mirror of https://gitee.com/openkylin/linux.git
1154 lines
30 KiB
C
1154 lines
30 KiB
C
/*
|
|
* Copyright 2011 (c) Oracle Corp.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sub license,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
*/
|
|
|
|
/*
|
|
* A simple DMA pool losely based on dmapool.c. It has certain advantages
|
|
* over the DMA pools:
|
|
* - Pool collects resently freed pages for reuse (and hooks up to
|
|
* the shrinker).
|
|
* - Tracks currently in use pages
|
|
* - Tracks whether the page is UC, WB or cached (and reverts to WB
|
|
* when freed).
|
|
*/
|
|
|
|
#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
|
|
#define pr_fmt(fmt) "[TTM] " fmt
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/list.h>
|
|
#include <linux/seq_file.h> /* for seq_printf */
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kthread.h>
|
|
#include <drm/ttm/ttm_bo_driver.h>
|
|
#include <drm/ttm/ttm_page_alloc.h>
|
|
#ifdef TTM_HAS_AGP
|
|
#include <asm/agp.h>
|
|
#endif
|
|
|
|
#define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
|
|
#define SMALL_ALLOCATION 4
|
|
#define FREE_ALL_PAGES (~0U)
|
|
/* times are in msecs */
|
|
#define IS_UNDEFINED (0)
|
|
#define IS_WC (1<<1)
|
|
#define IS_UC (1<<2)
|
|
#define IS_CACHED (1<<3)
|
|
#define IS_DMA32 (1<<4)
|
|
|
|
enum pool_type {
|
|
POOL_IS_UNDEFINED,
|
|
POOL_IS_WC = IS_WC,
|
|
POOL_IS_UC = IS_UC,
|
|
POOL_IS_CACHED = IS_CACHED,
|
|
POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
|
|
POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
|
|
POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
|
|
};
|
|
/*
|
|
* The pool structure. There are usually six pools:
|
|
* - generic (not restricted to DMA32):
|
|
* - write combined, uncached, cached.
|
|
* - dma32 (up to 2^32 - so up 4GB):
|
|
* - write combined, uncached, cached.
|
|
* for each 'struct device'. The 'cached' is for pages that are actively used.
|
|
* The other ones can be shrunk by the shrinker API if neccessary.
|
|
* @pools: The 'struct device->dma_pools' link.
|
|
* @type: Type of the pool
|
|
* @lock: Protects the inuse_list and free_list from concurrnet access. Must be
|
|
* used with irqsave/irqrestore variants because pool allocator maybe called
|
|
* from delayed work.
|
|
* @inuse_list: Pool of pages that are in use. The order is very important and
|
|
* it is in the order that the TTM pages that are put back are in.
|
|
* @free_list: Pool of pages that are free to be used. No order requirements.
|
|
* @dev: The device that is associated with these pools.
|
|
* @size: Size used during DMA allocation.
|
|
* @npages_free: Count of available pages for re-use.
|
|
* @npages_in_use: Count of pages that are in use.
|
|
* @nfrees: Stats when pool is shrinking.
|
|
* @nrefills: Stats when the pool is grown.
|
|
* @gfp_flags: Flags to pass for alloc_page.
|
|
* @name: Name of the pool.
|
|
* @dev_name: Name derieved from dev - similar to how dev_info works.
|
|
* Used during shutdown as the dev_info during release is unavailable.
|
|
*/
|
|
struct dma_pool {
|
|
struct list_head pools; /* The 'struct device->dma_pools link */
|
|
enum pool_type type;
|
|
spinlock_t lock;
|
|
struct list_head inuse_list;
|
|
struct list_head free_list;
|
|
struct device *dev;
|
|
unsigned size;
|
|
unsigned npages_free;
|
|
unsigned npages_in_use;
|
|
unsigned long nfrees; /* Stats when shrunk. */
|
|
unsigned long nrefills; /* Stats when grown. */
|
|
gfp_t gfp_flags;
|
|
char name[13]; /* "cached dma32" */
|
|
char dev_name[64]; /* Constructed from dev */
|
|
};
|
|
|
|
/*
|
|
* The accounting page keeping track of the allocated page along with
|
|
* the DMA address.
|
|
* @page_list: The link to the 'page_list' in 'struct dma_pool'.
|
|
* @vaddr: The virtual address of the page
|
|
* @dma: The bus address of the page. If the page is not allocated
|
|
* via the DMA API, it will be -1.
