linux/drivers/clk/bcm/clk-bcm2835.c

1576 lines
42 KiB
C

/*
* Copyright (C) 2010,2015 Broadcom
* Copyright (C) 2012 Stephen Warren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
*
* The clock tree on the 2835 has several levels. There's a root
* oscillator running at 19.2Mhz. After the oscillator there are 5
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
* and "HDMI displays". Those 5 PLLs each can divide their output to
* produce up to 4 channels. Finally, there is the level of clocks to
* be consumed by other hardware components (like "H264" or "HDMI
* state machine"), which divide off of some subset of the PLL
* channels.
*
* All of the clocks in the tree are exposed in the DT, because the DT
* may want to make assignments of the final layer of clocks to the
* PLL channels, and some components of the hardware will actually
* skip layers of the tree (for example, the pixel clock comes
* directly from the PLLH PIX channel without using a CM_*CTL clock
* generator).
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/bcm2835.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>
#define CM_PASSWORD 0x5a000000
#define CM_GNRICCTL 0x000
#define CM_GNRICDIV 0x004
# define CM_DIV_FRAC_BITS 12
#define CM_VPUCTL 0x008
#define CM_VPUDIV 0x00c
#define CM_SYSCTL 0x010
#define CM_SYSDIV 0x014
#define CM_PERIACTL 0x018
#define CM_PERIADIV 0x01c
#define CM_PERIICTL 0x020
#define CM_PERIIDIV 0x024
#define CM_H264CTL 0x028
#define CM_H264DIV 0x02c
#define CM_ISPCTL 0x030
#define CM_ISPDIV 0x034
#define CM_V3DCTL 0x038
#define CM_V3DDIV 0x03c
#define CM_CAM0CTL 0x040
#define CM_CAM0DIV 0x044
#define CM_CAM1CTL 0x048
#define CM_CAM1DIV 0x04c
#define CM_CCP2CTL 0x050
#define CM_CCP2DIV 0x054
#define CM_DSI0ECTL 0x058
#define CM_DSI0EDIV 0x05c
#define CM_DSI0PCTL 0x060
#define CM_DSI0PDIV 0x064
#define CM_DPICTL 0x068
#define CM_DPIDIV 0x06c
#define CM_GP0CTL 0x070
#define CM_GP0DIV 0x074
#define CM_GP1CTL 0x078
#define CM_GP1DIV 0x07c
#define CM_GP2CTL 0x080
#define CM_GP2DIV 0x084
#define CM_HSMCTL 0x088
#define CM_HSMDIV 0x08c
#define CM_OTPCTL 0x090
#define CM_OTPDIV 0x094
#define CM_PWMCTL 0x0a0
#define CM_PWMDIV 0x0a4
#define CM_SMICTL 0x0b0
#define CM_SMIDIV 0x0b4
#define CM_TSENSCTL 0x0e0
#define CM_TSENSDIV 0x0e4
#define CM_TIMERCTL 0x0e8
#define CM_TIMERDIV 0x0ec
#define CM_UARTCTL 0x0f0
#define CM_UARTDIV 0x0f4
#define CM_VECCTL 0x0f8
#define CM_VECDIV 0x0fc
#define CM_PULSECTL 0x190
#define CM_PULSEDIV 0x194
#define CM_SDCCTL 0x1a8
#define CM_SDCDIV 0x1ac
#define CM_ARMCTL 0x1b0
#define CM_EMMCCTL 0x1c0
#define CM_EMMCDIV 0x1c4
/* General bits for the CM_*CTL regs */
