mirror of https://gitee.com/openkylin/linux.git
2596 lines
68 KiB
C
2596 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2016 Avago Technologies. All rights reserved.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/random.h>
|
|
#include <uapi/scsi/fc/fc_fs.h>
|
|
#include <uapi/scsi/fc/fc_els.h>
|
|
|
|
#include "nvmet.h"
|
|
#include <linux/nvme-fc-driver.h>
|
|
#include <linux/nvme-fc.h>
|
|
|
|
|
|
/* *************************** Data Structures/Defines ****************** */
|
|
|
|
|
|
#define NVMET_LS_CTX_COUNT 256
|
|
|
|
/* for this implementation, assume small single frame rqst/rsp */
|
|
#define NVME_FC_MAX_LS_BUFFER_SIZE 2048
|
|
|
|
struct nvmet_fc_tgtport;
|
|
struct nvmet_fc_tgt_assoc;
|
|
|
|
struct nvmet_fc_ls_iod {
|
|
struct nvmefc_tgt_ls_req *lsreq;
|
|
struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
|
|
|
|
struct list_head ls_list; /* tgtport->ls_list */
|
|
|
|
struct nvmet_fc_tgtport *tgtport;
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
|
|
u8 *rqstbuf;
|
|
u8 *rspbuf;
|
|
u16 rqstdatalen;
|
|
dma_addr_t rspdma;
|
|
|
|
struct scatterlist sg[2];
|
|
|
|
struct work_struct work;
|
|
} __aligned(sizeof(unsigned long long));
|
|
|
|
/* desired maximum for a single sequence - if sg list allows it */
|
|
#define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
|
|
|
|
enum nvmet_fcp_datadir {
|
|
NVMET_FCP_NODATA,
|
|
NVMET_FCP_WRITE,
|
|
NVMET_FCP_READ,
|
|
NVMET_FCP_ABORTED,
|
|
};
|
|
|
|
struct nvmet_fc_fcp_iod {
|
|
struct nvmefc_tgt_fcp_req *fcpreq;
|
|
|
|
struct nvme_fc_cmd_iu cmdiubuf;
|
|
struct nvme_fc_ersp_iu rspiubuf;
|
|
dma_addr_t rspdma;
|
|
struct scatterlist *next_sg;
|
|
struct scatterlist *data_sg;
|
|
int data_sg_cnt;
|
|
u32 offset;
|
|
enum nvmet_fcp_datadir io_dir;
|
|
bool active;
|
|
bool abort;
|
|
bool aborted;
|
|
bool writedataactive;
|
|
spinlock_t flock;
|
|
|
|
struct nvmet_req req;
|
|
struct work_struct defer_work;
|
|
|
|
struct nvmet_fc_tgtport *tgtport;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
|
|
struct list_head fcp_list; /* tgtport->fcp_list */
|
|
};
|
|
|
|
struct nvmet_fc_tgtport {
|
|
|
|
struct nvmet_fc_target_port fc_target_port;
|
|
|
|
struct list_head tgt_list; /* nvmet_fc_target_list */
|
|
struct device *dev; /* dev for dma mapping */
|
|
struct nvmet_fc_target_template *ops;
|
|
|
|
struct nvmet_fc_ls_iod *iod;
|
|
spinlock_t lock;
|
|
struct list_head ls_list;
|
|
struct list_head ls_busylist;
|
|
struct list_head assoc_list;
|
|
struct ida assoc_cnt;
|
|
struct nvmet_fc_port_entry *pe;
|
|
struct kref ref;
|
|
u32 max_sg_cnt;
|
|
};
|
|
|
|
struct nvmet_fc_port_entry {
|
|
struct nvmet_fc_tgtport *tgtport;
|
|
struct nvmet_port *port;
|
|
u64 node_name;
|
|
u64 port_name;
|
|
struct list_head pe_list;
|
|
};
|
|
|
|
struct nvmet_fc_defer_fcp_req {
|
|
struct list_head req_list;
|
|
struct nvmefc_tgt_fcp_req *fcp_req;
|
|
};
|
|
|
|
struct nvmet_fc_tgt_queue {
|
|
bool ninetypercent;
|
|
u16 qid;
|
|
u16 sqsize;
|
|
u16 ersp_ratio;
|
|
__le16 sqhd;
|
|
atomic_t connected;
|
|
atomic_t sqtail;
|
|
atomic_t zrspcnt;
|
|
atomic_t rsn;
|
|
spinlock_t qlock;
|
|
struct nvmet_cq nvme_cq;
|
|
struct nvmet_sq nvme_sq;
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
struct list_head fod_list;
|
|
struct list_head pending_cmd_list;
|
|
struct list_head avail_defer_list;
|
|
struct workqueue_struct *work_q;
|
|
struct kref ref;
|
|
struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */
|
|
} __aligned(sizeof(unsigned long long));
|
|
|
|
struct nvmet_fc_tgt_assoc {
|
|
u64 association_id;
|
|
u32 a_id;
|
|
struct nvmet_fc_tgtport *tgtport;
|
|
struct list_head a_list;
|
|
struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
|
|
struct kref ref;
|
|
struct work_struct del_work;
|
|
};
|
|
|
|
|
|
static inline int
|
|
nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
|
|
{
|
|
return (iodptr - iodptr->tgtport->iod);
|
|
}
|
|
|
|
static inline int
|
|
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
|
|
{
|
|
return (fodptr - fodptr->queue->fod);
|
|
}
|
|
|
|
|
|
/*
|
|
* Association and Connection IDs:
|
|
*
|
|
* Association ID will have random number in upper 6 bytes and zero
|
|
* in lower 2 bytes
|
|
*
|
|
* Connection IDs will be Association ID with QID or'd in lower 2 bytes
|
|
*
|
|
* note: Association ID = Connection ID for queue 0
|
|
*/
|
|
#define BYTES_FOR_QID sizeof(u16)
|
|
#define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
|
|
#define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
|
|
|
|
static inline u64
|
|
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
|
|
{
|
|
return (assoc->association_id | qid);
|
|
}
|
|
|
|
static inline u64
|
|
nvmet_fc_getassociationid(u64 connectionid)
|
|
{
|
|
return connectionid & ~NVMET_FC_QUEUEID_MASK;
|
|
}
|
|
|
|
static inline u16
|
|
nvmet_fc_getqueueid(u64 connectionid)
|
|
{
|
|
return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
|
|
}
|
|
|
|
static inline struct nvmet_fc_tgtport *
|
|
targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
|
|
{
|
|
return container_of(targetport, struct nvmet_fc_tgtport,
|
|
fc_target_port);
|
|
}
|
|
|
|
static inline struct nvmet_fc_fcp_iod *
|
|
nvmet_req_to_fod(struct nvmet_req *nvme_req)
|
|
{
|
|
return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
|
|
}
|
|
|
|
|
|
/* *************************** Globals **************************** */
|
|
|
|
|
|
static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
|
|
|
|
static LIST_HEAD(nvmet_fc_target_list);
|
|
static DEFINE_IDA(nvmet_fc_tgtport_cnt);
|
|
static LIST_HEAD(nvmet_fc_portentry_list);
|
|
|
|
|
|
static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
|
|
static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
|
|
static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
|
|
static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
|
|
static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
|
|
static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
|
|
static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
|
|
static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
|
|
static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod);
|
|
static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
|
|
|
|
|
|
/* *********************** FC-NVME DMA Handling **************************** */
|
|
|
|
/*
|
|
* The fcloop device passes in a NULL device pointer. Real LLD's will
|
|
* pass in a valid device pointer. If NULL is passed to the dma mapping
|
|
* routines, depending on the platform, it may or may not succeed, and
|
|
* may crash.
|
|
*
|
|
* As such:
|
|
* Wrapper all the dma routines and check the dev pointer.
|
|
*
|
|
* If simple mappings (return just a dma address, we'll noop them,
|
|
* returning a dma address of 0.
|
|
*
|
|
* On more complex mappings (dma_map_sg), a pseudo routine fills
|
|
* in the scatter list, setting all dma addresses to 0.