|
|
*/
|
|
struct dma_page {
|
|
struct list_head page_list;
|
|
void *vaddr;
|
|
struct page *p;
|
|
dma_addr_t dma;
|
|
};
|
|
|
|
/*
|
|
* Limits for the pool. They are handled without locks because only place where
|
|
* they may change is in sysfs store. They won't have immediate effect anyway
|
|
* so forcing serialization to access them is pointless.
|
|
*/
|
|
|
|
struct ttm_pool_opts {
|
|
unsigned alloc_size;
|
|
unsigned max_size;
|
|
unsigned small;
|
|
};
|
|
|
|
/*
|
|
* Contains the list of all of the 'struct device' and their corresponding
|
|
* DMA pools. Guarded by _mutex->lock.
|
|
* @pools: The link to 'struct ttm_pool_manager->pools'
|
|
* @dev: The 'struct device' associated with the 'pool'
|
|
* @pool: The 'struct dma_pool' associated with the 'dev'
|
|
*/
|
|
struct device_pools {
|
|
struct list_head pools;
|
|
struct device *dev;
|
|
struct dma_pool *pool;
|
|
};
|
|
|
|
/*
|
|
* struct ttm_pool_manager - Holds memory pools for fast allocation
|
|
*
|
|
* @lock: Lock used when adding/removing from pools
|
|
* @pools: List of 'struct device' and 'struct dma_pool' tuples.
|
|
* @options: Limits for the pool.
|
|
* @npools: Total amount of pools in existence.
|
|
* @shrinker: The structure used by [un|]register_shrinker
|
|
*/
|
|
struct ttm_pool_manager {
|
|
struct mutex lock;
|
|
struct list_head pools;
|
|
struct ttm_pool_opts options;
|
|
unsigned npools;
|
|
struct shrinker mm_shrink;
|
|
struct kobject kobj;
|
|
};
|
|
|
|
static struct ttm_pool_manager *_manager;
|
|
|
|
static struct attribute ttm_page_pool_max = {
|
|
.name = "pool_max_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_small = {
|
|
.name = "pool_small_allocation",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
static struct attribute ttm_page_pool_alloc_size = {
|
|
.name = "pool_allocation_size",
|
|
.mode = S_IRUGO | S_IWUSR
|
|
};
|
|
|
|
static struct attribute *ttm_pool_attrs[] = {
|
|
&ttm_page_pool_max,
|
|
&ttm_page_pool_small,
|
|
&ttm_page_pool_alloc_size,
|
|
NULL
|
|
};
|
|
|
|
static void ttm_pool_kobj_release(struct kobject *kobj)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
kfree(m);
|
|
}
|
|
|
|
static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
|
|
const char *buffer, size_t size)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
int chars;
|
|
unsigned val;
|
|
chars = sscanf(buffer, "%u", &val);
|
|
if (chars == 0)
|
|
return size;
|
|
|
|
/* Convert kb to number of pages */
|
|
val = val / (PAGE_SIZE >> 10);
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
m->options.max_size = val;
|
|
else if (attr == &ttm_page_pool_small)
|
|
m->options.small = val;
|
|
else if (attr == &ttm_page_pool_alloc_size) {
|
|
if (val > NUM_PAGES_TO_ALLOC*8) {
|
|
pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
return size;
|
|
} else if (val > NUM_PAGES_TO_ALLOC) {
|
|
pr_warn("Setting allocation size to larger than %lu is not recommended\n",
|
|
NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
|
|
}
|
|
m->options.alloc_size = val;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
struct ttm_pool_manager *m =
|
|
container_of(kobj, struct ttm_pool_manager, kobj);
|
|
unsigned val = 0;
|
|
|
|
if (attr == &ttm_page_pool_max)
|
|
val = m->options.max_size;
|
|
else if (attr == &ttm_page_pool_small)
|
|
val = m->options.small;
|
|
else if (attr == &ttm_page_pool_alloc_size)
|
|
val = m->options.alloc_size;
|
|
|
|
val = val * (PAGE_SIZE >> 10);
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%u\n", val);
|
|
}
|
|
|
|
static const struct sysfs_ops ttm_pool_sysfs_ops = {
|
|
.show = &ttm_pool_show,
|
|