# define CM_ENABLE BIT(4)
# define CM_KILL BIT(5)
# define CM_GATE_BIT 6
# define CM_GATE BIT(CM_GATE_BIT)
# define CM_BUSY BIT(7)
# define CM_BUSYD BIT(8)
# define CM_SRC_SHIFT 0
# define CM_SRC_BITS 4
# define CM_SRC_MASK 0xf
# define CM_SRC_GND 0
# define CM_SRC_OSC 1
# define CM_SRC_TESTDEBUG0 2
# define CM_SRC_TESTDEBUG1 3
# define CM_SRC_PLLA_CORE 4
# define CM_SRC_PLLA_PER 4
# define CM_SRC_PLLC_CORE0 5
# define CM_SRC_PLLC_PER 5
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLD_CORE 6
# define CM_SRC_PLLD_PER 6
# define CM_SRC_PLLH_AUX 7
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLC_CORE2 9
#define CM_OSCCOUNT 0x100
#define CM_PLLA 0x104
# define CM_PLL_ANARST BIT(8)
# define CM_PLLA_HOLDPER BIT(7)
# define CM_PLLA_LOADPER BIT(6)
# define CM_PLLA_HOLDCORE BIT(5)
# define CM_PLLA_LOADCORE BIT(4)
# define CM_PLLA_HOLDCCP2 BIT(3)
# define CM_PLLA_LOADCCP2 BIT(2)
# define CM_PLLA_HOLDDSI0 BIT(1)
# define CM_PLLA_LOADDSI0 BIT(0)
#define CM_PLLC 0x108
# define CM_PLLC_HOLDPER BIT(7)
# define CM_PLLC_LOADPER BIT(6)
# define CM_PLLC_HOLDCORE2 BIT(5)
# define CM_PLLC_LOADCORE2 BIT(4)
# define CM_PLLC_HOLDCORE1 BIT(3)
# define CM_PLLC_LOADCORE1 BIT(2)
# define CM_PLLC_HOLDCORE0 BIT(1)
# define CM_PLLC_LOADCORE0 BIT(0)
#define CM_PLLD 0x10c
# define CM_PLLD_HOLDPER BIT(7)
# define CM_PLLD_LOADPER BIT(6)
# define CM_PLLD_HOLDCORE BIT(5)
# define CM_PLLD_LOADCORE BIT(4)
# define CM_PLLD_HOLDDSI1 BIT(3)
# define CM_PLLD_LOADDSI1 BIT(2)
# define CM_PLLD_HOLDDSI0 BIT(1)
# define CM_PLLD_LOADDSI0 BIT(0)
#define CM_PLLH 0x110
# define CM_PLLH_LOADRCAL BIT(2)
# define CM_PLLH_LOADAUX BIT(1)
# define CM_PLLH_LOADPIX BIT(0)
#define CM_LOCK 0x114
# define CM_LOCK_FLOCKH BIT(12)
# define CM_LOCK_FLOCKD BIT(11)
# define CM_LOCK_FLOCKC BIT(10)
# define CM_LOCK_FLOCKB BIT(9)
# define CM_LOCK_FLOCKA BIT(8)
#define CM_EVENT 0x118
#define CM_DSI1ECTL 0x158
#define CM_DSI1EDIV 0x15c
#define CM_DSI1PCTL 0x160
#define CM_DSI1PDIV 0x164
#define CM_DFTCTL 0x168
#define CM_DFTDIV 0x16c
#define CM_PLLB 0x170
# define CM_PLLB_HOLDARM BIT(1)
# define CM_PLLB_LOADARM BIT(0)
#define A2W_PLLA_CTRL 0x1100
#define A2W_PLLC_CTRL 0x1120
#define A2W_PLLD_CTRL 0x1140
#define A2W_PLLH_CTRL 0x1160
#define A2W_PLLB_CTRL 0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
# define A2W_PLL_CTRL_PWRDN BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT 12
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT 0
#define A2W_PLLA_ANA0 0x1010
#define A2W_PLLC_ANA0 0x1030
#define A2W_PLLD_ANA0 0x1050
#define A2W_PLLH_ANA0 0x1070
#define A2W_PLLB_ANA0 0x10f0
#define A2W_PLL_KA_SHIFT 7
#define A2W_PLL_KA_MASK GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT 19
#define A2W_PLL_KI_MASK GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT 15
#define A2W_PLL_KP_MASK GENMASK(18, 15)
#define A2W_PLLH_KA_SHIFT 19
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT 22
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT 0
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT 1
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
