no) {
dev_err(host->dev,
"Cannot allocate memory for PMECC computation!\n");
goto err;
}
nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
atmel_pmecc_core_init(mtd);
return 0;
err:
return err_no;
}
/*
* Calculate HW ECC
*
* function called after a write
*
* mtd: MTD block structure
* dat: raw data (unused)
* ecc_code: buffer for ECC
*/
static int atmel_nand_calculate(struct mtd_info *mtd,
const u_char *dat, unsigned char *ecc_code)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
unsigned int ecc_value;
/* get the first 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, PR);
ecc_code[0] = ecc_value & 0xFF;
ecc_code[1] = (ecc_value >> 8) & 0xFF;
/* get the last 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
ecc_code[2] = ecc_value & 0xFF;
ecc_code[3] = (ecc_value >> 8) & 0xFF;
return 0;
}
/*
* HW ECC read page function
*
* mtd: mtd info structure
* chip: nand chip info structure
* buf: buffer to store read data
* oob_required: caller expects OOB data read to chip->oob_poi
*/
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
uint8_t *ecc_pos;
int stat;
unsigned int max_bitflips = 0;
/*
* Errata: ALE is incorrectly wired up to the ECC controller
* on the AP7000, so it will include the address cycles in the
* ECC calculation.
*
* Workaround: Reset the parity registers before reading the
* actual data.
*/
struct atmel_nand_host *host = chip->priv;
if (host->board.need_reset_workaround)
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
/* read the page */
chip->read_buf(mtd, p, eccsize);
/* move to ECC position if needed */
if (eccpos[0] != 0) {
/* This only works on large pages
* because the ECC controller waits for
* NAND_CMD_RNDOUTSTART after the
* NAND_CMD_RNDOUT.
* anyway, for small pages, the eccpos[0] == 0
*/
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + eccpos[0], -1);
}
/* the ECC controller needs to read the ECC just after the data */
ecc_pos = oob + eccpos[0];
chip->read_buf(mtd, ecc_pos, eccbytes);
/* check if there's an error */
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
/* get back to oob start (end of page) */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
/* read the oob */
chip->read_buf(mtd, oob, mtd->oobsize);
return max_bitflips;
}
/*
* HW ECC Correction
*
* function called after a read
*
* mtd: MTD block structure
* dat: raw data read from the chip
* read_ecc: ECC from the chip (unused)
* isnull: unused
*
* Detect and correct a 1 bit error for a page
*/
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *isnull)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
unsigned int ecc_status;
unsigned int ecc_word, ecc_bit;
/* get the status from the Status Register */
ecc_status = ecc_readl(host->ecc, SR);
/* if there's no error */
if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
return 0;
/* get error bit offset (4 bits) */
ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
/* get word address (12 bits) */
ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
ecc_word >>= 4;
/* if there are multiple errors */
if (ecc_status & ATMEL_ECC_MULERR) {
/* check if it is a freshly erased block
* (filled with 0xff) */
if ((ecc_bit == ATMEL_ECC_BITADDR)
&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
/* the block has just been erased, return OK */
return 0;
}
/* it doesn't seems to be a freshly
* erased block.
* We can't correct so many errors */
dev_dbg(host->dev, "atmel_nand : multiple errors detected."
" Unable to correct.\n");
return -EIO;
}
/* if there's a single bit error : we can correct it */
if (ecc_status & ATMEL_ECC_ECCERR) {
/* there's nothing much to do here.
* the bit error is on the ECC itself.
*/
dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
" Nothing to correct\n");
return 0;
}
dev_dbg(host->dev, "atmel_nand : one bit error on data."