.store = &ttm_pool_store,
|
|
};
|
|
|
|
static struct kobj_type ttm_pool_kobj_type = {
|
|
.release = &ttm_pool_kobj_release,
|
|
.sysfs_ops = &ttm_pool_sysfs_ops,
|
|
.default_attrs = ttm_pool_attrs,
|
|
};
|
|
|
|
#ifndef CONFIG_X86
|
|
static int set_pages_array_wb(struct page **pages, int addrinarray)
|
|
{
|
|
#ifdef TTM_HAS_AGP
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
unmap_page_from_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_wc(struct page **pages, int addrinarray)
|
|
{
|
|
#ifdef TTM_HAS_AGP
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int set_pages_array_uc(struct page **pages, int addrinarray)
|
|
{
|
|
#ifdef TTM_HAS_AGP
|
|
int i;
|
|
|
|
for (i = 0; i < addrinarray; i++)
|
|
map_page_into_agp(pages[i]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif /* for !CONFIG_X86 */
|
|
|
|
static int ttm_set_pages_caching(struct dma_pool *pool,
|
|
struct page **pages, unsigned cpages)
|
|
{
|
|
int r = 0;
|
|
/* Set page caching */
|
|
if (pool->type & IS_UC) {
|
|
r = set_pages_array_uc(pages, cpages);
|
|
if (r)
|
|
pr_err("%s: Failed to set %d pages to uc!\n",
|
|
pool->dev_name, cpages);
|
|
}
|
|
if (pool->type & IS_WC) {
|
|
r = set_pages_array_wc(pages, cpages);
|
|
if (r)
|
|
pr_err("%s: Failed to set %d pages to wc!\n",
|
|
pool->dev_name, cpages);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
|
|
{
|
|
dma_addr_t dma = d_page->dma;
|
|
dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
|
|
|
|
kfree(d_page);
|
|
d_page = NULL;
|
|
}
|
|
static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
|
|
{
|
|
struct dma_page *d_page;
|
|
|
|
d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
|
|
if (!d_page)
|
|
return NULL;
|
|
|
|
d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
|
|
&d_page->dma,
|
|
pool->gfp_flags);
|
|
if (d_page->vaddr)
|
|
d_page->p = virt_to_page(d_page->vaddr);
|
|
else {
|
|
kfree(d_page);
|
|
d_page = NULL;
|
|
}
|
|
return d_page;
|
|
}
|
|
static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
|
|
{
|
|
enum pool_type type = IS_UNDEFINED;
|
|
|
|
if (flags & TTM_PAGE_FLAG_DMA32)
|
|
type |= IS_DMA32;
|
|
if (cstate == tt_cached)
|
|
type |= IS_CACHED;
|
|
else if (cstate == tt_uncached)
|
|
type |= IS_UC;
|
|
else
|
|
type |= IS_WC;
|
|
|
|
return type;
|
|
}
|
|
|
|
static void ttm_pool_update_free_locked(struct dma_pool *pool,
|
|
unsigned freed_pages)
|
|
{
|
|
pool->npages_free -= freed_pages;
|
|
pool->nfrees += freed_pages;
|
|
|
|
}
|
|
|
|
/* set memory back to wb and free the pages. */
|
|
static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
|
|
struct page *pages[], unsigned npages)
|
|
{
|
|
struct dma_page *d_page, *tmp;
|
|
|
|
/* Don't set WB on WB page pool. */
|
|
if (npages && !(pool->type & IS_CACHED) &&
|
|
set_pages_array_wb(pages, npages))
|
|
pr_err("%s: Failed to set %d pages to wb!\n",
|
|
pool->dev_name, npages);
|
|
|
|
list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
|
|
list_del(&d_page->page_list);
|
|
__ttm_dma_free_page(pool, d_page);
|
|
}
|
|
}
|
|
|
|
static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
|
|
{
|
|
/* Don't set WB on WB page pool. */
|
|
if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
|
|
pr_err("%s: Failed to set %d pages to wb!\n",
|
|
pool->dev_name, 1);
|
|
|
|
list_del(&d_page->page_list);
|
|
__ttm_dma_free_page(pool, d_page);
|
|
}
|
|
|
|
/*
|
|
* Free pages from pool.
|
|
*
|
|
* To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
|
|
* number of pages in one go.
|
|
*
|
|
* @pool: to free the pages from
|
|
* @nr_free: If set to true will free all pages in pool
|
|
* @gfp: GFP flags.