|
|
*/
|
|
|
|
static inline dma_addr_t
|
|
fc_dma_map_single(struct device *dev, void *ptr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
|
|
}
|
|
|
|
static inline int
|
|
fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return dev ? dma_mapping_error(dev, dma_addr) : 0;
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_unmap_single(dev, addr, size, dir);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_sync_single_for_cpu(dev, addr, size, dir);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_sync_single_for_device(dev, addr, size, dir);
|
|
}
|
|
|
|
/* pseudo dma_map_sg call */
|
|
static int
|
|
fc_map_sg(struct scatterlist *sg, int nents)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
WARN_ON(nents == 0 || sg[0].length == 0);
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
s->dma_address = 0L;
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
}
|
|
return nents;
|
|
}
|
|
|
|
static inline int
|
|
fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
|
|
}
|
|
|
|
static inline void
|
|
fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (dev)
|
|
dma_unmap_sg(dev, sg, nents, dir);
|
|
}
|
|
|
|
|
|
/* *********************** FC-NVME Port Management ************************ */
|
|
|
|
|
|
static int
|
|
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_ls_iod *iod;
|
|
int i;
|
|
|
|
iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
|
|
GFP_KERNEL);
|
|
if (!iod)
|
|
return -ENOMEM;
|
|
|
|
tgtport->iod = iod;
|
|
|
|
for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
|
|
INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
|
|
iod->tgtport = tgtport;
|
|
list_add_tail(&iod->ls_list, &tgtport->ls_list);
|
|
|
|
iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
|
|
GFP_KERNEL);
|
|
if (!iod->rqstbuf)
|
|
goto out_fail;
|
|
|
|
iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
|
|
|
|
iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
|
|
goto out_fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_fail:
|
|
kfree(iod->rqstbuf);
|
|
list_del(&iod->ls_list);
|
|
for (iod--, i--; i >= 0; iod--, i--) {
|
|
fc_dma_unmap_single(tgtport->dev, iod->rspdma,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
kfree(iod->rqstbuf);
|
|
list_del(&iod->ls_list);
|
|
}
|
|
|
|
kfree(iod);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_ls_iod *iod = tgtport->iod;
|
|
int i;
|
|
|
|
for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
|
|
fc_dma_unmap_single(tgtport->dev,
|
|
iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
|
|
DMA_TO_DEVICE);
|
|
kfree(iod->rqstbuf);
|
|
list_del(&iod->ls_list);
|
|
}
|
|
kfree(tgtport->iod);
|
|
}
|
|
|
|
static struct nvmet_fc_ls_iod *
|
|
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_ls_iod *iod;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
iod = list_first_entry_or_null(&tgtport->ls_list,
|
|
struct nvmet_fc_ls_iod, ls_list);
|
|
if (iod)
|
|
list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
return iod;
|
|
}
|
|
|
|
|
|
static void
|
|
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_move(&iod->ls_list, &tgtport->ls_list);
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = queue->fod;
|
|
int i;
|
|
|
|
for (i = 0; i < queue->sqsize; fod++, i++) {
|
|
INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
|
|
fod->tgtport = tgtport;
|
|
fod->queue = queue;
|
|
fod->active = false;
|
|
fod->abort = false;
|
|
fod->aborted = false;
|
|
fod->fcpreq = NULL;
|
|
list_add_tail(&fod->fcp_list, &queue->fod_list);
|
|
spin_lock_init(&fod->flock);
|
|
|
|
fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
|
|
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
|
|
if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
|
|
list_del(&fod->fcp_list);
|
|
for (fod--, i--; i >= 0; fod--, i--) {
|
|
fc_dma_unmap_single(tgtport->dev, fod->rspdma,
|
|
sizeof(fod->rspiubuf),
|
|
DMA_TO_DEVICE);
|
|
fod->rspdma = 0L;
|
|
list_del(&fod->fcp_list);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = queue->fod;
|
|
int i;
|
|
|
|
for (i = 0; i < queue->sqsize; fod++, i++) {
|
|
if (fod->rspdma)
|
|
fc_dma_unmap_single(tgtport->dev, fod->rspdma,
|
|
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
|
|
static struct nvmet_fc_fcp_iod *
|
|
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod;
|
|
|
|
lockdep_assert_held(&queue->qlock);
|
|
|
|
fod = list_first_entry_or_null(&queue->fod_list,
|
|
struct nvmet_fc_fcp_iod, fcp_list);
|
|
if (fod) {
|
|
list_del(&fod->fcp_list);
|
|
fod->active = true;
|
|
/*
|
|
* no queue reference is taken, as it was taken by the
|
|
* queue lookup just prior to the allocation. The iod
|
|
* will "inherit" that reference.
|
|
*/
|
|
}
|
|
return fod;
|
|
}
|
|
|
|
|
|
static void
|
|
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_tgt_queue *queue,
|
|
struct nvmefc_tgt_fcp_req *fcpreq)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
|
|
|
|
/*
|
|
* put all admin cmds on hw queue id 0. All io commands go to
|
|
* the respective hw queue based on a modulo basis
|
|
*/
|
|
fcpreq->hwqid = queue->qid ?
|
|
((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
|
|
|
|
nvmet_fc_handle_fcp_rqst(tgtport, fod);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod =
|
|
container_of(work, struct nvmet_fc_fcp_iod, defer_work);
|
|
|
|
/* Submit deferred IO for processing */
|
|
nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
|
|
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
|
|
struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
|
|
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
|
|
struct nvmet_fc_defer_fcp_req *deferfcp;
|
|
unsigned long flags;
|
|
|
|
fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
|
|
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
|
|
|
|
fcpreq->nvmet_fc_private = NULL;
|
|
|
|
fod->active = false;
|
|
fod->abort = false;
|
|
fod->aborted = false;
|
|
fod->writedataactive = false;
|
|
fod->fcpreq = NULL;
|
|
|
|
tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
|
|
|
|
/* release the queue lookup reference on the completed IO */
|
|
nvmet_fc_tgt_q_put(queue);
|
|
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
|
|
struct nvmet_fc_defer_fcp_req, req_list);
|
|
if (!deferfcp) {
|
|
list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Re-use the fod for the next pending cmd that was deferred */
|
|
list_del(&deferfcp->req_list);
|
|
|
|
fcpreq = deferfcp->fcp_req;
|
|
|
|
/* deferfcp can be reused for another IO at a later date */
|
|
list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
|
|
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
/* Save NVME CMD IO in fod */
|
|
memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
|
|
|
|
/* Setup new fcpreq to be processed */
|
|
fcpreq->rspaddr = NULL;
|
|
fcpreq->rsplen = 0;
|
|
fcpreq->nvmet_fc_private = fod;
|
|
fod->fcpreq = fcpreq;
|
|
fod->active = true;
|
|
|
|
/* inform LLDD IO is now being processed */
|
|
tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
|
|
|
|
/*
|
|
* Leave the queue lookup get reference taken when
|
|
* fod was originally allocated.
|
|
*/
|
|
|
|
queue_work(queue->work_q, &fod->defer_work);
|
|
}
|
|
|
|
static struct nvmet_fc_tgt_queue *
|
|
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
|
|
u16 qid, u16 sqsize)
|
|
{
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (qid > NVMET_NR_QUEUES)
|
|
return NULL;
|
|
|
|
queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
|
|
if (!queue)
|
|
return NULL;
|
|
|
|
if (!nvmet_fc_tgt_a_get(assoc))
|
|
goto out_free_queue;
|
|
|
|
queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
|
|
assoc->tgtport->fc_target_port.port_num,
|
|
assoc->a_id, qid);
|
|
if (!queue->work_q)
|
|
goto out_a_put;
|
|
|
|
queue->qid = qid;
|
|
queue->sqsize = sqsize;
|
|
queue->assoc = assoc;
|
|
INIT_LIST_HEAD(&queue->fod_list);
|
|
INIT_LIST_HEAD(&queue->avail_defer_list);
|
|
INIT_LIST_HEAD(&queue->pending_cmd_list);
|
|
atomic_set(&queue->connected, 0);
|
|
atomic_set(&queue->sqtail, 0);
|
|
atomic_set(&queue->rsn, 1);
|
|
atomic_set(&queue->zrspcnt, 0);
|
|
spin_lock_init(&queue->qlock);
|
|
kref_init(&queue->ref);
|
|
|
|
nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
|
|
|
|
ret = nvmet_sq_init(&queue->nvme_sq);
|
|
if (ret)
|
|
goto out_fail_iodlist;
|
|
|
|
WARN_ON(assoc->queues[qid]);
|
|
spin_lock_irqsave(&assoc->tgtport->lock, flags);
|
|
assoc->queues[qid] = queue;
|
|
spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
|
|
|
|
return queue;
|
|
|
|
out_fail_iodlist:
|
|
nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
|
|
destroy_workqueue(queue->work_q);
|
|
out_a_put:
|
|
nvmet_fc_tgt_a_put(assoc);
|
|
out_free_queue:
|
|
kfree(queue);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static void
|
|
nvmet_fc_tgt_queue_free(struct kref *ref)
|
|
{
|
|
struct nvmet_fc_tgt_queue *queue =
|
|
container_of(ref, struct nvmet_fc_tgt_queue, ref);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
|
|
queue->assoc->queues[queue->qid] = NULL;
|
|
spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
|
|
|
|
nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
|
|
|
|
nvmet_fc_tgt_a_put(queue->assoc);
|
|
|
|
destroy_workqueue(queue->work_q);
|
|
|
|
kfree(queue);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
|
|
}
|
|
|
|
static int
|
|
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
return kref_get_unless_zero(&queue->ref);
|
|
}
|
|
|
|
|
|
static void
|
|
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
|
|
struct nvmet_fc_fcp_iod *fod = queue->fod;
|
|
struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
|
|
unsigned long flags;
|
|
int i, writedataactive;
|
|
bool disconnect;
|
|
|
|
disconnect = atomic_xchg(&queue->connected, 0);
|
|
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
/* abort outstanding io's */
|
|
for (i = 0; i < queue->sqsize; fod++, i++) {
|
|
if (fod->active) {
|
|
spin_lock(&fod->flock);
|
|
fod->abort = true;
|
|
writedataactive = fod->writedataactive;
|
|
spin_unlock(&fod->flock);
|
|
/*
|
|
* only call lldd abort routine if waiting for
|
|
* writedata. other outstanding ops should finish
|
|
* on their own.