" (word offset in the page :"
" 0x%x bit offset : 0x%x)\n",
ecc_word, ecc_bit);
/* correct the error */
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* 16 bits words */
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
} else {
/* 8 bits words */
dat[ecc_word] ^= (1 << ecc_bit);
}
dev_dbg(host->dev, "atmel_nand : error corrected\n");
return 1;
}
/*
* Enable HW ECC : unused on most chips
*/
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (host->board.need_reset_workaround)
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
}
static int atmel_of_init_port(struct atmel_nand_host *host,
struct device_node *np)
{
u32 val;
u32 offset[2];
int ecc_mode;
struct atmel_nand_data *board = &host->board;
enum of_gpio_flags flags = 0;
if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
if (val >= 32) {
dev_err(host->dev, "invalid addr-offset %u\n", val);
return -EINVAL;
}
board->ale = val;
}
if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
if (val >= 32) {
dev_err(host->dev, "invalid cmd-offset %u\n", val);
return -EINVAL;
}
board->cle = val;
}
ecc_mode = of_get_nand_ecc_mode(np);
board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
if (of_get_nand_bus_width(np) == 16)
board->bus_width_16 = 1;
board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
board->enable_pin = of_get_gpio(np, 1);
board->det_pin = of_get_gpio(np, 2);
host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
/* load the nfc driver if there is */
of_platform_populate(np, NULL, NULL, host->dev);
if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
return 0; /* Not using PMECC */
/* use PMECC, get correction capability, sector size and lookup
* table offset.
* If correction bits and sector size are not specified, then find
* them from NAND ONFI parameters.
*/
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
(val != 24)) {
dev_err(host->dev,
"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
val);
return -EINVAL;
}
host->pmecc_corr_cap = (u8)val;
}
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
if ((val != 512) && (val != 1024)) {
dev_err(host->dev,
"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
val);
return -EINVAL;
}
host->pmecc_sector_size = (u16)val;
}
if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
offset, 2) != 0) {
dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
host->has_no_lookup_table = true;
/* Will build a lookup table and initialize the offset later */
return 0;
}
if (!offset[0] && !offset[1]) {
dev_err(host->dev, "Invalid PMECC lookup table offset\n");
return -EINVAL;
}
host->pmecc_lookup_table_offset_512 = offset[0];
host->pmecc_lookup_table_offset_1024 = offset[1];
return 0;
}
static int atmel_hw_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
struct mtd_info *mtd = &host->mtd;
struct nand_chip *nand_chip = &host->nand_chip;
struct resource *regs;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs) {
dev_err(host->dev,
"Can't get I/O resource regs, use software ECC\n");
nand_chip->ecc.mode = NAND_ECC_SOFT;
return 0;
}
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc))
return PTR_ERR(host->ecc);
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
nand_chip->ecc.layout = &atmel_oobinfo_small;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
break;
case 1024:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
break;
case 2048:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
break;
case 4096:
nand_chip->ecc.layout = &atmel_oobinfo_large;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
return 0;
}
/* set up for HW ECC */
nand_chip->ecc.calculate = atmel_nand_calculate;
nand_chip->ecc.correct = atmel_nand_correct;
nand_chip->ecc.hwctl = atmel_nand_hwctl;
nand_chip->ecc.read_page = atmel_nand_read_page;
nand_chip->ecc.bytes = 4;
nand_chip->ecc.strength = 1;
return 0;
}
static inline u32 nfc_read_status(struct atmel_nand_host *host)
{
u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
if (unlikely(nfc_status & err_flags)) {
if (nfc_status & NFC_SR_DTOE)
dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
else if (nfc_status & NFC_SR_UNDEF)
dev_err(host->dev, "NFC: Access Undefined Area Error\n");
else if (nfc_status & NFC_SR_AWB)
dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
else if (nfc_status & NFC_SR_ASE)
dev_err(host->dev, "NFC: Access memory Size Error\n");
}
return nfc_status;
}
/* SMC interrupt service routine */
static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
{
struct atmel_nand_host *host = dev_id;
u32 status, mask, pending;
irqreturn_t ret = IRQ_NONE;
status = nfc_read_status(host);
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
pending = status & mask;
if (pending & NFC_SR_XFR_DONE) {
complete(&host->nfc->comp_xfer_done);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
ret = IRQ_HANDLED;
}
if (pending & NFC_SR_RB_EDGE) {
complete(&host->nfc->comp_ready);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
ret = IRQ_HANDLED;
}
if (pending & NFC_SR_CMD_DONE) {
complete(&host->nfc->comp_cmd_done);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
