linux/drivers/media/rc/ttusbir.c

449 lines
10 KiB
C

/*
* TechnoTrend USB IR Receiver
*
* Copyright (C) 2012 Sean Young <sean@mess.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <linux/slab.h>
#include <linux/leds.h>
#include <media/rc-core.h>
#define DRIVER_NAME "ttusbir"
#define DRIVER_DESC "TechnoTrend USB IR Receiver"
/*
* The Windows driver uses 8 URBS, the original lirc drivers has a
* configurable amount (2 default, 4 max). This device generates about 125
* messages per second (!), whether IR is idle or not.
*/
#define NUM_URBS 4
#define NS_PER_BYTE 62500
#define NS_PER_BIT (NS_PER_BYTE/8)
struct ttusbir {
struct rc_dev *rc;
struct device *dev;
struct usb_device *udev;
struct urb *urb[NUM_URBS];
struct led_classdev led;
struct urb *bulk_urb;
uint8_t bulk_buffer[5];
int bulk_out_endp, iso_in_endp;
bool led_on, is_led_on;
atomic_t led_complete;
char phys[64];
};
static enum led_brightness ttusbir_brightness_get(struct led_classdev *led_dev)
{
struct ttusbir *tt = container_of(led_dev, struct ttusbir, led);
return tt->led_on ? LED_FULL : LED_OFF;
}
static void ttusbir_set_led(struct ttusbir *tt)
{
int ret;
smp_mb();
if (tt->led_on != tt->is_led_on && tt->udev &&
atomic_add_unless(&tt->led_complete, 1, 1)) {
tt->bulk_buffer[4] = tt->is_led_on = tt->led_on;
ret = usb_submit_urb(tt->bulk_urb, GFP_ATOMIC);
if (ret) {
dev_warn(tt->dev, "failed to submit bulk urb: %d\n",
ret);
atomic_dec(&tt->led_complete);
}
}
}
static void ttusbir_brightness_set(struct led_classdev *led_dev, enum
led_brightness brightness)
{
struct ttusbir *tt = container_of(led_dev, struct ttusbir, led);
tt->led_on = brightness != LED_OFF;
ttusbir_set_led(tt);
}
/*
* The urb cannot be reused until the urb completes
*/
static void ttusbir_bulk_complete(struct urb *urb)
{
struct ttusbir *tt = urb->context;
atomic_dec(&tt->led_complete);
switch (urb->status) {
case 0:
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_dbg(tt->dev, "Error: urb status = %d\n", urb->status);
break;
}
ttusbir_set_led(tt);
}
/*
* The data is one bit per sample, a set bit signifying silence and samples
* being MSB first. Bit 0 can contain garbage so take it to be whatever
* bit 1 is, so we don't have unexpected edges.
*/
static void ttusbir_process_ir_data(struct ttusbir *tt, uint8_t *buf)
{
struct ir_raw_event rawir;
unsigned i, v, b;
bool event = false;
init_ir_raw_event(&rawir);
for (i = 0; i < 128; i++) {
v = buf[i] & 0xfe;
switch (v) {
case 0xfe:
rawir.pulse = false;
rawir.duration = NS_PER_BYTE;
if (ir_raw_event_store_with_filter(tt->rc, &rawir))
event = true;
break;
case 0:
rawir.pulse = true;
rawir.duration = NS_PER_BYTE;
if (ir_raw_event_store_with_filter(tt->rc, &rawir))
event = true;
break;
default:
/* one edge per byte */
if (v & 2) {
b = ffz(v | 1);
rawir.pulse = true;
} else {
b = ffs(v) - 1;
rawir.pulse = false;
}
rawir.duration = NS_PER_BIT * (8 - b);
if (ir_raw_event_store_with_filter(tt->rc, &rawir))
event = true;
rawir.pulse = !rawir.pulse;
rawir.duration = NS_PER_BIT * b;
if (ir_raw_event_store_with_filter(tt->rc, &rawir))
event = true;
break;
}
}
/* don't wakeup when there's nothing to do */
if (event)
ir_raw_event_handle(tt->rc);
}
static void ttusbir_urb_complete(struct urb *urb)
{
struct ttusbir *tt = urb->context;
int rc;
switch (urb->status) {
case 0:
ttusbir_process_ir_data(tt, urb->transfer_buffer);