|
|
*/
|
|
if (writedataactive) {
|
|
spin_lock(&fod->flock);
|
|
fod->aborted = true;
|
|
spin_unlock(&fod->flock);
|
|
tgtport->ops->fcp_abort(
|
|
&tgtport->fc_target_port, fod->fcpreq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Cleanup defer'ed IOs in queue */
|
|
list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
|
|
req_list) {
|
|
list_del(&deferfcp->req_list);
|
|
kfree(deferfcp);
|
|
}
|
|
|
|
for (;;) {
|
|
deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
|
|
struct nvmet_fc_defer_fcp_req, req_list);
|
|
if (!deferfcp)
|
|
break;
|
|
|
|
list_del(&deferfcp->req_list);
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
tgtport->ops->defer_rcv(&tgtport->fc_target_port,
|
|
deferfcp->fcp_req);
|
|
|
|
tgtport->ops->fcp_abort(&tgtport->fc_target_port,
|
|
deferfcp->fcp_req);
|
|
|
|
tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
|
|
deferfcp->fcp_req);
|
|
|
|
/* release the queue lookup reference */
|
|
nvmet_fc_tgt_q_put(queue);
|
|
|
|
kfree(deferfcp);
|
|
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
flush_workqueue(queue->work_q);
|
|
|
|
if (disconnect)
|
|
nvmet_sq_destroy(&queue->nvme_sq);
|
|
|
|
nvmet_fc_tgt_q_put(queue);
|
|
}
|
|
|
|
static struct nvmet_fc_tgt_queue *
|
|
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
|
|
u64 connection_id)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
u64 association_id = nvmet_fc_getassociationid(connection_id);
|
|
u16 qid = nvmet_fc_getqueueid(connection_id);
|
|
unsigned long flags;
|
|
|
|
if (qid > NVMET_NR_QUEUES)
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
|
|
if (association_id == assoc->association_id) {
|
|
queue = assoc->queues[qid];
|
|
if (queue &&
|
|
(!atomic_read(&queue->connected) ||
|
|
!nvmet_fc_tgt_q_get(queue)))
|
|
queue = NULL;
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
return queue;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_delete_assoc(struct work_struct *work)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc =
|
|
container_of(work, struct nvmet_fc_tgt_assoc, del_work);
|
|
|
|
nvmet_fc_delete_target_assoc(assoc);
|
|
nvmet_fc_tgt_a_put(assoc);
|
|
}
|
|
|
|
static struct nvmet_fc_tgt_assoc *
|
|
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
|
|
unsigned long flags;
|
|
u64 ran;
|
|
int idx;
|
|
bool needrandom = true;
|
|
|
|
assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
|
|
if (!assoc)
|
|
return NULL;
|
|
|
|
idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
|
|
if (idx < 0)
|
|
goto out_free_assoc;
|
|
|
|
if (!nvmet_fc_tgtport_get(tgtport))
|
|
goto out_ida_put;
|
|
|
|
assoc->tgtport = tgtport;
|
|
assoc->a_id = idx;
|
|
INIT_LIST_HEAD(&assoc->a_list);
|
|
kref_init(&assoc->ref);
|
|
INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
|
|
|
|
while (needrandom) {
|
|
get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
|
|
ran = ran << BYTES_FOR_QID_SHIFT;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
needrandom = false;
|
|
list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
|
|
if (ran == tmpassoc->association_id) {
|
|
needrandom = true;
|
|
break;
|
|
}
|
|
if (!needrandom) {
|
|
assoc->association_id = ran;
|
|
list_add_tail(&assoc->a_list, &tgtport->assoc_list);
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
}
|
|
|
|
return assoc;
|
|
|
|
out_ida_put:
|
|
ida_simple_remove(&tgtport->assoc_cnt, idx);
|
|
out_free_assoc:
|
|
kfree(assoc);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_target_assoc_free(struct kref *ref)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc =
|
|
container_of(ref, struct nvmet_fc_tgt_assoc, ref);
|
|
struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_del(&assoc->a_list);
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
|
|
kfree(assoc);
|
|
nvmet_fc_tgtport_put(tgtport);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
|
|
{
|
|
kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
|
|
}
|
|
|
|
static int
|
|
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
|
|
{
|
|
return kref_get_unless_zero(&assoc->ref);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
for (i = NVMET_NR_QUEUES; i >= 0; i--) {
|
|
queue = assoc->queues[i];
|
|
if (queue) {
|
|
if (!nvmet_fc_tgt_q_get(queue))
|
|
continue;
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
nvmet_fc_delete_target_queue(queue);
|
|
nvmet_fc_tgt_q_put(queue);
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
|
|
nvmet_fc_tgt_a_put(assoc);
|
|
}
|
|
|
|
static struct nvmet_fc_tgt_assoc *
|
|
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
|
|
u64 association_id)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
struct nvmet_fc_tgt_assoc *ret = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
|
|
if (association_id == assoc->association_id) {
|
|
ret = assoc;
|
|
nvmet_fc_tgt_a_get(assoc);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_port_entry *pe,
|
|
struct nvmet_port *port)
|
|
{
|
|
lockdep_assert_held(&nvmet_fc_tgtlock);
|
|
|
|
pe->tgtport = tgtport;
|
|
tgtport->pe = pe;
|
|
|
|
pe->port = port;
|
|
port->priv = pe;
|
|
|
|
pe->node_name = tgtport->fc_target_port.node_name;
|
|
pe->port_name = tgtport->fc_target_port.port_name;
|
|
INIT_LIST_HEAD(&pe->pe_list);
|
|
|
|
list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
if (pe->tgtport)
|
|
pe->tgtport->pe = NULL;
|
|
list_del(&pe->pe_list);
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
}
|
|
|
|
/*
|
|
* called when a targetport deregisters. Breaks the relationship
|
|
* with the nvmet port, but leaves the port_entry in place so that
|
|
* re-registration can resume operation.
|
|
*/
|
|
static void
|
|
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_port_entry *pe;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
pe = tgtport->pe;
|
|
if (pe)
|
|
pe->tgtport = NULL;
|
|
tgtport->pe = NULL;
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
}
|
|
|
|
/*
|
|
* called when a new targetport is registered. Looks in the
|
|
* existing nvmet port_entries to see if the nvmet layer is
|
|
* configured for the targetport's wwn's. (the targetport existed,
|
|
* nvmet configured, the lldd unregistered the tgtport, and is now
|
|
* reregistering the same targetport). If so, set the nvmet port
|
|
* port entry on the targetport.
|
|
*/
|
|
static void
|
|
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_port_entry *pe;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
|
|
if (tgtport->fc_target_port.node_name == pe->node_name &&
|
|
tgtport->fc_target_port.port_name == pe->port_name) {
|
|
WARN_ON(pe->tgtport);
|
|
tgtport->pe = pe;
|
|
pe->tgtport = tgtport;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
}
|
|
|
|
/**
|
|
* nvme_fc_register_targetport - transport entry point called by an
|
|
* LLDD to register the existence of a local
|
|
* NVME subystem FC port.
|
|
* @pinfo: pointer to information about the port to be registered
|
|
* @template: LLDD entrypoints and operational parameters for the port
|
|
* @dev: physical hardware device node port corresponds to. Will be
|
|
* used for DMA mappings
|
|
* @portptr: pointer to a local port pointer. Upon success, the routine
|
|
* will allocate a nvme_fc_local_port structure and place its
|
|
* address in the local port pointer. Upon failure, local port
|
|
* pointer will be set to NULL.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
|
|
struct nvmet_fc_target_template *template,
|
|
struct device *dev,
|
|
struct nvmet_fc_target_port **portptr)
|
|
{
|
|
struct nvmet_fc_tgtport *newrec;
|
|
unsigned long flags;
|
|
int ret, idx;
|
|
|
|
if (!template->xmt_ls_rsp || !template->fcp_op ||
|
|
!template->fcp_abort ||
|
|
!template->fcp_req_release || !template->targetport_delete ||
|
|
!template->max_hw_queues || !template->max_sgl_segments ||
|
|
!template->max_dif_sgl_segments || !template->dma_boundary) {
|
|
ret = -EINVAL;
|
|
goto out_regtgt_failed;
|
|
}
|
|
|
|
newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
|
|
GFP_KERNEL);
|
|
if (!newrec) {
|
|
ret = -ENOMEM;
|
|
goto out_regtgt_failed;
|
|
}
|
|
|
|
idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
|
|
if (idx < 0) {
|
|
ret = -ENOSPC;
|
|
goto out_fail_kfree;
|
|
}
|
|
|
|
if (!get_device(dev) && dev) {
|
|
ret = -ENODEV;
|
|
goto out_ida_put;
|
|
}
|
|
|
|
newrec->fc_target_port.node_name = pinfo->node_name;
|
|
newrec->fc_target_port.port_name = pinfo->port_name;
|
|
newrec->fc_target_port.private = &newrec[1];
|
|
newrec->fc_target_port.port_id = pinfo->port_id;
|
|
newrec->fc_target_port.port_num = idx;
|
|
INIT_LIST_HEAD(&newrec->tgt_list);
|
|
newrec->dev = dev;
|
|
newrec->ops = template;
|
|
spin_lock_init(&newrec->lock);
|
|
INIT_LIST_HEAD(&newrec->ls_list);
|
|
INIT_LIST_HEAD(&newrec->ls_busylist);
|
|
INIT_LIST_HEAD(&newrec->assoc_list);
|
|
kref_init(&newrec->ref);
|
|
ida_init(&newrec->assoc_cnt);
|
|
newrec->max_sg_cnt = template->max_sgl_segments;
|
|
|
|
ret = nvmet_fc_alloc_ls_iodlist(newrec);
|
|
if (ret) {
|
|
ret = -ENOMEM;
|
|
goto out_free_newrec;
|
|
}
|
|
|
|
nvmet_fc_portentry_rebind_tgt(newrec);
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
|
|
*portptr = &newrec->fc_target_port;
|
|
return 0;
|
|
|
|
out_free_newrec:
|
|
put_device(dev);
|
|
out_ida_put:
|
|
ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
|
|
out_fail_kfree:
|
|
kfree(newrec);
|
|
out_regtgt_failed:
|
|
*portptr = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
|
|
|
|
|
|
static void
|
|
nvmet_fc_free_tgtport(struct kref *ref)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport =
|
|
container_of(ref, struct nvmet_fc_tgtport, ref);
|
|
struct device *dev = tgtport->dev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
list_del(&tgtport->tgt_list);
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
|
|
nvmet_fc_free_ls_iodlist(tgtport);
|
|
|
|
/* let the LLDD know we've finished tearing it down */
|
|
tgtport->ops->targetport_delete(&tgtport->fc_target_port);
|
|
|
|
ida_simple_remove(&nvmet_fc_tgtport_cnt,
|
|
tgtport->fc_target_port.port_num);
|
|
|
|
ida_destroy(&tgtport->assoc_cnt);
|
|
|
|
kfree(tgtport);
|
|
|
|
put_device(dev);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
|
|
}
|
|
|
|
static int
|
|
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
return kref_get_unless_zero(&tgtport->ref);
|
|
}
|
|
|
|
static void
|
|
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
|
|
{
|
|
struct nvmet_fc_tgt_assoc *assoc, *next;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_for_each_entry_safe(assoc, next,
|
|
&tgtport->assoc_list, a_list) {
|
|
if (!nvmet_fc_tgt_a_get(assoc))
|
|
continue;
|
|
if (!schedule_work(&assoc->del_work))
|
|
nvmet_fc_tgt_a_put(assoc);
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* nvmet layer has called to terminate an association
|
|
*/
|
|
static void
|
|
nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport, *next;
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
unsigned long flags;
|
|
bool found_ctrl = false;
|
|
|
|
/* this is a bit ugly, but don't want to make locks layered */
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
|
|
tgt_list) {
|
|
if (!nvmet_fc_tgtport_get(tgtport))
|
|
continue;
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
|
|
spin_lock_irqsave(&tgtport->lock, flags);
|
|
list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
|
|
queue = assoc->queues[0];
|
|
if (queue && queue->nvme_sq.ctrl == ctrl) {
|
|
if (nvmet_fc_tgt_a_get(assoc))
|
|
found_ctrl = true;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&tgtport->lock, flags);
|
|
|
|
nvmet_fc_tgtport_put(tgtport);
|
|
|
|
if (found_ctrl) {
|
|
if (!schedule_work(&assoc->del_work))
|
|
nvmet_fc_tgt_a_put(assoc);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
}
|
|
|
|
/**
|
|
* nvme_fc_unregister_targetport - transport entry point called by an
|
|
* LLDD to deregister/remove a previously
|
|
* registered a local NVME subsystem FC port.