|
|
**/
|
|
static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
|
|
gfp_t gfp)
|
|
{
|
|
unsigned long irq_flags;
|
|
struct dma_page *dma_p, *tmp;
|
|
struct page **pages_to_free;
|
|
struct list_head d_pages;
|
|
unsigned freed_pages = 0,
|
|
npages_to_free = nr_free;
|
|
|
|
if (NUM_PAGES_TO_ALLOC < nr_free)
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
#if 0
|
|
if (nr_free > 1) {
|
|
pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
|
|
pool->dev_name, pool->name, current->pid,
|
|
npages_to_free, nr_free);
|
|
}
|
|
#endif
|
|
pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), gfp);
|
|
|
|
if (!pages_to_free) {
|
|
pr_err("%s: Failed to allocate memory for pool free operation\n",
|
|
pool->dev_name);
|
|
return 0;
|
|
}
|
|
INIT_LIST_HEAD(&d_pages);
|
|
restart:
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
|
|
/* We picking the oldest ones off the list */
|
|
list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
|
|
page_list) {
|
|
if (freed_pages >= npages_to_free)
|
|
break;
|
|
|
|
/* Move the dma_page from one list to another. */
|
|
list_move(&dma_p->page_list, &d_pages);
|
|
|
|
pages_to_free[freed_pages++] = dma_p->p;
|
|
/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
|
|
if (freed_pages >= NUM_PAGES_TO_ALLOC) {
|
|
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
/**
|
|
* Because changing page caching is costly
|
|
* we unlock the pool to prevent stalling.
|
|
*/
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
ttm_dma_pages_put(pool, &d_pages, pages_to_free,
|
|
freed_pages);
|
|
|
|
INIT_LIST_HEAD(&d_pages);
|
|
|
|
if (likely(nr_free != FREE_ALL_PAGES))
|
|
nr_free -= freed_pages;
|
|
|
|
if (NUM_PAGES_TO_ALLOC >= nr_free)
|
|
npages_to_free = nr_free;
|
|
else
|
|
npages_to_free = NUM_PAGES_TO_ALLOC;
|
|
|
|
freed_pages = 0;
|
|
|
|
/* free all so restart the processing */
|
|
if (nr_free)
|
|
goto restart;
|
|
|
|
/* Not allowed to fall through or break because
|
|
* following context is inside spinlock while we are
|
|
* outside here.
|
|
*/
|
|
goto out;
|
|
|
|
}
|
|
}
|
|
|
|
/* remove range of pages from the pool */
|
|
if (freed_pages) {
|
|
ttm_pool_update_free_locked(pool, freed_pages);
|
|
nr_free -= freed_pages;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
if (freed_pages)
|
|
ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
|
|
out:
|
|
kfree(pages_to_free);
|
|
return nr_free;
|
|
}
|
|
|
|
static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
|
|
{
|
|
struct device_pools *p;
|
|
struct dma_pool *pool;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
mutex_lock(&_manager->lock);
|
|
list_for_each_entry_reverse(p, &_manager->pools, pools) {
|
|
if (p->dev != dev)
|
|
continue;
|
|
pool = p->pool;
|
|
if (pool->type != type)
|
|
continue;
|
|
|
|
list_del(&p->pools);
|
|
kfree(p);
|
|
_manager->npools--;
|
|
break;
|
|
}
|
|
list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
|
|
if (pool->type != type)
|
|
continue;
|
|
/* Takes a spinlock.. */
|
|
ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, GFP_KERNEL);
|
|
WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
|
|
/* This code path is called after _all_ references to the
|
|
* struct device has been dropped - so nobody should be
|
|
* touching it. In case somebody is trying to _add_ we are
|
|
* guarded by the mutex. */
|
|
list_del(&pool->pools);
|
|
kfree(pool);
|
|
break;
|
|
}
|
|
mutex_unlock(&_manager->lock);
|
|
}
|
|
|
|
/*
|
|
* On free-ing of the 'struct device' this deconstructor is run.
|
|
* Albeit the pool might have already been freed earlier.