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_dbg(tt->dev, "Error: urb status = %d\n", urb->status);
break;
}
rc = usb_submit_urb(urb, GFP_ATOMIC);
if (rc && rc != -ENODEV)
dev_warn(tt->dev, "failed to resubmit urb: %d\n", rc);
}
static int ttusbir_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct ttusbir *tt;
struct usb_interface_descriptor *idesc;
struct usb_endpoint_descriptor *desc;
struct rc_dev *rc;
int i, j, ret;
int altsetting = -1;
tt = kzalloc(sizeof(*tt), GFP_KERNEL);
rc = rc_allocate_device();
if (!tt || !rc) {
ret = -ENOMEM;
goto out;
}
/* find the correct alt setting */
for (i = 0; i < intf->num_altsetting && altsetting == -1; i++) {
int max_packet, bulk_out_endp = -1, iso_in_endp = -1;
idesc = &intf->altsetting[i].desc;
for (j = 0; j < idesc->bNumEndpoints; j++) {
desc = &intf->altsetting[i].endpoint[j].desc;
max_packet = le16_to_cpu(desc->wMaxPacketSize);
if (usb_endpoint_dir_in(desc) &&
usb_endpoint_xfer_isoc(desc) &&
max_packet == 0x10)
iso_in_endp = j;
else if (usb_endpoint_dir_out(desc) &&
usb_endpoint_xfer_bulk(desc) &&
max_packet == 0x20)
bulk_out_endp = j;
if (bulk_out_endp != -1 && iso_in_endp != -1) {
tt->bulk_out_endp = bulk_out_endp;
tt->iso_in_endp = iso_in_endp;
altsetting = i;
break;
}
}
}
if (altsetting == -1) {
dev_err(&intf->dev, "cannot find expected altsetting\n");
ret = -ENODEV;
goto out;
}
tt->dev = &intf->dev;
tt->udev = interface_to_usbdev(intf);
tt->rc = rc;
ret = usb_set_interface(tt->udev, 0, altsetting);
if (ret)
goto out;
for (i = 0; i < NUM_URBS; i++) {
struct urb *urb = usb_alloc_urb(8, GFP_KERNEL);
void *buffer;
if (!urb) {
ret = -ENOMEM;
goto out;
}
urb->dev = tt->udev;
urb->context = tt;
urb->pipe = usb_rcvisocpipe(tt->udev, tt->iso_in_endp);
urb->interval = 1;
buffer = usb_alloc_coherent(tt->udev, 128, GFP_KERNEL,
&urb->transfer_dma);
if (!buffer) {
usb_free_urb(urb);
ret = -ENOMEM;
goto out;
}
urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP | URB_ISO_ASAP;
urb->transfer_buffer = buffer;
urb->complete = ttusbir_urb_complete;
urb->number_of_packets = 8;
urb->transfer_buffer_length = 128;
for (j = 0; j < 8; j++) {
urb->iso_frame_desc[j].offset = j * 16;
urb->iso_frame_desc[j].length = 16;
}
tt->urb[i] = urb;
}
tt->bulk_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tt->bulk_urb) {
ret = -ENOMEM;
goto out;
}
tt->bulk_buffer[0] = 0xaa;
tt->bulk_buffer[1] = 0x01;
tt->bulk_buffer[2] = 0x05;
tt->bulk_buffer[3] = 0x01;
usb_fill_bulk_urb(tt->bulk_urb, tt->udev, usb_sndbulkpipe(tt->udev,
tt->bulk_out_endp), tt->bulk_buffer, sizeof(tt->bulk_buffer),
ttusbir_bulk_complete, tt);
tt->led.name = "ttusbir:green:power";
tt->led.brightness_set = ttusbir_brightness_set;
tt->led.brightness_get = ttusbir_brightness_get;
tt->is_led_on = tt->led_on = true;
atomic_set(&tt->led_complete, 0);
ret = led_classdev_register(&intf->dev, &tt->led);
if (ret)
goto out;
usb_make_path(tt->udev, tt->phys, sizeof(tt->phys));
rc->input_name = DRIVER_DESC;
rc->input_phys = tt->phys;
usb_to_input_id(tt->udev, &rc->input_id);
rc->dev.parent = &intf->dev;
rc->driver_type = RC_DRIVER_IR_RAW;
rc->allowed_protos = RC_BIT_ALL;
rc->priv = tt;
rc->driver_name = DRIVER_NAME;
rc->map_name = RC_MAP_TT_1500;
rc->timeout = MS_TO_NS(100);
/*
* The precision is NS_PER_BIT, but since every 8th bit can be
* overwritten with garbage the accuracy is at best 2 * NS_PER_BIT.