#define A2W_XOSC_CTRL 0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
#define A2W_PLLA_FRAC 0x1200
#define A2W_PLLC_FRAC 0x1220
#define A2W_PLLD_FRAC 0x1240
#define A2W_PLLH_FRAC 0x1260
#define A2W_PLLB_FRAC 0x12e0
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS 20
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
#define A2W_PLL_DIV_BITS 8
#define A2W_PLL_DIV_SHIFT 0
#define A2W_PLLA_DSI0 0x1300
#define A2W_PLLA_CORE 0x1400
#define A2W_PLLA_PER 0x1500
#define A2W_PLLA_CCP2 0x1600
#define A2W_PLLC_CORE2 0x1320
#define A2W_PLLC_CORE1 0x1420
#define A2W_PLLC_PER 0x1520
#define A2W_PLLC_CORE0 0x1620
#define A2W_PLLD_DSI0 0x1340
#define A2W_PLLD_CORE 0x1440
#define A2W_PLLD_PER 0x1540
#define A2W_PLLD_DSI1 0x1640
#define A2W_PLLH_AUX 0x1360
#define A2W_PLLH_RCAL 0x1460
#define A2W_PLLH_PIX 0x1560
#define A2W_PLLH_STS 0x1660
#define A2W_PLLH_CTRLR 0x1960
#define A2W_PLLH_FRACR 0x1a60
#define A2W_PLLH_AUXR 0x1b60
#define A2W_PLLH_RCALR 0x1c60
#define A2W_PLLH_PIXR 0x1d60
#define A2W_PLLH_STSR 0x1e60
#define A2W_PLLB_ARM 0x13e0
#define A2W_PLLB_SP0 0x14e0
#define A2W_PLLB_SP1 0x15e0
#define A2W_PLLB_SP2 0x16e0
#define LOCK_TIMEOUT_NS 100000000
#define BCM2835_MAX_FB_RATE 1750000000u
struct bcm2835_cprman {
struct device *dev;
void __iomem *regs;
spinlock_t regs_lock;
const char *osc_name;
struct clk_onecell_data onecell;
struct clk *clks[BCM2835_CLOCK_COUNT];
};
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
writel(CM_PASSWORD | val, cprman->regs + reg);
}
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
return readl(cprman->regs + reg);
}
/*
* These are fixed clocks. They're probably not all root clocks and it may
* be possible to turn them on and off but until this is mapped out better
* it's the only way they can be used.
*/
void __init bcm2835_init_clocks(void)
{
struct clk *clk;
int ret;
clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT,
126000000);
if (IS_ERR(clk))
pr_err("apb_pclk not registered\n");
clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT,
3000000);
if (IS_ERR(clk))
pr_err("uart0_pclk not registered\n");
ret = clk_register_clkdev(clk, NULL, "20201000.uart");
if (ret)
pr_err("uart0_pclk alias not registered\n");
clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT,
125000000);
if (IS_ERR(clk))
pr_err("uart1_pclk not registered\n");
ret = clk_register_clkdev(clk, NULL, "20215000.uart");
if (ret)
pr_err("uart1_pclk alias not registered\n");
}
struct bcm2835_pll_data {
const char *name;
u32 cm_ctrl_reg;
u32 a2w_ctrl_reg;
u32 frac_reg;
u32 ana_reg_base;
u32 reference_enable_mask;
/* Bit in CM_LOCK to indicate when the PLL has locked. */
u32 lock_mask;
const struct bcm2835_pll_ana_bits *ana;
unsigned long min_rate;
unsigned long max_rate;
/*
* Highest rate for the VCO before we have to use the
* pre-divide-by-2.