ret = IRQ_HANDLED;
}
return ret;
}
/* NFC(Nand Flash Controller) related functions */
static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
{
if (flag & NFC_SR_XFR_DONE)
init_completion(&host->nfc->comp_xfer_done);
if (flag & NFC_SR_RB_EDGE)
init_completion(&host->nfc->comp_ready);
if (flag & NFC_SR_CMD_DONE)
init_completion(&host->nfc->comp_cmd_done);
/* Enable interrupt that need to wait for */
nfc_writel(host->nfc->hsmc_regs, IER, flag);
}
static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
{
int i, index = 0;
struct completion *comp[3]; /* Support 3 interrupt completion */
if (flag & NFC_SR_XFR_DONE)
comp[index++] = &host->nfc->comp_xfer_done;
if (flag & NFC_SR_RB_EDGE)
comp[index++] = &host->nfc->comp_ready;
if (flag & NFC_SR_CMD_DONE)
comp[index++] = &host->nfc->comp_cmd_done;
if (index == 0) {
dev_err(host->dev, "Unkown interrupt flag: 0x%08x\n", flag);
return -EINVAL;
}
for (i = 0; i < index; i++) {
if (wait_for_completion_timeout(comp[i],
msecs_to_jiffies(NFC_TIME_OUT_MS)))
continue; /* wait for next completion */
else
goto err_timeout;
}
return 0;
err_timeout:
dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
/* Disable the interrupt as it is not handled by interrupt handler */
nfc_writel(host->nfc->hsmc_regs, IDR, flag);
return -ETIMEDOUT;
}
static int nfc_send_command(struct atmel_nand_host *host,
unsigned int cmd, unsigned int addr, unsigned char cycle0)
{
unsigned long timeout;
u32 flag = NFC_SR_CMD_DONE;
flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
dev_dbg(host->dev,
"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
cmd, addr, cycle0);
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
& NFCADDR_CMD_NFCBUSY) {
if (time_after(jiffies, timeout)) {
dev_err(host->dev,
"Time out to wait CMD_NFCBUSY ready!\n");
return -ETIMEDOUT;
}
}
nfc_prepare_interrupt(host, flag);
nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
return nfc_wait_interrupt(host, flag);
}
static int nfc_device_ready(struct mtd_info *mtd)
{
u32 status, mask;
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
status = nfc_read_status(host);
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
/* The mask should be 0. If not we may lost interrupts */
if (unlikely(mask & status))
dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
mask & status);
return status & NFC_SR_RB_EDGE;
}
static void nfc_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct atmel_nand_host *host = nand_chip->priv;
if (chip == -1)
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
else
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
}
static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
int page_addr, unsigned int *addr1234, unsigned int *cycle0)
{
struct nand_chip *chip = mtd->priv;
int acycle = 0;
unsigned char addr_bytes[8];
int index = 0, bit_shift;
BUG_ON(addr1234 == NULL || cycle0 == NULL);
*cycle0 = 0;
*addr1234 = 0;
if (column != -1) {
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
addr_bytes[acycle++] = column & 0xff;
if (mtd->writesize > 512)
addr_bytes[acycle++] = (column >> 8) & 0xff;
}
if (page_addr != -1) {
addr_bytes[acycle++] = page_addr & 0xff;
addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
if (chip->chipsize > (128 << 20))
addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
}
if (acycle > 4)
*cycle0 = addr_bytes[index++];
for (bit_shift = 0; index < acycle; bit_shift += 8)
*addr1234 += addr_bytes[index++] << bit_shift;
/* return acycle in cmd register */
return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
}
static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
unsigned long timeout;
unsigned int nfc_addr_cmd = 0;
unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
/* Set default settings: no cmd2, no addr cycle. read from nand */
unsigned int cmd2 = 0;
unsigned int vcmd2 = 0;
int acycle = NFCADDR_CMD_ACYCLE_NONE;
int csid = NFCADDR_CMD_CSID_3;
int dataen = NFCADDR_CMD_DATADIS;
int nfcwr = NFCADDR_CMD_NFCRD;
unsigned int addr1234 = 0;
unsigned int cycle0 = 0;
bool do_addr = true;
host->nfc->data_in_sram = NULL;
dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
__func__, command, column, page_addr);
switch (command) {
case NAND_CMD_RESET:
nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
udelay(chip->chip_delay);
nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
if (time_after(jiffies, timeout)) {
dev_err(host->dev,
"Time out to wait status ready!\n");
break;
}
}
return;
case NAND_CMD_STATUS:
do_addr = false;
break;
case NAND_CMD_PARAM:
case NAND_CMD_READID:
do_addr = false;
acycle = NFCADDR_CMD_ACYCLE_1;
if (column != -1)
addr1234 = column;
break;
case NAND_CMD_RNDOUT:
cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
vcmd2 = NFCADDR_CMD_VCMD2;
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0; /* only READ0 is valid */
cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
}
if (host->nfc->use_nfc_sram) {
/* Enable Data transfer to sram */
dataen = NFCADDR_CMD_DATAEN;
/* Need enable PMECC now, since NFC will transfer
* data in bus after sending nfc read command.