|
|
* @target_port: pointer to the (registered) target port that is to be
|
|
* deregistered.
|
|
*
|
|
* Returns:
|
|
* a completion status. Must be 0 upon success; a negative errno
|
|
* (ex: -ENXIO) upon failure.
|
|
*/
|
|
int
|
|
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
|
|
|
|
nvmet_fc_portentry_unbind_tgt(tgtport);
|
|
|
|
/* terminate any outstanding associations */
|
|
__nvmet_fc_free_assocs(tgtport);
|
|
|
|
nvmet_fc_tgtport_put(tgtport);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
|
|
|
|
|
|
/* *********************** FC-NVME LS Handling **************************** */
|
|
|
|
|
|
static void
|
|
nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
|
|
{
|
|
struct fcnvme_ls_acc_hdr *acc = buf;
|
|
|
|
acc->w0.ls_cmd = ls_cmd;
|
|
acc->desc_list_len = desc_len;
|
|
acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
|
|
acc->rqst.desc_len =
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
|
|
acc->rqst.w0.ls_cmd = rqst_ls_cmd;
|
|
}
|
|
|
|
static int
|
|
nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
|
|
u8 reason, u8 explanation, u8 vendor)
|
|
{
|
|
struct fcnvme_ls_rjt *rjt = buf;
|
|
|
|
nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
|
|
ls_cmd);
|
|
rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
|
|
rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
|
|
rjt->rjt.reason_code = reason;
|
|
rjt->rjt.reason_explanation = explanation;
|
|
rjt->rjt.vendor = vendor;
|
|
|
|
return sizeof(struct fcnvme_ls_rjt);
|
|
}
|
|
|
|
/* Validation Error indexes into the string table below */
|
|
enum {
|
|
VERR_NO_ERROR = 0,
|
|
VERR_CR_ASSOC_LEN = 1,
|
|
VERR_CR_ASSOC_RQST_LEN = 2,
|
|
VERR_CR_ASSOC_CMD = 3,
|
|
VERR_CR_ASSOC_CMD_LEN = 4,
|
|
VERR_ERSP_RATIO = 5,
|
|
VERR_ASSOC_ALLOC_FAIL = 6,
|
|
VERR_QUEUE_ALLOC_FAIL = 7,
|
|
VERR_CR_CONN_LEN = 8,
|
|
VERR_CR_CONN_RQST_LEN = 9,
|
|
VERR_ASSOC_ID = 10,
|
|
VERR_ASSOC_ID_LEN = 11,
|
|
VERR_NO_ASSOC = 12,
|
|
VERR_CONN_ID = 13,
|
|
VERR_CONN_ID_LEN = 14,
|
|
VERR_NO_CONN = 15,
|
|
VERR_CR_CONN_CMD = 16,
|
|
VERR_CR_CONN_CMD_LEN = 17,
|
|
VERR_DISCONN_LEN = 18,
|
|
VERR_DISCONN_RQST_LEN = 19,
|
|
VERR_DISCONN_CMD = 20,
|
|
VERR_DISCONN_CMD_LEN = 21,
|
|
VERR_DISCONN_SCOPE = 22,
|
|
VERR_RS_LEN = 23,
|
|
VERR_RS_RQST_LEN = 24,
|
|
VERR_RS_CMD = 25,
|
|
VERR_RS_CMD_LEN = 26,
|
|
VERR_RS_RCTL = 27,
|
|
VERR_RS_RO = 28,
|
|
};
|
|
|
|
static char *validation_errors[] = {
|
|
"OK",
|
|
"Bad CR_ASSOC Length",
|
|
"Bad CR_ASSOC Rqst Length",
|
|
"Not CR_ASSOC Cmd",
|
|
"Bad CR_ASSOC Cmd Length",
|
|
"Bad Ersp Ratio",
|
|
"Association Allocation Failed",
|
|
"Queue Allocation Failed",
|
|
"Bad CR_CONN Length",
|
|
"Bad CR_CONN Rqst Length",
|
|
"Not Association ID",
|
|
"Bad Association ID Length",
|
|
"No Association",
|
|
"Not Connection ID",
|
|
"Bad Connection ID Length",
|
|
"No Connection",
|
|
"Not CR_CONN Cmd",
|
|
"Bad CR_CONN Cmd Length",
|
|
"Bad DISCONN Length",
|
|
"Bad DISCONN Rqst Length",
|
|
"Not DISCONN Cmd",
|
|
"Bad DISCONN Cmd Length",
|
|
"Bad Disconnect Scope",
|
|
"Bad RS Length",
|
|
"Bad RS Rqst Length",
|
|
"Not RS Cmd",
|
|
"Bad RS Cmd Length",
|
|
"Bad RS R_CTL",
|
|
"Bad RS Relative Offset",
|
|
};
|
|
|
|
static void
|
|
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
struct fcnvme_ls_cr_assoc_rqst *rqst =
|
|
(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
|
|
struct fcnvme_ls_cr_assoc_acc *acc =
|
|
(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
int ret = 0;
|
|
|
|
memset(acc, 0, sizeof(*acc));
|
|
|
|
/*
|
|
* FC-NVME spec changes. There are initiators sending different
|
|
* lengths as padding sizes for Create Association Cmd descriptor
|
|
* was incorrect.
|
|
* Accept anything of "minimum" length. Assume format per 1.15
|
|
* spec (with HOSTID reduced to 16 bytes), ignore how long the
|
|
* trailing pad length is.