*/
unsigned long max_fb_rate;
};
struct bcm2835_pll_ana_bits {
u32 mask0;
u32 set0;
u32 mask1;
u32 set1;
u32 mask3;
u32 set3;
u32 fb_prediv_mask;
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
.mask0 = 0,
.set0 = 0,
.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
.mask3 = ~A2W_PLL_KA_MASK,
.set3 = (2 << A2W_PLL_KA_SHIFT),
.fb_prediv_mask = BIT(14),
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
.set1 = (6 << A2W_PLLH_KP_SHIFT),
.mask3 = 0,
.set3 = 0,
.fb_prediv_mask = BIT(11),
};
/*
* PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
* Port 2) transmitter clock.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_plla_data = {
.name = "plla",
.cm_ctrl_reg = CM_PLLA,
.a2w_ctrl_reg = A2W_PLLA_CTRL,
.frac_reg = A2W_PLLA_FRAC,
.ana_reg_base = A2W_PLLA_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
.lock_mask = CM_LOCK_FLOCKA,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/* PLLB is used for the ARM's clock. */
static const struct bcm2835_pll_data bcm2835_pllb_data = {
.name = "pllb",
.cm_ctrl_reg = CM_PLLB,
.a2w_ctrl_reg = A2W_PLLB_CTRL,
.frac_reg = A2W_PLLB_FRAC,
.ana_reg_base = A2W_PLLB_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
.lock_mask = CM_LOCK_FLOCKB,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLC is the core PLL, used to drive the core VPU clock.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_pllc_data = {
.name = "pllc",
.cm_ctrl_reg = CM_PLLC,
.a2w_ctrl_reg = A2W_PLLC_CTRL,
.frac_reg = A2W_PLLC_FRAC,
.ana_reg_base = A2W_PLLC_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKC,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLD is the display PLL, used to drive DSI display panels.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_plld_data = {
.name = "plld",
.cm_ctrl_reg = CM_PLLD,
.a2w_ctrl_reg = A2W_PLLD_CTRL,
.frac_reg = A2W_PLLD_FRAC,
.ana_reg_base = A2W_PLLD_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
.lock_mask = CM_LOCK_FLOCKD,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLH is used to supply the pixel clock or the AUX clock for the TV
* encoder.
*
* It is in the HDMI power domain.
*/
static const struct bcm2835_pll_data bcm2835_pllh_data = {
"pllh",
.cm_ctrl_reg = CM_PLLH,
.a2w_ctrl_reg = A2W_PLLH_CTRL,
.frac_reg = A2W_PLLH_FRAC,
.ana_reg_base = A2W_PLLH_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKH,
.ana = &bcm2835_ana_pllh,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
struct bcm2835_pll_divider_data {
const char *name;
const struct bcm2835_pll_data *source_pll;
u32 cm_reg;
u32 a2w_reg;
u32 load_mask;
u32 hold_mask;
u32 fixed_divider;
};
static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
.name = "plla_core",
.source_pll = &bcm2835_plla_data,
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_CORE,
.load_mask = CM_PLLA_LOADCORE,
.hold_mask = CM_PLLA_HOLDCORE,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
.name = "plla_per",
.source_pll = &bcm2835_plla_data,
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_PER,
.load_mask = CM_PLLA_LOADPER,
.hold_mask = CM_PLLA_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
.name = "pllb_arm",
.source_pll = &bcm2835_pllb_data,
.cm_reg = CM_PLLB,
.a2w_reg = A2W_PLLB_ARM,
.load_mask = CM_PLLB_LOADARM,
.hold_mask = CM_PLLB_HOLDARM,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
.name = "pllc_core0",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE0,
.load_mask = CM_PLLC_LOADCORE0,
.hold_mask = CM_PLLC_HOLDCORE0,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
.load_mask = CM_PLLC_LOADCORE1,
.hold_mask = CM_PLLC_HOLDCORE1,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
.name = "pllc_core2",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE2,
.load_mask = CM_PLLC_LOADCORE2,
.hold_mask = CM_PLLC_HOLDCORE2,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
.name = "pllc_per",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_PER,
.load_mask = CM_PLLC_LOADPER,
.hold_mask = CM_PLLC_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
.name = "plld_core",
.source_pll = &bcm2835_plld_data,
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_CORE,
.load_mask = CM_PLLD_LOADCORE,
.hold_mask = CM_PLLD_HOLDCORE,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
.name = "plld_per",
.source_pll = &bcm2835_plld_data,
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_PER,
.load_mask = CM_PLLD_LOADPER,
.hold_mask = CM_PLLD_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
.name = "pllh_rcal",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_RCAL,
.load_mask = CM_PLLH_LOADRCAL,
.hold_mask = 0,
.fixed_divider = 10,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
.name = "pllh_aux",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_AUX,
.load_mask = CM_PLLH_LOADAUX,
.hold_mask = 0,
.fixed_divider = 10,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
.name = "pllh_pix",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_PIX,
.load_mask = CM_PLLH_LOADPIX,
.hold_mask = 0,
.fixed_divider = 10,
};
struct bcm2835_clock_data {
const char *name;
const char *const *parents;
int num_mux_parents;
u32 ctl_reg;
u32 div_reg;
/* Number of integer bits in the divider */
u32 int_bits;
/* Number of fractional bits in the divider */
u32 frac_bits;
bool is_vpu_clock;
};
static const char *const bcm2835_clock_per_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_per",
"pllc_per",
"plld_per",
"pllh_aux",
};
static const char *const bcm2835_clock_vpu_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_core",
"pllc_core0",
"plld_core",
"pllh_aux",
"pllc_core1",
"pllc_core2",
};
static const char *const bcm2835_clock_osc_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1"
};
/*
* Used for a 1Mhz clock for the system clocksource, and also used by
* the watchdog timer and the camera pulse generator.