|
|
*/
|
|
static void ttm_dma_pool_release(struct device *dev, void *res)
|
|
{
|
|
struct dma_pool *pool = *(struct dma_pool **)res;
|
|
|
|
if (pool)
|
|
ttm_dma_free_pool(dev, pool->type);
|
|
}
|
|
|
|
static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
return *(struct dma_pool **)res == match_data;
|
|
}
|
|
|
|
static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
|
|
enum pool_type type)
|
|
{
|
|
char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
|
|
enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
|
|
struct device_pools *sec_pool = NULL;
|
|
struct dma_pool *pool = NULL, **ptr;
|
|
unsigned i;
|
|
int ret = -ENODEV;
|
|
char *p;
|
|
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
ret = -ENOMEM;
|
|
|
|
pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
|
|
dev_to_node(dev));
|
|
if (!pool)
|
|
goto err_mem;
|
|
|
|
sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
|
|
dev_to_node(dev));
|
|
if (!sec_pool)
|
|
goto err_mem;
|
|
|
|
INIT_LIST_HEAD(&sec_pool->pools);
|
|
sec_pool->dev = dev;
|
|
sec_pool->pool = pool;
|
|
|
|
INIT_LIST_HEAD(&pool->free_list);
|
|
INIT_LIST_HEAD(&pool->inuse_list);
|
|
INIT_LIST_HEAD(&pool->pools);
|
|
spin_lock_init(&pool->lock);
|
|
pool->dev = dev;
|
|
pool->npages_free = pool->npages_in_use = 0;
|
|
pool->nfrees = 0;
|
|
pool->gfp_flags = flags;
|
|
pool->size = PAGE_SIZE;
|
|
pool->type = type;
|
|
pool->nrefills = 0;
|
|
p = pool->name;
|
|
for (i = 0; i < 5; i++) {
|
|
if (type & t[i]) {
|
|
p += snprintf(p, sizeof(pool->name) - (p - pool->name),
|
|
"%s", n[i]);
|
|
}
|
|
}
|
|
*p = 0;
|
|
/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
|
|
* - the kobj->name has already been deallocated.*/
|
|
snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
|
|
dev_driver_string(dev), dev_name(dev));
|
|
mutex_lock(&_manager->lock);
|
|
/* You can get the dma_pool from either the global: */
|
|
list_add(&sec_pool->pools, &_manager->pools);
|
|
_manager->npools++;
|
|
/* or from 'struct device': */
|
|
list_add(&pool->pools, &dev->dma_pools);
|
|
mutex_unlock(&_manager->lock);
|
|
|
|
*ptr = pool;
|
|
devres_add(dev, ptr);
|
|
|
|
return pool;
|
|
err_mem:
|
|
devres_free(ptr);
|
|
kfree(sec_pool);
|
|
kfree(pool);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct dma_pool *ttm_dma_find_pool(struct device *dev,
|
|
enum pool_type type)
|
|
{
|
|
struct dma_pool *pool, *tmp, *found = NULL;
|
|
|
|
if (type == IS_UNDEFINED)
|
|
return found;
|
|
|
|
/* NB: We iterate on the 'struct dev' which has no spinlock, but
|
|
* it does have a kref which we have taken. The kref is taken during
|
|
* graphic driver loading - in the drm_pci_init it calls either
|
|
* pci_dev_get or pci_register_driver which both end up taking a kref
|
|
* on 'struct device'.
|
|
*
|
|
* On teardown, the graphic drivers end up quiescing the TTM (put_pages)
|
|
* and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
|
|
* thing is at that point of time there are no pages associated with the
|
|
* driver so this function will not be called.
|
|
*/
|
|
list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
|
|
if (pool->type != type)
|
|
continue;
|
|
found = pool;
|
|
break;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Free pages the pages that failed to change the caching state. If there
|
|
* are pages that have changed their caching state already put them to the
|
|
* pool.
|
|
*/
|
|
static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
|
|
struct list_head *d_pages,
|
|
struct page **failed_pages,
|
|
unsigned cpages)
|
|
{
|
|
struct dma_page *d_page, *tmp;
|
|
struct page *p;
|
|
unsigned i = 0;
|
|
|
|
p = failed_pages[0];
|
|
if (!p)
|
|
return;
|
|
/* Find the failed page. */
|
|
list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
|
|
if (d_page->p != p)
|
|
continue;
|
|
/* .. and then progress over the full list. */
|
|
list_del(&d_page->page_list);
|
|
__ttm_dma_free_page(pool, d_page);
|
|
if (++i < cpages)
|
|
p = failed_pages[i];
|
|
else
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Allocate 'count' pages, and put 'need' number of them on the
|
|
* 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
|
|
* The full list of pages should also be on 'd_pages'.
|
|
* We return zero for success, and negative numbers as errors.