*/
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
pmecc_enable(host, NAND_ECC_READ);
}
cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
vcmd2 = NFCADDR_CMD_VCMD2;
break;
/* For prgramming command, the cmd need set to write enable */
case NAND_CMD_PAGEPROG:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
nfcwr = NFCADDR_CMD_NFCWR;
if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
dataen = NFCADDR_CMD_DATAEN;
break;
default:
break;
}
if (do_addr)
acycle = nfc_make_addr(mtd, command, column, page_addr,
&addr1234, &cycle0);
nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
/*
* Program and erase have their own busy handlers status, sequential
* in, and deplete1 need no delay.
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_RNDOUT:
case NAND_CMD_SEQIN:
case NAND_CMD_READID:
return;
case NAND_CMD_READ0:
if (dataen == NFCADDR_CMD_DATAEN) {
host->nfc->data_in_sram = host->nfc->sram_bank0 +
nfc_get_sram_off(host);
return;
}
/* fall through */
default:
nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
}
}
static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len, const uint8_t *buf,
int oob_required, int page, int cached, int raw)
{
int cfg, len;
int status = 0;
struct atmel_nand_host *host = chip->priv;
void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
/* Subpage write is not supported */
if (offset || (data_len < mtd->writesize))
return -EINVAL;
len = mtd->writesize;
/* Copy page data to sram that will write to nand via NFC */
if (use_dma) {
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
/* Fall back to use cpu copy */
memcpy(sram, buf, len);
} else {
memcpy(sram, buf, len);
}
cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
if (unlikely(raw) && oob_required) {
memcpy(sram + len, chip->oob_poi, mtd->oobsize);
len += mtd->oobsize;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
} else {
nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
}
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
/*
* When use NFC sram, need set up PMECC before send
* NAND_CMD_SEQIN command. Since when the nand command
* is sent, nfc will do transfer from sram and nand.
*/
pmecc_enable(host, NAND_ECC_WRITE);
host->nfc->will_write_sram = true;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
host->nfc->will_write_sram = false;
if (likely(!raw))
/* Need to write ecc into oob */
status = chip->ecc.write_page(mtd, chip, buf, oob_required);
if (status < 0)
return status;
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status, page);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
static int nfc_sram_init(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct atmel_nand_host *host = chip->priv;
int res = 0;
/* Initialize the NFC CFG register */
unsigned int cfg_nfc = 0;
/* set page size and oob layout */
switch (mtd->writesize) {
case 512:
cfg_nfc = NFC_CFG_PAGESIZE_512;
break;
case 1024:
cfg_nfc = NFC_CFG_PAGESIZE_1024;
break;
case 2048:
cfg_nfc = NFC_CFG_PAGESIZE_2048;
break;
case 4096:
cfg_nfc = NFC_CFG_PAGESIZE_4096;
break;
case 8192:
cfg_nfc = NFC_CFG_PAGESIZE_8192;
break;
default:
dev_err(host->dev, "Unsupported page size for NFC.\n");
res = -ENXIO;
return res;
}
/* oob bytes size = (NFCSPARESIZE + 1) * 4
* Max support spare size is 512 bytes. */
cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
& NFC_CFG_NFC_SPARESIZE);
/* default set a max timeout */
cfg_nfc |= NFC_CFG_RSPARE |
NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
host->nfc->will_write_sram = false;
nfc_set_sram_bank(host, 0);
/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
if (host->nfc->write_by_sram) {
if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
chip->ecc.mode == NAND_ECC_NONE)
chip->write_page = nfc_sram_write_page;
else
host->nfc->write_by_sram = false;
}
dev_info(host->dev, "Using NFC Sram read %s\n",
host->nfc->write_by_sram ? "and write" : "");
return 0;
}
static struct platform_driver atmel_nand_nfc_driver;
/*
* Probe for the NAND device.