|
|
*/
|
|
if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
|
|
ret = VERR_CR_ASSOC_LEN;
|
|
else if (be32_to_cpu(rqst->desc_list_len) <
|
|
FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
|
|
ret = VERR_CR_ASSOC_RQST_LEN;
|
|
else if (rqst->assoc_cmd.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
|
|
ret = VERR_CR_ASSOC_CMD;
|
|
else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
|
|
FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
|
|
ret = VERR_CR_ASSOC_CMD_LEN;
|
|
else if (!rqst->assoc_cmd.ersp_ratio ||
|
|
(be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
|
|
be16_to_cpu(rqst->assoc_cmd.sqsize)))
|
|
ret = VERR_ERSP_RATIO;
|
|
|
|
else {
|
|
/* new association w/ admin queue */
|
|
iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
|
|
if (!iod->assoc)
|
|
ret = VERR_ASSOC_ALLOC_FAIL;
|
|
else {
|
|
queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
|
|
be16_to_cpu(rqst->assoc_cmd.sqsize));
|
|
if (!queue)
|
|
ret = VERR_QUEUE_ALLOC_FAIL;
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(tgtport->dev,
|
|
"Create Association LS failed: %s\n",
|
|
validation_errors[ret]);
|
|
iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
|
|
FCNVME_RJT_RC_LOGIC,
|
|
FCNVME_RJT_EXP_NONE, 0);
|
|
return;
|
|
}
|
|
|
|
queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
|
|
atomic_set(&queue->connected, 1);
|
|
queue->sqhd = 0; /* best place to init value */
|
|
|
|
/* format a response */
|
|
|
|
iod->lsreq->rsplen = sizeof(*acc);
|
|
|
|
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_ls_cr_assoc_acc)),
|
|
FCNVME_LS_CREATE_ASSOCIATION);
|
|
acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
|
|
acc->associd.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id));
|
|
acc->associd.association_id =
|
|
cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
|
|
acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
|
|
acc->connectid.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_conn_id));
|
|
acc->connectid.connection_id = acc->associd.association_id;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
struct fcnvme_ls_cr_conn_rqst *rqst =
|
|
(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
|
|
struct fcnvme_ls_cr_conn_acc *acc =
|
|
(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
int ret = 0;
|
|
|
|
memset(acc, 0, sizeof(*acc));
|
|
|
|
if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
|
|
ret = VERR_CR_CONN_LEN;
|
|
else if (rqst->desc_list_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_ls_cr_conn_rqst)))
|
|
ret = VERR_CR_CONN_RQST_LEN;
|
|
else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
|
|
ret = VERR_ASSOC_ID;
|
|
else if (rqst->associd.desc_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id)))
|
|
ret = VERR_ASSOC_ID_LEN;
|
|
else if (rqst->connect_cmd.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
|
|
ret = VERR_CR_CONN_CMD;
|
|
else if (rqst->connect_cmd.desc_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
|
|
ret = VERR_CR_CONN_CMD_LEN;
|
|
else if (!rqst->connect_cmd.ersp_ratio ||
|
|
(be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
|
|
be16_to_cpu(rqst->connect_cmd.sqsize)))
|
|
ret = VERR_ERSP_RATIO;
|
|
|
|
else {
|
|
/* new io queue */
|
|
iod->assoc = nvmet_fc_find_target_assoc(tgtport,
|
|
be64_to_cpu(rqst->associd.association_id));
|
|
if (!iod->assoc)
|
|
ret = VERR_NO_ASSOC;
|
|
else {
|
|
queue = nvmet_fc_alloc_target_queue(iod->assoc,
|
|
be16_to_cpu(rqst->connect_cmd.qid),
|
|
be16_to_cpu(rqst->connect_cmd.sqsize));
|
|
if (!queue)
|
|
ret = VERR_QUEUE_ALLOC_FAIL;
|
|
|
|
/* release get taken in nvmet_fc_find_target_assoc */
|
|
nvmet_fc_tgt_a_put(iod->assoc);
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(tgtport->dev,
|
|
"Create Connection LS failed: %s\n",
|
|
validation_errors[ret]);
|
|
iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
|
|
(ret == VERR_NO_ASSOC) ?
|
|
FCNVME_RJT_RC_INV_ASSOC :
|
|
FCNVME_RJT_RC_LOGIC,
|
|
FCNVME_RJT_EXP_NONE, 0);
|
|
return;
|
|
}
|
|
|
|
queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
|
|
atomic_set(&queue->connected, 1);
|
|
queue->sqhd = 0; /* best place to init value */
|
|
|
|
/* format a response */
|
|
|
|
iod->lsreq->rsplen = sizeof(*acc);
|
|
|
|
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
|
|
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
|
|
FCNVME_LS_CREATE_CONNECTION);
|
|
acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
|
|
acc->connectid.desc_len =
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_conn_id));
|
|
acc->connectid.connection_id =
|
|
cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
|
|
be16_to_cpu(rqst->connect_cmd.qid)));
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
struct fcnvme_ls_disconnect_assoc_rqst *rqst =
|
|
(struct fcnvme_ls_disconnect_assoc_rqst *)iod->rqstbuf;
|
|
struct fcnvme_ls_disconnect_assoc_acc *acc =
|
|
(struct fcnvme_ls_disconnect_assoc_acc *)iod->rspbuf;
|
|
struct nvmet_fc_tgt_assoc *assoc;
|
|
int ret = 0;
|
|
|
|
memset(acc, 0, sizeof(*acc));
|
|
|
|
if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_assoc_rqst))
|
|
ret = VERR_DISCONN_LEN;
|
|
else if (rqst->desc_list_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_ls_disconnect_assoc_rqst)))
|
|
ret = VERR_DISCONN_RQST_LEN;
|
|
else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
|
|
ret = VERR_ASSOC_ID;
|
|
else if (rqst->associd.desc_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_assoc_id)))
|
|
ret = VERR_ASSOC_ID_LEN;
|
|
else if (rqst->discon_cmd.desc_tag !=
|
|
cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
|
|
ret = VERR_DISCONN_CMD;
|
|
else if (rqst->discon_cmd.desc_len !=
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_lsdesc_disconn_cmd)))
|
|
ret = VERR_DISCONN_CMD_LEN;
|
|
/*
|
|
* As the standard changed on the LS, check if old format and scope
|
|
* something other than Association (e.g. 0).
|
|
*/
|
|
else if (rqst->discon_cmd.rsvd8[0])
|
|
ret = VERR_DISCONN_SCOPE;
|
|
else {
|
|
/* match an active association */
|
|
assoc = nvmet_fc_find_target_assoc(tgtport,
|
|
be64_to_cpu(rqst->associd.association_id));
|
|
iod->assoc = assoc;
|
|
if (!assoc)
|
|
ret = VERR_NO_ASSOC;
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(tgtport->dev,
|
|
"Disconnect LS failed: %s\n",
|
|
validation_errors[ret]);
|
|
iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
|
|
(ret == VERR_NO_ASSOC) ?
|
|
FCNVME_RJT_RC_INV_ASSOC :
|
|
(ret == VERR_NO_CONN) ?
|
|
FCNVME_RJT_RC_INV_CONN :
|
|
FCNVME_RJT_RC_LOGIC,
|
|
FCNVME_RJT_EXP_NONE, 0);
|
|
return;
|
|
}
|
|
|
|
/* format a response */
|
|
|
|
iod->lsreq->rsplen = sizeof(*acc);
|
|
|
|
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
|
|
fcnvme_lsdesc_len(
|
|
sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
|
|
FCNVME_LS_DISCONNECT_ASSOC);
|
|
|
|
/* release get taken in nvmet_fc_find_target_assoc */
|
|
nvmet_fc_tgt_a_put(iod->assoc);
|
|
|
|
nvmet_fc_delete_target_assoc(iod->assoc);
|
|
}
|
|
|
|
|
|
/* *********************** NVME Ctrl Routines **************************** */
|
|
|
|
|
|
static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
|
|
|
|
static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
|
|
|
|
static void
|
|
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
|
|
{
|
|
struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
|
|
struct nvmet_fc_tgtport *tgtport = iod->tgtport;
|
|
|
|
fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
nvmet_fc_free_ls_iod(tgtport, iod);
|
|
nvmet_fc_tgtport_put(tgtport);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
int ret;
|
|
|
|
fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
|
|
|
|
ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
|
|
if (ret)
|
|
nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
|
|
}
|
|
|
|
/*
|
|
* Actual processing routine for received FC-NVME LS Requests from the LLD
|
|
*/
|
|
static void
|
|
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_ls_iod *iod)
|
|
{
|
|
struct fcnvme_ls_rqst_w0 *w0 =
|
|
(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
|
|
|
|
iod->lsreq->nvmet_fc_private = iod;
|
|
iod->lsreq->rspbuf = iod->rspbuf;
|
|
iod->lsreq->rspdma = iod->rspdma;
|
|
iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
|
|
/* Be preventative. handlers will later set to valid length */
|
|
iod->lsreq->rsplen = 0;
|
|
|
|
iod->assoc = NULL;
|
|
|
|
/*
|
|
* handlers:
|
|
* parse request input, execute the request, and format the
|
|
* LS response
|
|
*/
|
|
switch (w0->ls_cmd) {
|
|
case FCNVME_LS_CREATE_ASSOCIATION:
|
|
/* Creates Association and initial Admin Queue/Connection */
|
|
nvmet_fc_ls_create_association(tgtport, iod);
|
|
break;
|
|
case FCNVME_LS_CREATE_CONNECTION:
|
|
/* Creates an IO Queue/Connection */
|
|
nvmet_fc_ls_create_connection(tgtport, iod);
|
|
break;
|
|
case FCNVME_LS_DISCONNECT_ASSOC:
|
|
/* Terminate a Queue/Connection or the Association */
|
|
nvmet_fc_ls_disconnect(tgtport, iod);
|
|
break;
|
|
default:
|
|
iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
|
|
NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
|
|
FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
|
|
}
|
|
|
|
nvmet_fc_xmt_ls_rsp(tgtport, iod);
|
|
}
|
|
|
|
/*
|
|
* Actual processing routine for received FC-NVME LS Requests from the LLD
|
|
*/
|
|
static void
|
|
nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
|
|
{
|
|
struct nvmet_fc_ls_iod *iod =
|
|
container_of(work, struct nvmet_fc_ls_iod, work);
|
|
struct nvmet_fc_tgtport *tgtport = iod->tgtport;
|
|
|
|
nvmet_fc_handle_ls_rqst(tgtport, iod);
|
|
}
|
|
|
|
|
|
/**
|
|
* nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
|
|
* upon the reception of a NVME LS request.
|
|
*
|
|
* The nvmet-fc layer will copy payload to an internal structure for
|
|
* processing. As such, upon completion of the routine, the LLDD may
|
|
* immediately free/reuse the LS request buffer passed in the call.
|
|
*
|
|
* If this routine returns error, the LLDD should abort the exchange.
|
|
*
|
|
* @target_port: pointer to the (registered) target port the LS was
|
|
* received on.
|
|
* @lsreq: pointer to a lsreq request structure to be used to reference
|
|
* the exchange corresponding to the LS.
