linux/arch/mips/sgi-ip27/ip27-nmi.c

246 lines
5.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/nodemask.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/atomic.h>
#include <asm/sn/types.h>
#include <asm/sn/addrs.h>
#include <asm/sn/nmi.h>
#include <asm/sn/arch.h>
#include <asm/sn/sn0/hub.h>
#if 0
#define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n)
#else
#define NODE_NUM_CPUS(n) CPUS_PER_NODE
#endif
#define CNODEID_NONE (cnodeid_t)-1
typedef unsigned long machreg_t;
static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED;
/*
* Let's see what else we need to do here. Set up sp, gp?
*/
void nmi_dump(void)
{
void cont_nmi_dump(void);
cont_nmi_dump();
}
void install_cpu_nmi_handler(int slice)
{
nmi_t *nmi_addr;
nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
if (nmi_addr->call_addr)
return;
nmi_addr->magic = NMI_MAGIC;
nmi_addr->call_addr = (void *)nmi_dump;
nmi_addr->call_addr_c =
(void *)(~((unsigned long)(nmi_addr->call_addr)));
nmi_addr->call_parm = 0;
}
/*
* Copy the cpu registers which have been saved in the IP27prom format
* into the eframe format for the node under consideration.
*/
void nmi_cpu_eframe_save(nasid_t nasid, int slice)
{
struct reg_struct *nr;
int i;
/* Get the pointer to the current cpu's register set. */
nr = (struct reg_struct *)
(TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
slice * IP27_NMI_KREGS_CPU_SIZE);
pr_emerg("NMI nasid %d: slice %d\n", nasid, slice);
/*
* Saved main processor registers
*/
for (i = 0; i < 32; ) {
if ((i % 4) == 0)
pr_emerg("$%2d :", i);
pr_cont(" %016lx", nr->gpr[i]);
i++;
if ((i % 4) == 0)
pr_cont("\n");
}
pr_emerg("Hi : (value lost)\n");
pr_emerg("Lo : (value lost)\n");
/*
* Saved cp0 registers
*/
pr_emerg("epc : %016lx %pS\n", nr->epc, (void *)nr->epc);
pr_emerg("%s\n", print_tainted());
pr_emerg("ErrEPC: %016lx %pS\n", nr->error_epc, (void *)nr->error_epc);
pr_emerg("ra : %016lx %pS\n", nr->gpr[31], (void *)nr->gpr[31]);
pr_emerg("Status: %08lx ", nr->sr);
if (nr->sr & ST0_KX)
pr_cont("KX ");
if (nr->sr & ST0_SX)
pr_cont("SX ");
if (nr->sr & ST0_UX)
pr_cont("UX ");
switch (nr->sr & ST0_KSU) {
case KSU_USER:
pr_cont("USER ");
break;
case KSU_SUPERVISOR:
pr_cont("SUPERVISOR ");
break;
case KSU_KERNEL:
pr_cont("KERNEL ");
break;
default:
pr_cont("BAD_MODE ");
break;
}
if (nr->sr & ST0_ERL)
pr_cont("ERL ");
if (nr->sr & ST0_EXL)
pr_cont("EXL ");
if (nr->sr & ST0_IE)
pr_cont("IE ");
pr_cont("\n");
pr_emerg("Cause : %08lx\n", nr->cause);
pr_emerg("PrId : %08x\n", read_c0_prid());
pr_emerg("BadVA : %016lx\n", nr->badva);
pr_emerg("CErr : %016lx\n", nr->cache_err);
pr_emerg("NMI_SR: %016lx\n", nr->nmi_sr);
pr_emerg("\n");
}
void nmi_dump_hub_irq(nasid_t nasid, int slice)
{
u64 mask0, mask1, pend0, pend1;
if (slice == 0) { /* Slice A */
mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
} else { /* Slice B */
mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
}
pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
pr_emerg("PI_INT_MASK0: %16llx PI_INT_MASK1: %16llx\n", mask0, mask1);
pr_emerg("PI_INT_PEND0: %16llx PI_INT_PEND1: %16llx\n", pend0, pend1);
pr_emerg("\n\n");
}
/*
* Copy the cpu registers which have been saved in the IP27prom format
* into the eframe format for the node under consideration.
*/
void nmi_node_eframe_save(cnodeid_t cnode)
{
nasid_t nasid;
int slice;
/* Make sure that we have a valid node */
if (cnode == CNODEID_NONE)
return;
nasid = COMPACT_TO_NASID_NODEID(cnode);
if (nasid == INVALID_NASID)
return;
/* Save the registers into eframe for each cpu */
for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
nmi_cpu_eframe_save(nasid, slice);
nmi_dump_hub_irq(nasid, slice);
}
}
/*
* Save the nmi cpu registers for all cpus in the system.
*/
void
nmi_eframes_save(void)
{
cnodeid_t cnode;
for_each_online_node(cnode)
nmi_node_eframe_save(cnode);
}
void
cont_nmi_dump(void)
{
#ifndef REAL_NMI_SIGNAL
static atomic_t nmied_cpus = ATOMIC_INIT(0);
atomic_inc(&nmied_cpus);
#endif
/*
* Only allow 1 cpu to proceed
*/
arch_spin_lock(&nmi_lock);
#ifdef REAL_NMI_SIGNAL
/*
* Wait up to 15 seconds for the other cpus to respond to the NMI.
* If a cpu has not responded after 10 sec, send it 1 additional NMI.
* This is for 2 reasons:
* - sometimes a MMSC fail to NMI all cpus.
* - on 512p SN0 system, the MMSC will only send NMIs to
* half the cpus. Unfortunately, we don't know which cpus may be
* NMIed - it depends on how the site chooses to configure.
*
* Note: it has been measure that it takes the MMSC up to 2.3 secs to
* send NMIs to all cpus on a 256p system.
*/
for (i=0; i < 1500; i++) {
for_each_online_node(node)
if (NODEPDA(node)->dump_count == 0)
break;
if (node == MAX_NUMNODES)
break;
if (i == 1000) {
for_each_online_node(node)
if (NODEPDA(node)->dump_count == 0) {
cpu = cpumask_first(cpumask_of_node(node));
for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
CPUMASK_SETB(nmied_cpus, cpu);
/*
* cputonasid, cputoslice
* needs kernel cpuid
*/
SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
}
}
}
udelay(10000);
}
#else
while (atomic_read(&nmied_cpus) != num_online_cpus());
#endif
/*
* Save the nmi cpu registers for all cpu in the eframe format.
*/
nmi_eframes_save();
LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);
}