*/
rc->rx_resolution = NS_PER_BIT;
ret = rc_register_device(rc);
if (ret) {
dev_err(&intf->dev, "failed to register rc device %d\n", ret);
goto out2;
}
usb_set_intfdata(intf, tt);
for (i = 0; i < NUM_URBS; i++) {
ret = usb_submit_urb(tt->urb[i], GFP_KERNEL);
if (ret) {
dev_err(tt->dev, "failed to submit urb %d\n", ret);
goto out3;
}
}
return 0;
out3:
rc_unregister_device(rc);
rc = NULL;
out2:
led_classdev_unregister(&tt->led);
out:
if (tt) {
for (i = 0; i < NUM_URBS && tt->urb[i]; i++) {
struct urb *urb = tt->urb[i];
usb_kill_urb(urb);
usb_free_coherent(tt->udev, 128, urb->transfer_buffer,
urb->transfer_dma);
usb_free_urb(urb);
}
usb_kill_urb(tt->bulk_urb);
usb_free_urb(tt->bulk_urb);
kfree(tt);
}
rc_free_device(rc);
return ret;
}
static void ttusbir_disconnect(struct usb_interface *intf)
{
struct ttusbir *tt = usb_get_intfdata(intf);
struct usb_device *udev = tt->udev;
int i;
tt->udev = NULL;
rc_unregister_device(tt->rc);
led_classdev_unregister(&tt->led);
for (i = 0; i < NUM_URBS; i++) {
usb_kill_urb(tt->urb[i]);
usb_free_coherent(udev, 128, tt->urb[i]->transfer_buffer,
tt->urb[i]->transfer_dma);
usb_free_urb(tt->urb[i]);
}
usb_kill_urb(tt->bulk_urb);
usb_free_urb(tt->bulk_urb);
usb_set_intfdata(intf, NULL);
kfree(tt);
}
static int ttusbir_suspend(struct usb_interface *intf, pm_message_t message)
{
struct ttusbir *tt = usb_get_intfdata(intf);
int i;
for (i = 0; i < NUM_URBS; i++)
usb_kill_urb(tt->urb[i]);
led_classdev_suspend(&tt->led);
usb_kill_urb(tt->bulk_urb);
return 0;
}
static int ttusbir_resume(struct usb_interface *intf)
{
struct ttusbir *tt = usb_get_intfdata(intf);
int i, rc;
tt->is_led_on = true;
led_classdev_resume(&tt->led);
for (i = 0; i < NUM_URBS; i++) {
rc = usb_submit_urb(tt->urb[i], GFP_KERNEL);
if (rc) {
dev_warn(tt->dev, "failed to submit urb: %d\n", rc);
break;
}
}
return rc;
}
static const struct usb_device_id ttusbir_table[] = {
{ USB_DEVICE(0x0b48, 0x2003) },
{ }
};
static struct usb_driver ttusbir_driver = {
.name = DRIVER_NAME,
.id_table = ttusbir_table,
.probe = ttusbir_probe,
.suspend = ttusbir_suspend,
.resume = ttusbir_resume,
.reset_resume = ttusbir_resume,
.disconnect = ttusbir_disconnect,
};
module_usb_driver(ttusbir_driver);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Sean Young <sean@mess.org>");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(usb, ttusbir_table);