|
|
* @lsreqbuf: pointer to the buffer containing the LS Request
|
|
* @lsreqbuf_len: length, in bytes, of the received LS request
|
|
*/
|
|
int
|
|
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
|
|
struct nvmefc_tgt_ls_req *lsreq,
|
|
void *lsreqbuf, u32 lsreqbuf_len)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
|
|
struct nvmet_fc_ls_iod *iod;
|
|
|
|
if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
|
|
return -E2BIG;
|
|
|
|
if (!nvmet_fc_tgtport_get(tgtport))
|
|
return -ESHUTDOWN;
|
|
|
|
iod = nvmet_fc_alloc_ls_iod(tgtport);
|
|
if (!iod) {
|
|
nvmet_fc_tgtport_put(tgtport);
|
|
return -ENOENT;
|
|
}
|
|
|
|
iod->lsreq = lsreq;
|
|
iod->fcpreq = NULL;
|
|
memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
|
|
iod->rqstdatalen = lsreqbuf_len;
|
|
|
|
schedule_work(&iod->work);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
|
|
|
|
|
|
/*
|
|
* **********************
|
|
* Start of FCP handling
|
|
* **********************
|
|
*/
|
|
|
|
static int
|
|
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int nent;
|
|
|
|
sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
|
|
if (!sg)
|
|
goto out;
|
|
|
|
fod->data_sg = sg;
|
|
fod->data_sg_cnt = nent;
|
|
fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
|
|
((fod->io_dir == NVMET_FCP_WRITE) ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE));
|
|
/* note: write from initiator perspective */
|
|
fod->next_sg = fod->data_sg;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
return NVME_SC_INTERNAL;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
if (!fod->data_sg || !fod->data_sg_cnt)
|
|
return;
|
|
|
|
fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
|
|
((fod->io_dir == NVMET_FCP_WRITE) ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE));
|
|
sgl_free(fod->data_sg);
|
|
fod->data_sg = NULL;
|
|
fod->data_sg_cnt = 0;
|
|
}
|
|
|
|
|
|
static bool
|
|
queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
|
|
{
|
|
u32 sqtail, used;
|
|
|
|
/* egad, this is ugly. And sqtail is just a best guess */
|
|
sqtail = atomic_read(&q->sqtail) % q->sqsize;
|
|
|
|
used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
|
|
return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
|
|
}
|
|
|
|
/*
|
|
* Prep RSP payload.
|
|
* May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
|
|
*/
|
|
static void
|
|
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
|
|
struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
|
|
struct nvme_completion *cqe = &ersp->cqe;
|
|
u32 *cqewd = (u32 *)cqe;
|
|
bool send_ersp = false;
|
|
u32 rsn, rspcnt, xfr_length;
|
|
|
|
if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
|
|
xfr_length = fod->req.transfer_len;
|
|
else
|
|
xfr_length = fod->offset;
|
|
|
|
/*
|
|
* check to see if we can send a 0's rsp.
|
|
* Note: to send a 0's response, the NVME-FC host transport will
|
|
* recreate the CQE. The host transport knows: sq id, SQHD (last
|
|
* seen in an ersp), and command_id. Thus it will create a
|
|
* zero-filled CQE with those known fields filled in. Transport
|
|
* must send an ersp for any condition where the cqe won't match
|
|
* this.
|
|
*
|
|
* Here are the FC-NVME mandated cases where we must send an ersp:
|
|
* every N responses, where N=ersp_ratio
|
|
* force fabric commands to send ersp's (not in FC-NVME but good
|
|
* practice)
|
|
* normal cmds: any time status is non-zero, or status is zero
|
|
* but words 0 or 1 are non-zero.
|
|
* the SQ is 90% or more full
|
|
* the cmd is a fused command
|
|
* transferred data length not equal to cmd iu length
|
|
*/
|
|
rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
|
|
if (!(rspcnt % fod->queue->ersp_ratio) ||
|
|
nvme_is_fabrics((struct nvme_command *) sqe) ||
|
|
xfr_length != fod->req.transfer_len ||
|
|
(le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
|
|
(sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
|
|
queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
|
|
send_ersp = true;
|
|
|
|
/* re-set the fields */
|
|
fod->fcpreq->rspaddr = ersp;
|
|
fod->fcpreq->rspdma = fod->rspdma;
|
|
|
|
if (!send_ersp) {
|
|
memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
|
|
fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
|
|
} else {
|
|
ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
|
|
rsn = atomic_inc_return(&fod->queue->rsn);
|
|
ersp->rsn = cpu_to_be32(rsn);
|
|
ersp->xfrd_len = cpu_to_be32(xfr_length);
|
|
fod->fcpreq->rsplen = sizeof(*ersp);
|
|
}
|
|
|
|
fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
|
|
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
|
|
|
|
static void
|
|
nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
|
|
|
|
/* data no longer needed */
|
|
nvmet_fc_free_tgt_pgs(fod);
|
|
|
|
/*
|
|
* if an ABTS was received or we issued the fcp_abort early
|
|
* don't call abort routine again.
|
|
*/
|
|
/* no need to take lock - lock was taken earlier to get here */
|
|
if (!fod->aborted)
|
|
tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
|
|
|
|
nvmet_fc_free_fcp_iod(fod->queue, fod);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
int ret;
|
|
|
|
fod->fcpreq->op = NVMET_FCOP_RSP;
|
|
fod->fcpreq->timeout = 0;
|
|
|
|
nvmet_fc_prep_fcp_rsp(tgtport, fod);
|
|
|
|
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
|
|
if (ret)
|
|
nvmet_fc_abort_op(tgtport, fod);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod, u8 op)
|
|
{
|
|
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
|
|
struct scatterlist *sg = fod->next_sg;
|
|
unsigned long flags;
|
|
u32 remaininglen = fod->req.transfer_len - fod->offset;
|
|
u32 tlen = 0;
|
|
int ret;
|
|
|
|
fcpreq->op = op;
|
|
fcpreq->offset = fod->offset;
|
|
fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
|
|
|
|
/*
|
|
* for next sequence:
|
|
* break at a sg element boundary
|
|
* attempt to keep sequence length capped at
|
|
* NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
|
|
* be longer if a single sg element is larger
|
|
* than that amount. This is done to avoid creating
|
|
* a new sg list to use for the tgtport api.
|
|
*/
|
|
fcpreq->sg = sg;
|
|
fcpreq->sg_cnt = 0;
|
|
while (tlen < remaininglen &&
|
|
fcpreq->sg_cnt < tgtport->max_sg_cnt &&
|
|
tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
|
|
fcpreq->sg_cnt++;
|
|
tlen += sg_dma_len(sg);
|
|
sg = sg_next(sg);
|
|
}
|
|
if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
|
|
fcpreq->sg_cnt++;
|
|
tlen += min_t(u32, sg_dma_len(sg), remaininglen);
|
|
sg = sg_next(sg);
|
|
}
|
|
if (tlen < remaininglen)
|
|
fod->next_sg = sg;
|
|
else
|
|
fod->next_sg = NULL;
|
|
|
|
fcpreq->transfer_length = tlen;
|
|
fcpreq->transferred_length = 0;
|
|
fcpreq->fcp_error = 0;
|
|
fcpreq->rsplen = 0;
|
|
|
|
/*
|
|
* If the last READDATA request: check if LLDD supports
|
|
* combined xfr with response.