*/
static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
.name = "timer",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_TIMERCTL,
.div_reg = CM_TIMERDIV,
.int_bits = 6,
.frac_bits = 12,
};
/* One Time Programmable Memory clock. Maximum 10Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
.name = "otp",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_OTPCTL,
.div_reg = CM_OTPDIV,
.int_bits = 4,
.frac_bits = 0,
};
/*
* VPU clock. This doesn't have an enable bit, since it drives the
* bus for everything else, and is special so it doesn't need to be
* gated for rate changes. It is also known as "clk_audio" in various
* hardware documentation.
*/
static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
.name = "vpu",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_VPUCTL,
.div_reg = CM_VPUDIV,
.int_bits = 12,
.frac_bits = 8,
.is_vpu_clock = true,
};
static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
.name = "v3d",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_V3DCTL,
.div_reg = CM_V3DDIV,
.int_bits = 4,
.frac_bits = 8,
};
static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
.name = "isp",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_ISPCTL,
.div_reg = CM_ISPDIV,
.int_bits = 4,
.frac_bits = 8,
};
static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
.name = "h264",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_H264CTL,
.div_reg = CM_H264DIV,
.int_bits = 4,
.frac_bits = 8,
};
/* TV encoder clock. Only operating frequency is 108Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
.name = "vec",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_VECCTL,
.div_reg = CM_VECDIV,
.int_bits = 4,
.frac_bits = 0,
};
static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
.name = "uart",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_UARTCTL,
.div_reg = CM_UARTDIV,
.int_bits = 10,
.frac_bits = 12,
};
/* HDMI state machine */
static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
.name = "hsm",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_HSMCTL,
.div_reg = CM_HSMDIV,
.int_bits = 4,
.frac_bits = 8,
};
/*
* Secondary SDRAM clock. Used for low-voltage modes when the PLL in
* the SDRAM controller can't be used.
*/
static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
.name = "sdram",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_SDCCTL,
.div_reg = CM_SDCDIV,
.int_bits = 6,
.frac_bits = 0,
};
/* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
.name = "tsens",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_TSENSCTL,
.div_reg = CM_TSENSDIV,
.int_bits = 5,
.frac_bits = 0,
};
/* Arasan EMMC clock */
static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
.name = "emmc",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_EMMCCTL,
.div_reg = CM_EMMCDIV,
.int_bits = 4,
.frac_bits = 8,
};
struct bcm2835_pll {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_data *data;
};
static int bcm2835_pll_is_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
return cprman_read(cprman, data->a2w_ctrl_reg) &
A2W_PLL_CTRL_PRST_DISABLE;
}
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
unsigned long parent_rate,
u32 *ndiv, u32 *fdiv)
{
u64 div;
div = (u64)rate << A2W_PLL_FRAC_BITS;
do_div(div, parent_rate);
*ndiv = div >> A2W_PLL_FRAC_BITS;
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
u32 ndiv, u32 fdiv, u32 pdiv)
{
u64 rate;
if (pdiv == 0)
return 0;
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
do_div(rate, pdiv);
return rate >> A2W_PLL_FRAC_BITS;
}
static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 ndiv, fdiv;
bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
u32 ndiv, pdiv, fdiv;
bool using_prediv;
if (parent_rate == 0)
return 0;
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
data->ana->fb_prediv_mask;
if (using_prediv)
ndiv *= 2;
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}
static void bcm2835_pll_off(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
}
static int bcm2835_pll_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
ktime_t timeout;
/* Take the PLL out of reset. */
cprman_write(cprman, data->cm_ctrl_reg,
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
/* Wait for the PLL to lock. */
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(hw));
return -ETIMEDOUT;
}
cpu_relax();
}
return 0;
}
static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
int i;
/*
* ANA register setup is done as a series of writes to
* ANA3-ANA0, in that order. This lets us write all 4
* registers as a single cycle of the serdes interface (taking
* 100 xosc clocks), whereas if we were to update ana0, 1, and
* 3 individually through their partial-write registers, each
* would be their own serdes cycle.