|
|
*/
|
|
static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
|
|
struct list_head *d_pages,
|
|
unsigned count)
|
|
{
|
|
struct page **caching_array;
|
|
struct dma_page *dma_p;
|
|
struct page *p;
|
|
int r = 0;
|
|
unsigned i, cpages;
|
|
unsigned max_cpages = min(count,
|
|
(unsigned)(PAGE_SIZE/sizeof(struct page *)));
|
|
|
|
/* allocate array for page caching change */
|
|
caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
|
|
|
|
if (!caching_array) {
|
|
pr_err("%s: Unable to allocate table for new pages\n",
|
|
pool->dev_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (count > 1) {
|
|
pr_debug("%s: (%s:%d) Getting %d pages\n",
|
|
pool->dev_name, pool->name, current->pid, count);
|
|
}
|
|
|
|
for (i = 0, cpages = 0; i < count; ++i) {
|
|
dma_p = __ttm_dma_alloc_page(pool);
|
|
if (!dma_p) {
|
|
pr_err("%s: Unable to get page %u\n",
|
|
pool->dev_name, i);
|
|
|
|
/* store already allocated pages in the pool after
|
|
* setting the caching state */
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(pool, caching_array,
|
|
cpages);
|
|
if (r)
|
|
ttm_dma_handle_caching_state_failure(
|
|
pool, d_pages, caching_array,
|
|
cpages);
|
|
}
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
p = dma_p->p;
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* gfp flags of highmem page should never be dma32 so we
|
|
* we should be fine in such case
|
|
*/
|
|
if (!PageHighMem(p))
|
|
#endif
|
|
{
|
|
caching_array[cpages++] = p;
|
|
if (cpages == max_cpages) {
|
|
/* Note: Cannot hold the spinlock */
|
|
r = ttm_set_pages_caching(pool, caching_array,
|
|
cpages);
|
|
if (r) {
|
|
ttm_dma_handle_caching_state_failure(
|
|
pool, d_pages, caching_array,
|
|
cpages);
|
|
goto out;
|
|
}
|
|
cpages = 0;
|
|
}
|
|
}
|
|
list_add(&dma_p->page_list, d_pages);
|
|
}
|
|
|
|
if (cpages) {
|
|
r = ttm_set_pages_caching(pool, caching_array, cpages);
|
|
if (r)
|
|
ttm_dma_handle_caching_state_failure(pool, d_pages,
|
|
caching_array, cpages);
|
|
}
|
|
out:
|
|
kfree(caching_array);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* @return count of pages still required to fulfill the request.
|
|
*/
|
|
static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
|
|
unsigned long *irq_flags)
|
|
{
|
|
unsigned count = _manager->options.small;
|
|
int r = pool->npages_free;
|
|
|
|
if (count > pool->npages_free) {
|
|
struct list_head d_pages;
|
|
|
|
INIT_LIST_HEAD(&d_pages);
|
|
|
|
spin_unlock_irqrestore(&pool->lock, *irq_flags);
|
|
|
|
/* Returns how many more are neccessary to fulfill the
|
|
* request. */
|
|
r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
|
|
|
|
spin_lock_irqsave(&pool->lock, *irq_flags);
|
|
if (!r) {
|
|
/* Add the fresh to the end.. */
|
|
list_splice(&d_pages, &pool->free_list);
|
|
++pool->nrefills;
|
|
pool->npages_free += count;
|
|
r = count;
|
|
} else {
|
|
struct dma_page *d_page;
|
|
unsigned cpages = 0;
|
|
|
|
pr_err("%s: Failed to fill %s pool (r:%d)!\n",
|
|
pool->dev_name, pool->name, r);
|
|
|
|
list_for_each_entry(d_page, &d_pages, page_list) {
|
|
cpages++;
|
|
}
|
|
list_splice_tail(&d_pages, &pool->free_list);
|
|
pool->npages_free += cpages;
|
|
r = cpages;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* @return count of pages still required to fulfill the request.
|
|
* The populate list is actually a stack (not that is matters as TTM
|
|
* allocates one page at a time.
|
|
*/
|
|
static int ttm_dma_pool_get_pages(struct dma_pool *pool,
|
|
struct ttm_dma_tt *ttm_dma,
|
|
unsigned index)
|
|
{
|
|
struct dma_page *d_page;
|
|
struct ttm_tt *ttm = &ttm_dma->ttm;
|
|
unsigned long irq_flags;
|
|
int count, r = -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
|
|
if (count) {
|
|
d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
|
|
ttm->pages[index] = d_page->p;
|
|
ttm_dma->cpu_address[index] = d_page->vaddr;
|
|
ttm_dma->dma_address[index] = d_page->dma;
|
|
list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
|
|
r = 0;
|
|
pool->npages_in_use += 1;
|
|
pool->npages_free -= 1;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* On success pages list will hold count number of correctly
|
|
* cached pages. On failure will hold the negative return value (-ENOMEM, etc).