*/
static int atmel_nand_probe(struct platform_device *pdev)
{
struct atmel_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *mem;
struct mtd_part_parser_data ppdata = {};
int res, irq;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
res = platform_driver_register(&atmel_nand_nfc_driver);
if (res)
dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->io_base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(host->io_base)) {
res = PTR_ERR(host->io_base);
goto err_nand_ioremap;
}
host->io_phys = (dma_addr_t)mem->start;
mtd = &host->mtd;
nand_chip = &host->nand_chip;
host->dev = &pdev->dev;
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
/* Only when CONFIG_OF is enabled of_node can be parsed */
res = atmel_of_init_port(host, pdev->dev.of_node);
if (res)
goto err_nand_ioremap;
} else {
memcpy(&host->board, dev_get_platdata(&pdev->dev),
sizeof(struct atmel_nand_data));
}
nand_chip->priv = host; /* link the private data structures */
mtd->priv = nand_chip;
mtd->owner = THIS_MODULE;
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = host->io_base;
nand_chip->IO_ADDR_W = host->io_base;
if (nand_nfc.is_initialized) {
/* NFC driver is probed and initialized */
host->nfc = &nand_nfc;
nand_chip->select_chip = nfc_select_chip;
nand_chip->dev_ready = nfc_device_ready;
nand_chip->cmdfunc = nfc_nand_command;
/* Initialize the interrupt for NFC */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(host->dev, "Cannot get HSMC irq!\n");
res = irq;
goto err_nand_ioremap;
}
res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
0, "hsmc", host);
if (res) {
dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
irq);
goto err_nand_ioremap;
}
} else {
res = atmel_nand_set_enable_ready_pins(mtd);
if (res)
goto err_nand_ioremap;
nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
}
nand_chip->ecc.mode = host->board.ecc_mode;
nand_chip->chip_delay = 40; /* 40us command delay time */
if (host->board.bus_width_16) /* 16-bit bus width */
nand_chip->options |= NAND_BUSWIDTH_16;
nand_chip->read_buf = atmel_read_buf;
nand_chip->write_buf = atmel_write_buf;
platform_set_drvdata(pdev, host);
atmel_nand_enable(host);
if (gpio_is_valid(host->board.det_pin)) {
res = devm_gpio_request(&pdev->dev,
host->board.det_pin, "nand_det");
if (res < 0) {
dev_err(&pdev->dev,
"can't request det gpio %d\n",
host->board.det_pin);
goto err_no_card;
}
res = gpio_direction_input(host->board.det_pin);
if (res < 0) {
dev_err(&pdev->dev,
"can't request input direction det gpio %d\n",
host->board.det_pin);
goto err_no_card;
}
if (gpio_get_value(host->board.det_pin)) {
dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
res = -ENXIO;
goto err_no_card;
}
}
if (host->board.on_flash_bbt || on_flash_bbt) {
dev_info(&pdev->dev, "Use On Flash BBT\n");
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
}
if (!host->board.has_dma)
use_dma = 0;
if (use_dma) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->dma_chan = dma_request_channel(mask, NULL, NULL);
if (!host->dma_chan) {
dev_err(host->dev, "Failed to request DMA channel\n");
use_dma = 0;
}
}
if (use_dma)
dev_info(host->dev, "Using %s for DMA transfers.\n",
dma_chan_name(host->dma_chan));
else
dev_info(host->dev, "No DMA support for NAND access.\n");
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1, NULL)) {
res = -ENXIO;
goto err_scan_ident;
}
if (nand_chip->ecc.mode == NAND_ECC_HW) {
if (host->has_pmecc)
res = atmel_pmecc_nand_init_params(pdev, host);