*/
for (i = 3; i >= 0; i--)
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}
static int bcm2835_pll_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
u32 ndiv, fdiv, a2w_ctl;
u32 ana[4];
int i;
if (rate < data->min_rate || rate > data->max_rate) {
dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
clk_hw_get_name(hw), rate,
data->min_rate, data->max_rate);
return -EINVAL;
}
if (rate > data->max_fb_rate) {
use_fb_prediv = true;
rate /= 2;
} else {
use_fb_prediv = false;
}
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
for (i = 3; i >= 0; i--)
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
ana[0] &= ~data->ana->mask0;
ana[0] |= data->ana->set0;
ana[1] &= ~data->ana->mask1;
ana[1] |= data->ana->set1;
ana[3] &= ~data->ana->mask3;
ana[3] |= data->ana->set3;
if (was_using_prediv && !use_fb_prediv) {
ana[1] &= ~data->ana->fb_prediv_mask;
do_ana_setup_first = true;
} else if (!was_using_prediv && use_fb_prediv) {
ana[1] |= data->ana->fb_prediv_mask;
do_ana_setup_first = false;
} else {
do_ana_setup_first = true;
}
/* Unmask the reference clock from the oscillator. */
cprman_write(cprman, A2W_XOSC_CTRL,
cprman_read(cprman, A2W_XOSC_CTRL) |
data->reference_enable_mask);
if (do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
/* Set the PLL multiplier from the oscillator. */
cprman_write(cprman, data->frac_reg, fdiv);
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
if (!do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
return 0;
}
static const struct clk_ops bcm2835_pll_clk_ops = {
.is_prepared = bcm2835_pll_is_on,
.prepare = bcm2835_pll_on,
.unprepare = bcm2835_pll_off,
.recalc_rate = bcm2835_pll_get_rate,
.set_rate = bcm2835_pll_set_rate,
.round_rate = bcm2835_pll_round_rate,
};
struct bcm2835_pll_divider {
struct clk_divider div;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_divider_data *data;
};
static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_pll_divider, div.hw);
}
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}
static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
return clk_divider_ops.round_rate(hw, rate, parent_rate);
}
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
u32 div = cprman_read(cprman, data->a2w_reg);
div &= (1 << A2W_PLL_DIV_BITS) - 1;
if (div == 0)
div = 256;
return parent_rate / div;
}
static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
cprman_write(cprman, data->cm_reg,
(cprman_read(cprman, data->cm_reg) &
~data->load_mask) | data->hold_mask);
cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
}
static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
cprman_write(cprman, data->a2w_reg,
cprman_read(cprman, data->a2w_reg) &
~A2W_PLL_CHANNEL_DISABLE);
cprman_write(cprman, data->cm_reg,
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
return 0;
}
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
u32 cm;
int ret;
ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
if (ret)
return ret;
cm = cprman_read(cprman, data->cm_reg);
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
return 0;
}
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
.is_prepared = bcm2835_pll_divider_is_on,
.prepare = bcm2835_pll_divider_on,
.unprepare = bcm2835_pll_divider_off,
.recalc_rate = bcm2835_pll_divider_get_rate,
.set_rate = bcm2835_pll_divider_set_rate,
.round_rate = bcm2835_pll_divider_round_rate,
};
/*
* The CM dividers do fixed-point division, so we can't use the
* generic integer divider code like the PLL dividers do (and we can't
* fake it by having some fixed shifts preceding it in the clock tree,
* because we'd run out of bits in a 32-bit unsigned long).