|
|
*/
|
|
if ((op == NVMET_FCOP_READDATA) &&
|
|
((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
|
|
(tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
|
|
fcpreq->op = NVMET_FCOP_READDATA_RSP;
|
|
nvmet_fc_prep_fcp_rsp(tgtport, fod);
|
|
}
|
|
|
|
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
|
|
if (ret) {
|
|
/*
|
|
* should be ok to set w/o lock as its in the thread of
|
|
* execution (not an async timer routine) and doesn't
|
|
* contend with any clearing action
|
|
*/
|
|
fod->abort = true;
|
|
|
|
if (op == NVMET_FCOP_WRITEDATA) {
|
|
spin_lock_irqsave(&fod->flock, flags);
|
|
fod->writedataactive = false;
|
|
spin_unlock_irqrestore(&fod->flock, flags);
|
|
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
|
|
} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
|
|
fcpreq->fcp_error = ret;
|
|
fcpreq->transferred_length = 0;
|
|
nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
|
|
{
|
|
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
|
|
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
|
|
|
|
/* if in the middle of an io and we need to tear down */
|
|
if (abort) {
|
|
if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
|
|
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
|
|
return true;
|
|
}
|
|
|
|
nvmet_fc_abort_op(tgtport, fod);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* actual done handler for FCP operations when completed by the lldd
|
|
*/
|
|
static void
|
|
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
|
|
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
|
|
unsigned long flags;
|
|
bool abort;
|
|
|
|
spin_lock_irqsave(&fod->flock, flags);
|
|
abort = fod->abort;
|
|
fod->writedataactive = false;
|
|
spin_unlock_irqrestore(&fod->flock, flags);
|
|
|
|
switch (fcpreq->op) {
|
|
|
|
case NVMET_FCOP_WRITEDATA:
|
|
if (__nvmet_fc_fod_op_abort(fod, abort))
|
|
return;
|
|
if (fcpreq->fcp_error ||
|
|
fcpreq->transferred_length != fcpreq->transfer_length) {
|
|
spin_lock(&fod->flock);
|
|
fod->abort = true;
|
|
spin_unlock(&fod->flock);
|
|
|
|
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
|
|
return;
|
|
}
|
|
|
|
fod->offset += fcpreq->transferred_length;
|
|
if (fod->offset != fod->req.transfer_len) {
|
|
spin_lock_irqsave(&fod->flock, flags);
|
|
fod->writedataactive = true;
|
|
spin_unlock_irqrestore(&fod->flock, flags);
|
|
|
|
/* transfer the next chunk */
|
|
nvmet_fc_transfer_fcp_data(tgtport, fod,
|
|
NVMET_FCOP_WRITEDATA);
|
|
return;
|
|
}
|
|
|
|
/* data transfer complete, resume with nvmet layer */
|
|
fod->req.execute(&fod->req);
|
|
break;
|
|
|
|
case NVMET_FCOP_READDATA:
|
|
case NVMET_FCOP_READDATA_RSP:
|
|
if (__nvmet_fc_fod_op_abort(fod, abort))
|
|
return;
|
|
if (fcpreq->fcp_error ||
|
|
fcpreq->transferred_length != fcpreq->transfer_length) {
|
|
nvmet_fc_abort_op(tgtport, fod);
|
|
return;
|
|
}
|
|
|
|
/* success */
|
|
|
|
if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
|
|
/* data no longer needed */
|
|
nvmet_fc_free_tgt_pgs(fod);
|
|
nvmet_fc_free_fcp_iod(fod->queue, fod);
|
|
return;
|
|
}
|
|
|
|
fod->offset += fcpreq->transferred_length;
|
|
if (fod->offset != fod->req.transfer_len) {
|
|
/* transfer the next chunk */
|
|
nvmet_fc_transfer_fcp_data(tgtport, fod,
|
|
NVMET_FCOP_READDATA);
|
|
return;
|
|
}
|
|
|
|
/* data transfer complete, send response */
|
|
|
|
/* data no longer needed */
|
|
nvmet_fc_free_tgt_pgs(fod);
|
|
|
|
nvmet_fc_xmt_fcp_rsp(tgtport, fod);
|
|
|
|
break;
|
|
|
|
case NVMET_FCOP_RSP:
|
|
if (__nvmet_fc_fod_op_abort(fod, abort))
|
|
return;
|
|
nvmet_fc_free_fcp_iod(fod->queue, fod);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
|
|
|
|
nvmet_fc_fod_op_done(fod);
|
|
}
|
|
|
|
/*
|
|
* actual completion handler after execution by the nvmet layer
|
|
*/
|
|
static void
|
|
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod, int status)
|
|
{
|
|
struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
|
|
struct nvme_completion *cqe = &fod->rspiubuf.cqe;
|
|
unsigned long flags;
|
|
bool abort;
|
|
|
|
spin_lock_irqsave(&fod->flock, flags);
|
|
abort = fod->abort;
|
|
spin_unlock_irqrestore(&fod->flock, flags);
|
|
|
|
/* if we have a CQE, snoop the last sq_head value */
|
|
if (!status)
|
|
fod->queue->sqhd = cqe->sq_head;
|
|
|
|
if (abort) {
|
|
nvmet_fc_abort_op(tgtport, fod);
|
|
return;
|
|
}
|
|
|
|
/* if an error handling the cmd post initial parsing */
|
|
if (status) {
|
|
/* fudge up a failed CQE status for our transport error */
|
|
memset(cqe, 0, sizeof(*cqe));
|
|
cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
|
|
cqe->sq_id = cpu_to_le16(fod->queue->qid);
|
|
cqe->command_id = sqe->command_id;
|
|
cqe->status = cpu_to_le16(status);
|
|
} else {
|
|
|
|
/*
|
|
* try to push the data even if the SQE status is non-zero.
|
|
* There may be a status where data still was intended to
|
|
* be moved
|
|
*/
|
|
if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
|
|
/* push the data over before sending rsp */
|
|
nvmet_fc_transfer_fcp_data(tgtport, fod,
|
|
NVMET_FCOP_READDATA);
|
|
return;
|
|
}
|
|
|
|
/* writes & no data - fall thru */
|
|
}
|
|
|
|
/* data no longer needed */
|
|
nvmet_fc_free_tgt_pgs(fod);
|
|
|
|
nvmet_fc_xmt_fcp_rsp(tgtport, fod);
|
|
}
|
|
|
|
|
|
static void
|
|
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
|
|
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
|
|
|
|
__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Actual processing routine for received FC-NVME I/O Requests from the LLD
|
|
*/
|
|
static void
|
|
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
|
|
struct nvmet_fc_fcp_iod *fod)
|
|
{
|
|
struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
|
|
u32 xfrlen = be32_to_cpu(cmdiu->data_len);
|
|
int ret;
|
|
|
|
/*
|
|
* if there is no nvmet mapping to the targetport there
|
|
* shouldn't be requests. just terminate them.
|
|
*/
|
|
if (!tgtport->pe)
|
|
goto transport_error;
|
|
|
|
/*
|
|
* Fused commands are currently not supported in the linux
|
|
* implementation.
|
|
*
|
|
* As such, the implementation of the FC transport does not
|
|
* look at the fused commands and order delivery to the upper
|
|
* layer until we have both based on csn.
|
|
*/
|
|
|
|
fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
|
|
|
|
if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
|
|
fod->io_dir = NVMET_FCP_WRITE;
|
|
if (!nvme_is_write(&cmdiu->sqe))
|
|
goto transport_error;
|
|
} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
|
|
fod->io_dir = NVMET_FCP_READ;
|
|
if (nvme_is_write(&cmdiu->sqe))
|
|
goto transport_error;
|
|
} else {
|
|
fod->io_dir = NVMET_FCP_NODATA;
|
|
if (xfrlen)
|
|
goto transport_error;
|
|
}
|
|
|
|
fod->req.cmd = &fod->cmdiubuf.sqe;
|
|
fod->req.cqe = &fod->rspiubuf.cqe;
|
|
fod->req.port = tgtport->pe->port;
|
|
|
|
/* clear any response payload */
|
|
memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
|
|
|
|
fod->data_sg = NULL;
|
|
fod->data_sg_cnt = 0;
|
|
|
|
ret = nvmet_req_init(&fod->req,
|
|
&fod->queue->nvme_cq,
|
|
&fod->queue->nvme_sq,
|
|
&nvmet_fc_tgt_fcp_ops);
|
|
if (!ret) {
|
|
/* bad SQE content or invalid ctrl state */
|
|
/* nvmet layer has already called op done to send rsp. */
|
|
return;
|
|
}
|
|
|
|
fod->req.transfer_len = xfrlen;
|
|
|
|
/* keep a running counter of tail position */
|
|
atomic_inc(&fod->queue->sqtail);
|
|
|
|
if (fod->req.transfer_len) {
|
|
ret = nvmet_fc_alloc_tgt_pgs(fod);
|
|
if (ret) {
|
|
nvmet_req_complete(&fod->req, ret);
|
|
return;
|
|
}
|
|
}
|
|
fod->req.sg = fod->data_sg;
|
|
fod->req.sg_cnt = fod->data_sg_cnt;
|
|
fod->offset = 0;
|
|
|
|
if (fod->io_dir == NVMET_FCP_WRITE) {
|
|
/* pull the data over before invoking nvmet layer */
|
|
nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Reads or no data:
|
|
*
|
|
* can invoke the nvmet_layer now. If read data, cmd completion will
|
|
* push the data
|
|
*/
|
|
fod->req.execute(&fod->req);
|
|
return;
|
|
|
|
transport_error:
|
|
nvmet_fc_abort_op(tgtport, fod);
|
|
}
|
|
|
|
/**
|
|
* nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
|
|
* upon the reception of a NVME FCP CMD IU.
|
|
*
|
|
* Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
|
|
* layer for processing.
|
|
*
|
|
* The nvmet_fc layer allocates a local job structure (struct
|
|
* nvmet_fc_fcp_iod) from the queue for the io and copies the
|
|
* CMD IU buffer to the job structure. As such, on a successful
|
|
* completion (returns 0), the LLDD may immediately free/reuse
|
|
* the CMD IU buffer passed in the call.
|
|
*
|
|
* However, in some circumstances, due to the packetized nature of FC
|
|
* and the api of the FC LLDD which may issue a hw command to send the
|
|
* response, but the LLDD may not get the hw completion for that command
|
|
* and upcall the nvmet_fc layer before a new command may be
|
|
* asynchronously received - its possible for a command to be received
|
|
* before the LLDD and nvmet_fc have recycled the job structure. It gives
|
|
* the appearance of more commands received than fits in the sq.
|
|
* To alleviate this scenario, a temporary queue is maintained in the
|
|
* transport for pending LLDD requests waiting for a queue job structure.
|
|
* In these "overrun" cases, a temporary queue element is allocated
|
|
* the LLDD request and CMD iu buffer information remembered, and the
|
|
* routine returns a -EOVERFLOW status. Subsequently, when a queue job
|
|
* structure is freed, it is immediately reallocated for anything on the
|
|
* pending request list. The LLDDs defer_rcv() callback is called,
|
|
* informing the LLDD that it may reuse the CMD IU buffer, and the io
|
|
* is then started normally with the transport.
|
|
*
|
|
* The LLDD, when receiving an -EOVERFLOW completion status, is to treat
|
|
* the completion as successful but must not reuse the CMD IU buffer
|
|
* until the LLDD's defer_rcv() callback has been called for the
|
|
* corresponding struct nvmefc_tgt_fcp_req pointer.
|
|
*
|
|
* If there is any other condition in which an error occurs, the
|
|
* transport will return a non-zero status indicating the error.
|
|
* In all cases other than -EOVERFLOW, the transport has not accepted the
|
|
* request and the LLDD should abort the exchange.
|
|
*
|
|
* @target_port: pointer to the (registered) target port the FCP CMD IU
|
|
* was received on.