|
|
*/
|
|
int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
|
|
{
|
|
struct ttm_tt *ttm = &ttm_dma->ttm;
|
|
struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
|
|
struct dma_pool *pool;
|
|
enum pool_type type;
|
|
unsigned i;
|
|
gfp_t gfp_flags;
|
|
int ret;
|
|
|
|
if (ttm->state != tt_unpopulated)
|
|
return 0;
|
|
|
|
type = ttm_to_type(ttm->page_flags, ttm->caching_state);
|
|
if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
|
|
gfp_flags = GFP_USER | GFP_DMA32;
|
|
else
|
|
gfp_flags = GFP_HIGHUSER;
|
|
if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
|
|
gfp_flags |= __GFP_ZERO;
|
|
|
|
pool = ttm_dma_find_pool(dev, type);
|
|
if (!pool) {
|
|
pool = ttm_dma_pool_init(dev, gfp_flags, type);
|
|
if (IS_ERR_OR_NULL(pool)) {
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ttm_dma->pages_list);
|
|
for (i = 0; i < ttm->num_pages; ++i) {
|
|
ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
|
|
if (ret != 0) {
|
|
ttm_dma_unpopulate(ttm_dma, dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
|
|
false, false);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_dma_unpopulate(ttm_dma, dev);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
|
|
ret = ttm_tt_swapin(ttm);
|
|
if (unlikely(ret != 0)) {
|
|
ttm_dma_unpopulate(ttm_dma, dev);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ttm->state = tt_unbound;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ttm_dma_populate);
|
|
|
|
/* Put all pages in pages list to correct pool to wait for reuse */
|
|
void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
|
|
{
|
|
struct ttm_tt *ttm = &ttm_dma->ttm;
|
|
struct dma_pool *pool;
|
|
struct dma_page *d_page, *next;
|
|
enum pool_type type;
|
|
bool is_cached = false;
|
|
unsigned count = 0, i, npages = 0;
|
|
unsigned long irq_flags;
|
|
|
|
type = ttm_to_type(ttm->page_flags, ttm->caching_state);
|
|
pool = ttm_dma_find_pool(dev, type);
|
|
if (!pool)
|
|
return;
|
|
|
|
is_cached = (ttm_dma_find_pool(pool->dev,
|
|
ttm_to_type(ttm->page_flags, tt_cached)) == pool);
|
|
|
|
/* make sure pages array match list and count number of pages */
|
|
list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
|
|
ttm->pages[count] = d_page->p;
|
|
count++;
|
|
}
|
|
|
|
spin_lock_irqsave(&pool->lock, irq_flags);
|
|
pool->npages_in_use -= count;
|
|
if (is_cached) {
|
|
pool->nfrees += count;
|
|
} else {
|
|
pool->npages_free += count;
|
|
list_splice(&ttm_dma->pages_list, &pool->free_list);
|
|
npages = count;
|
|
if (pool->npages_free > _manager->options.max_size) {
|
|
npages = pool->npages_free - _manager->options.max_size;
|
|
/* free at least NUM_PAGES_TO_ALLOC number of pages
|
|
* to reduce calls to set_memory_wb */
|
|
if (npages < NUM_PAGES_TO_ALLOC)
|
|
npages = NUM_PAGES_TO_ALLOC;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, irq_flags);
|
|
|
|
if (is_cached) {
|
|
list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
|
|
ttm_mem_global_free_page(ttm->glob->mem_glob,
|
|
d_page->p);
|
|
ttm_dma_page_put(pool, d_page);
|
|
}
|
|
} else {
|
|
for (i = 0; i < count; i++) {
|
|
ttm_mem_global_free_page(ttm->glob->mem_glob,
|
|
ttm->pages[i]);
|
|
}
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ttm_dma->pages_list);
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
ttm->pages[i] = NULL;
|
|
ttm_dma->cpu_address[i] = 0;
|
|
ttm_dma->dma_address[i] = 0;
|
|
}
|
|
|
|
/* shrink pool if necessary (only on !is_cached pools)*/
|
|
if (npages)
|
|
ttm_dma_page_pool_free(pool, npages, GFP_KERNEL);
|
|
ttm->state = tt_unpopulated;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
|
|
|
|
/**
|
|
* Callback for mm to request pool to reduce number of page held.
|
|
*
|
|
* XXX: (dchinner) Deadlock warning!
|
|
*
|
|
* We need to pass sc->gfp_mask to ttm_dma_page_pool_free().