*/
struct bcm2835_clock {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_clock_data *data;
};
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_clock, hw);
}
static int bcm2835_clock_is_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
const struct bcm2835_clock_data *data = clock->data;
u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0);
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
u32 div;
do_div(temp, rate);
div = temp;
/* Round and mask off the unused bits */
if (unused_frac_mask != 0) {
div += unused_frac_mask >> 1;
div &= ~unused_frac_mask;
}
/* Clamp to the limits. */
div = max(div, unused_frac_mask + 1);
div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
CM_DIV_FRAC_BITS - data->frac_bits));
return div;
}
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
unsigned long parent_rate,
u32 div)
{
const struct bcm2835_clock_data *data = clock->data;
u64 temp;
/*
* The divisor is a 12.12 fixed point field, but only some of
* the bits are populated in any given clock.
*/
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
if (div == 0)
return 0;
temp = (u64)parent_rate << data->frac_bits;
do_div(temp, div);
return temp;
}
static long bcm2835_clock_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate);
return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div);
}
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div = cprman_read(cprman, data->div_reg);
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(&clock->hw));
return;
}
cpu_relax();
}
}
static void bcm2835_clock_off(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
spin_unlock(&cprman->regs_lock);
/* BUSY will remain high until the divider completes its cycle. */
bcm2835_clock_wait_busy(clock);
}
static int bcm2835_clock_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) |
CM_ENABLE |
CM_GATE);
spin_unlock(&cprman->regs_lock);
return 0;
}
static int bcm2835_clock_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
cprman_write(cprman, data->div_reg, div);
return 0;
}
static const struct clk_ops bcm2835_clock_clk_ops = {
.is_prepared = bcm2835_clock_is_on,
.prepare = bcm2835_clock_on,
.unprepare = bcm2835_clock_off,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.round_rate = bcm2835_clock_round_rate,
};
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
return true;
}
/*
* The VPU clock can never be disabled (it doesn't have an ENABLE
* bit), so it gets its own set of clock ops.
*/
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
.is_prepared = bcm2835_vpu_clock_is_on,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.round_rate = bcm2835_clock_round_rate,
};
static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_data *data)
{
struct bcm2835_pll *pll;
struct clk_init_data init;
memset(&init, 0, sizeof(init));
/* All of the PLLs derive from the external oscillator. */
init.parent_names = &cprman->osc_name;
init.num_parents = 1;
init.name = data->name;
init.ops = &bcm2835_pll_clk_ops;
init.flags = CLK_IGNORE_UNUSED;
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return NULL;
pll->cprman = cprman;
pll->data = data;
pll->hw.init = &init;
return devm_clk_register(cprman->dev, &pll->hw);
}
static struct clk *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_divider_data *data)
{
struct bcm2835_pll_divider *divider;
struct clk_init_data init;
struct clk *clk;
const char *divider_name;
if (data->fixed_divider != 1) {
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
"%s_prediv", data->name);
if (!divider_name)
return NULL;
} else {
divider_name = data->name;
}
memset(&init, 0, sizeof(init));
init.parent_names = &data->source_pll->name;
init.num_parents = 1;
init.name = divider_name;
init.ops = &bcm2835_pll_divider_clk_ops;
init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
if (!divider)
return NULL;
divider->div.reg = cprman->regs + data->a2w_reg;
divider->div.shift = A2W_PLL_DIV_SHIFT;
divider->div.width = A2W_PLL_DIV_BITS;
divider->div.flags = 0;
divider->div.lock = &cprman->regs_lock;
divider->div.hw.init = &init;
divider->div.table = NULL;
divider->cprman = cprman;
divider->data = data;
clk = devm_clk_register(cprman->dev, &divider->div.hw);
if (IS_ERR(clk))
return clk;
/*
* PLLH's channels have a fixed divide by 10 afterwards, which
* is what our consumers are actually using.
*/
if (data->fixed_divider != 1) {
return clk_register_fixed_factor(cprman->dev, data->name,
divider_name,
CLK_SET_RATE_PARENT,
1,
data->fixed_divider);
}
return clk;
}
static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
const struct bcm2835_clock_data *data)
{
struct bcm2835_clock *clock;
struct clk_init_data init;
const char *parent;
/*
* Most of the clock generators have a mux field, so we
* instantiate a generic mux as our parent to handle it.