|
|
* @fcpreq: pointer to a fcpreq request structure to be used to reference
|
|
* the exchange corresponding to the FCP Exchange.
|
|
* @cmdiubuf: pointer to the buffer containing the FCP CMD IU
|
|
* @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
|
|
*/
|
|
int
|
|
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
|
|
struct nvmefc_tgt_fcp_req *fcpreq,
|
|
void *cmdiubuf, u32 cmdiubuf_len)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
|
|
struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
struct nvmet_fc_fcp_iod *fod;
|
|
struct nvmet_fc_defer_fcp_req *deferfcp;
|
|
unsigned long flags;
|
|
|
|
/* validate iu, so the connection id can be used to find the queue */
|
|
if ((cmdiubuf_len != sizeof(*cmdiu)) ||
|
|
(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
|
|
(cmdiu->fc_id != NVME_CMD_FC_ID) ||
|
|
(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
|
|
return -EIO;
|
|
|
|
queue = nvmet_fc_find_target_queue(tgtport,
|
|
be64_to_cpu(cmdiu->connection_id));
|
|
if (!queue)
|
|
return -ENOTCONN;
|
|
|
|
/*
|
|
* note: reference taken by find_target_queue
|
|
* After successful fod allocation, the fod will inherit the
|
|
* ownership of that reference and will remove the reference
|
|
* when the fod is freed.
|
|
*/
|
|
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
|
|
fod = nvmet_fc_alloc_fcp_iod(queue);
|
|
if (fod) {
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
fcpreq->nvmet_fc_private = fod;
|
|
fod->fcpreq = fcpreq;
|
|
|
|
memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
|
|
|
|
nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!tgtport->ops->defer_rcv) {
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
/* release the queue lookup reference */
|
|
nvmet_fc_tgt_q_put(queue);
|
|
return -ENOENT;
|
|
}
|
|
|
|
deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
|
|
struct nvmet_fc_defer_fcp_req, req_list);
|
|
if (deferfcp) {
|
|
/* Just re-use one that was previously allocated */
|
|
list_del(&deferfcp->req_list);
|
|
} else {
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
/* Now we need to dynamically allocate one */
|
|
deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
|
|
if (!deferfcp) {
|
|
/* release the queue lookup reference */
|
|
nvmet_fc_tgt_q_put(queue);
|
|
return -ENOMEM;
|
|
}
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
}
|
|
|
|
/* For now, use rspaddr / rsplen to save payload information */
|
|
fcpreq->rspaddr = cmdiubuf;
|
|
fcpreq->rsplen = cmdiubuf_len;
|
|
deferfcp->fcp_req = fcpreq;
|
|
|
|
/* defer processing till a fod becomes available */
|
|
list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
|
|
|
|
/* NOTE: the queue lookup reference is still valid */
|
|
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
|
|
return -EOVERFLOW;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
|
|
|
|
/**
|
|
* nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
|
|
* upon the reception of an ABTS for a FCP command
|
|
*
|
|
* Notify the transport that an ABTS has been received for a FCP command
|
|
* that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
|
|
* LLDD believes the command is still being worked on
|
|
* (template_ops->fcp_req_release() has not been called).
|
|
*
|
|
* The transport will wait for any outstanding work (an op to the LLDD,
|
|
* which the lldd should complete with error due to the ABTS; or the
|
|
* completion from the nvmet layer of the nvme command), then will
|
|
* stop processing and call the nvmet_fc_rcv_fcp_req() callback to
|
|
* return the i/o context to the LLDD. The LLDD may send the BA_ACC
|
|
* to the ABTS either after return from this function (assuming any
|
|
* outstanding op work has been terminated) or upon the callback being
|
|
* called.
|
|
*
|
|
* @target_port: pointer to the (registered) target port the FCP CMD IU
|
|
* was received on.
|
|
* @fcpreq: pointer to the fcpreq request structure that corresponds
|
|
* to the exchange that received the ABTS.
|
|
*/
|
|
void
|
|
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
|
|
struct nvmefc_tgt_fcp_req *fcpreq)
|
|
{
|
|
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
|
|
struct nvmet_fc_tgt_queue *queue;
|
|
unsigned long flags;
|
|
|
|
if (!fod || fod->fcpreq != fcpreq)
|
|
/* job appears to have already completed, ignore abort */
|
|
return;
|
|
|
|
queue = fod->queue;
|
|
|
|
spin_lock_irqsave(&queue->qlock, flags);
|
|
if (fod->active) {
|
|
/*
|
|
* mark as abort. The abort handler, invoked upon completion
|
|
* of any work, will detect the aborted status and do the
|
|
* callback.
|
|
*/
|
|
spin_lock(&fod->flock);
|
|
fod->abort = true;
|
|
fod->aborted = true;
|
|
spin_unlock(&fod->flock);
|
|
}
|
|
spin_unlock_irqrestore(&queue->qlock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
|
|
|
|
|
|
struct nvmet_fc_traddr {
|
|
u64 nn;
|
|
u64 pn;
|
|
};
|
|
|
|
static int
|
|
__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
|
|
{
|
|
u64 token64;
|
|
|
|
if (match_u64(sstr, &token64))
|
|
return -EINVAL;
|
|
*val = token64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine validates and extracts the WWN's from the TRADDR string.
|
|
* As kernel parsers need the 0x to determine number base, universally
|
|
* build string to parse with 0x prefix before parsing name strings.
|
|
*/
|
|
static int
|
|
nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
|
|
{
|
|
char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
|
|
substring_t wwn = { name, &name[sizeof(name)-1] };
|
|
int nnoffset, pnoffset;
|
|
|
|
/* validate if string is one of the 2 allowed formats */
|
|
if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
|
|
!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
|
|
!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
|
|
"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
|
|
nnoffset = NVME_FC_TRADDR_OXNNLEN;
|
|
pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
|
|
NVME_FC_TRADDR_OXNNLEN;
|
|
} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
|
|
!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
|
|
!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
|
|
"pn-", NVME_FC_TRADDR_NNLEN))) {
|
|
nnoffset = NVME_FC_TRADDR_NNLEN;
|
|
pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
|
|
} else
|
|
goto out_einval;
|
|
|
|
name[0] = '0';
|
|
name[1] = 'x';
|
|
name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
|
|
|
|
memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
|
|
if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
|
|
goto out_einval;
|
|
|
|
memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
|
|
if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
|
|
goto out_einval;
|
|
|
|
return 0;
|
|
|
|
out_einval:
|
|
pr_warn("%s: bad traddr string\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
nvmet_fc_add_port(struct nvmet_port *port)
|
|
{
|
|
struct nvmet_fc_tgtport *tgtport;
|
|
struct nvmet_fc_port_entry *pe;
|
|
struct nvmet_fc_traddr traddr = { 0L, 0L };
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* validate the address info */
|
|
if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
|
|
(port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
|
|
return -EINVAL;
|
|
|
|
/* map the traddr address info to a target port */
|
|
|
|
ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
|
|
sizeof(port->disc_addr.traddr));
|
|
if (ret)
|
|
return ret;
|
|
|
|
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
|
|
if (!pe)
|
|
return -ENOMEM;
|
|
|
|
ret = -ENXIO;
|
|
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
|
|
list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
|
|
if ((tgtport->fc_target_port.node_name == traddr.nn) &&
|
|
(tgtport->fc_target_port.port_name == traddr.pn)) {
|
|
/* a FC port can only be 1 nvmet port id */
|
|
if (!tgtport->pe) {
|
|
nvmet_fc_portentry_bind(tgtport, pe, port);
|
|
ret = 0;
|
|
} else
|
|
ret = -EALREADY;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
|
|
|
|
if (ret)
|
|
kfree(pe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_remove_port(struct nvmet_port *port)
|
|
{
|
|
struct nvmet_fc_port_entry *pe = port->priv;
|
|
|
|
nvmet_fc_portentry_unbind(pe);
|
|
|
|
kfree(pe);
|
|
}
|
|
|
|
static void
|
|
nvmet_fc_discovery_chg(struct nvmet_port *port)
|
|
{
|
|
struct nvmet_fc_port_entry *pe = port->priv;
|
|
struct nvmet_fc_tgtport *tgtport = pe->tgtport;
|
|
|
|
if (tgtport && tgtport->ops->discovery_event)
|
|
tgtport->ops->discovery_event(&tgtport->fc_target_port);
|
|
}
|
|
|
|
static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
|
|
.owner = THIS_MODULE,
|
|
.type = NVMF_TRTYPE_FC,
|
|
.msdbd = 1,
|
|
.add_port = nvmet_fc_add_port,
|
|
.remove_port = nvmet_fc_remove_port,
|
|
.queue_response = nvmet_fc_fcp_nvme_cmd_done,
|
|
.delete_ctrl = nvmet_fc_delete_ctrl,
|
|
.discovery_chg = nvmet_fc_discovery_chg,
|
|
};
|
|
|
|
static int __init nvmet_fc_init_module(void)
|
|
{
|
|
return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
|
|
}
|
|
|
|
static void __exit nvmet_fc_exit_module(void)
|
|
{
|
|
/* sanity check - all lports should be removed */
|
|
if (!list_empty(&nvmet_fc_target_list))
|
|
pr_warn("%s: targetport list not empty\n", __func__);
|
|
|
|
nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
|
|
|
|
ida_destroy(&nvmet_fc_tgtport_cnt);
|
|
}
|
|
|
|
module_init(nvmet_fc_init_module);
|
|
module_exit(nvmet_fc_exit_module);
|
|
|
|
MODULE_LICENSE("GPL v2");
|