|
|
*
|
|
* I'm getting sadder as I hear more pathetical whimpers about needing per-pool
|
|
* shrinkers
|
|
*/
|
|
static unsigned long
|
|
ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
static unsigned start_pool;
|
|
unsigned idx = 0;
|
|
unsigned pool_offset;
|
|
unsigned shrink_pages = sc->nr_to_scan;
|
|
struct device_pools *p;
|
|
unsigned long freed = 0;
|
|
|
|
if (list_empty(&_manager->pools))
|
|
return SHRINK_STOP;
|
|
|
|
if (!mutex_trylock(&_manager->lock))
|
|
return SHRINK_STOP;
|
|
if (!_manager->npools)
|
|
goto out;
|
|
pool_offset = ++start_pool % _manager->npools;
|
|
list_for_each_entry(p, &_manager->pools, pools) {
|
|
unsigned nr_free;
|
|
|
|
if (!p->dev)
|
|
continue;
|
|
if (shrink_pages == 0)
|
|
break;
|
|
/* Do it in round-robin fashion. */
|
|
if (++idx < pool_offset)
|
|
continue;
|
|
nr_free = shrink_pages;
|
|
shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free,
|
|
sc->gfp_mask);
|
|
freed += nr_free - shrink_pages;
|
|
|
|
pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
|
|
p->pool->dev_name, p->pool->name, current->pid,
|
|
nr_free, shrink_pages);
|
|
}
|
|
out:
|
|
mutex_unlock(&_manager->lock);
|
|
return freed;
|
|
}
|
|
|
|
static unsigned long
|
|
ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
struct device_pools *p;
|
|
unsigned long count = 0;
|
|
|
|
if (!mutex_trylock(&_manager->lock))
|
|
return 0;
|
|
list_for_each_entry(p, &_manager->pools, pools)
|
|
count += p->pool->npages_free;
|
|
mutex_unlock(&_manager->lock);
|
|
return count;
|
|
}
|
|
|
|
static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
|
|
{
|
|
manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
|
|
manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
|
|
manager->mm_shrink.seeks = 1;
|
|
register_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
|
|
{
|
|
unregister_shrinker(&manager->mm_shrink);
|
|
}
|
|
|
|
int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
|
|
{
|
|
int ret = -ENOMEM;
|
|
|
|
WARN_ON(_manager);
|
|
|
|
pr_info("Initializing DMA pool allocator\n");
|
|
|
|
_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
|
|
if (!_manager)
|
|
goto err;
|
|
|
|
mutex_init(&_manager->lock);
|
|
INIT_LIST_HEAD(&_manager->pools);
|
|
|
|
_manager->options.max_size = max_pages;
|
|
_manager->options.small = SMALL_ALLOCATION;
|
|
_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
|
|
|
|
/* This takes care of auto-freeing the _manager */
|
|
ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
|
|
&glob->kobj, "dma_pool");
|
|
if (unlikely(ret != 0)) {
|
|
kobject_put(&_manager->kobj);
|
|
goto err;
|
|
}
|
|
ttm_dma_pool_mm_shrink_init(_manager);
|
|
return 0;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
void ttm_dma_page_alloc_fini(void)
|
|
{
|
|
struct device_pools *p, *t;
|
|
|
|
pr_info("Finalizing DMA pool allocator\n");
|
|
ttm_dma_pool_mm_shrink_fini(_manager);
|
|
|
|
list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
|
|
dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
|
|
current->pid);
|
|
WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
|
|
ttm_dma_pool_match, p->pool));
|
|
ttm_dma_free_pool(p->dev, p->pool->type);
|
|
}
|
|
kobject_put(&_manager->kobj);
|
|
_manager = NULL;
|
|
}
|
|
|
|
int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
|
|
{
|
|
struct device_pools *p;
|
|
struct dma_pool *pool = NULL;
|
|
char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
|
|
"name", "virt", "busaddr"};
|
|
|
|
if (!_manager) {
|
|
seq_printf(m, "No pool allocator running.\n");
|
|
return 0;
|
|
}
|
|
seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
|
|
h[0], h[1], h[2], h[3], h[4], h[5]);
|
|
mutex_lock(&_manager->lock);
|
|
list_for_each_entry(p, &_manager->pools, pools) {
|
|
struct device *dev = p->dev;
|
|
if (!dev)
|
|
continue;
|
|
pool = p->pool;
|
|
seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
|
|
pool->name, pool->nrefills,
|
|
pool->nfrees, pool->npages_in_use,
|
|
pool->npages_free,
|
|
pool->dev_name);
|
|
}
|
|
mutex_unlock(&_manager->lock);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
|
|
|
|
#endif
|