else
res = atmel_hw_nand_init_params(pdev, host);
if (res != 0)
goto err_hw_ecc;
}
/* initialize the nfc configuration register */
if (host->nfc && host->nfc->use_nfc_sram) {
res = nfc_sram_init(mtd);
if (res) {
host->nfc->use_nfc_sram = false;
dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
}
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
res = -ENXIO;
goto err_scan_tail;
}
mtd->name = "atmel_nand";
ppdata.of_node = pdev->dev.of_node;
res = mtd_device_parse_register(mtd, NULL, &ppdata,
host->board.parts, host->board.num_parts);
if (!res)
return res;
err_scan_tail:
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
err_hw_ecc:
err_scan_ident:
err_no_card:
atmel_nand_disable(host);
if (host->dma_chan)
dma_release_channel(host->dma_chan);
err_nand_ioremap:
return res;
}
/*
* Remove a NAND device.
*/
static int atmel_nand_remove(struct platform_device *pdev)
{
struct atmel_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = &host->mtd;
nand_release(mtd);
atmel_nand_disable(host);
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
pmerrloc_writel(host->pmerrloc_base, ELDIS,
PMERRLOC_DISABLE);
}
if (host->dma_chan)
dma_release_channel(host->dma_chan);
platform_driver_unregister(&atmel_nand_nfc_driver);
return 0;
}
static const struct of_device_id atmel_nand_dt_ids[] = {
{ .compatible = "atmel,at91rm9200-nand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
static int atmel_nand_nfc_probe(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
int ret;
nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
if (IS_ERR(nfc->base_cmd_regs))
return PTR_ERR(nfc->base_cmd_regs);
nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
if (IS_ERR(nfc->hsmc_regs))
return PTR_ERR(nfc->hsmc_regs);
nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (nfc_sram) {
nfc->sram_bank0 = (void * __force)
devm_ioremap_resource(&pdev->dev, nfc_sram);
if (IS_ERR(nfc->sram_bank0)) {
dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
PTR_ERR(nfc->sram_bank0));
} else {
nfc->use_nfc_sram = true;
nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
if (pdev->dev.of_node)
nfc->write_by_sram = of_property_read_bool(
pdev->dev.of_node,
"atmel,write-by-sram");
}
}
nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
nfc->clk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(nfc->clk)) {
ret = clk_prepare_enable(nfc->clk);
if (ret)
return ret;
} else {
dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
}
nfc->is_initialized = true;
dev_info(&pdev->dev, "NFC is probed.\n");
return 0;
}
static int atmel_nand_nfc_remove(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
if (!IS_ERR(nfc->clk))
clk_disable_unprepare(nfc->clk);
return 0;
}
static const struct of_device_id atmel_nand_nfc_match[] = {
{ .compatible = "atmel,sama5d3-nfc" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
static struct platform_driver atmel_nand_nfc_driver = {
.driver = {
.name = "atmel_nand_nfc",
.of_match_table = of_match_ptr(atmel_nand_nfc_match),
},
.probe = atmel_nand_nfc_probe,
.remove = atmel_nand_nfc_remove,
};
static struct platform_driver atmel_nand_driver = {
.probe = atmel_nand_probe,
.remove = atmel_nand_remove,
.driver = {
.name = "atmel_nand",
.of_match_table = of_match_ptr(atmel_nand_dt_ids),
},
};
module_platform_driver(atmel_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rick Bronson");
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
MODULE_ALIAS("platform:atmel_nand");