*/
if (data->num_mux_parents) {
const char *parents[1 << CM_SRC_BITS];
int i;
parent = devm_kasprintf(cprman->dev, GFP_KERNEL,
"mux_%s", data->name);
if (!parent)
return NULL;
/*
* Replace our "xosc" references with the oscillator's
* actual name.
*/
for (i = 0; i < data->num_mux_parents; i++) {
if (strcmp(data->parents[i], "xosc") == 0)
parents[i] = cprman->osc_name;
else
parents[i] = data->parents[i];
}
clk_register_mux(cprman->dev, parent,
parents, data->num_mux_parents,
CLK_SET_RATE_PARENT,
cprman->regs + data->ctl_reg,
CM_SRC_SHIFT, CM_SRC_BITS,
0, &cprman->regs_lock);
} else {
parent = data->parents[0];
}
memset(&init, 0, sizeof(init));
init.parent_names = &parent;
init.num_parents = 1;
init.name = data->name;
init.flags = CLK_IGNORE_UNUSED;
if (data->is_vpu_clock) {
init.ops = &bcm2835_vpu_clock_clk_ops;
} else {
init.ops = &bcm2835_clock_clk_ops;
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
}
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
if (!clock)
return NULL;
clock->cprman = cprman;
clock->data = data;
clock->hw.init = &init;
return devm_clk_register(cprman->dev, &clock->hw);
}
static int bcm2835_clk_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct clk **clks;
struct bcm2835_cprman *cprman;
struct resource *res;
cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
if (!cprman)
return -ENOMEM;
spin_lock_init(&cprman->regs_lock);
cprman->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cprman->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(cprman->regs))
return PTR_ERR(cprman->regs);
cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
if (!cprman->osc_name)
return -ENODEV;
platform_set_drvdata(pdev, cprman);
cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
cprman->onecell.clks = cprman->clks;
clks = cprman->clks;
clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);
clks[BCM2835_PLLA_CORE] =
bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
clks[BCM2835_PLLA_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
clks[BCM2835_PLLC_CORE0] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
clks[BCM2835_PLLC_CORE1] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
clks[BCM2835_PLLC_CORE2] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
clks[BCM2835_PLLC_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
clks[BCM2835_PLLD_CORE] =
bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
clks[BCM2835_PLLD_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
clks[BCM2835_PLLH_RCAL] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
clks[BCM2835_PLLH_AUX] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
clks[BCM2835_PLLH_PIX] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);
clks[BCM2835_CLOCK_TIMER] =
bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
clks[BCM2835_CLOCK_OTP] =
bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
clks[BCM2835_CLOCK_TSENS] =
bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
clks[BCM2835_CLOCK_VPU] =
bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
clks[BCM2835_CLOCK_V3D] =
bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
clks[BCM2835_CLOCK_ISP] =
bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
clks[BCM2835_CLOCK_H264] =
bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
clks[BCM2835_CLOCK_V3D] =
bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
clks[BCM2835_CLOCK_SDRAM] =
bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
clks[BCM2835_CLOCK_UART] =
bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
clks[BCM2835_CLOCK_VEC] =
bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
clks[BCM2835_CLOCK_HSM] =
bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
clks[BCM2835_CLOCK_EMMC] =
bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);
/*
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
* you have the debug bit set in the power manager, which we
* don't bother exposing) are individual gates off of the
* non-stop vpu clock.
*/
clks[BCM2835_CLOCK_PERI_IMAGE] =
clk_register_gate(dev, "peri_image", "vpu",
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
cprman->regs + CM_PERIICTL, CM_GATE_BIT,
0, &cprman->regs_lock);
return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
&cprman->onecell);
}
static const struct of_device_id bcm2835_clk_of_match[] = {
{ .compatible = "brcm,bcm2835-cprman", },
{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
static struct platform_driver bcm2835_clk_driver = {
.driver = {
.name = "bcm2835-clk",
.of_match_table = bcm2835_clk_of_match,
},
.probe = bcm2835_clk_probe,
};
builtin_platform_driver(bcm2835_clk_driver);
MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");