linux/drivers/net/sfc/mcdi.c

1200 lines
31 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2008-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include "net_driver.h"
#include "nic.h"
#include "io.h"
#include "regs.h"
#include "mcdi_pcol.h"
#include "phy.h"
/**************************************************************************
*
* Management-Controller-to-Driver Interface
*
**************************************************************************
*/
/* Software-defined structure to the shared-memory */
#define CMD_NOTIFY_PORT0 0
#define CMD_NOTIFY_PORT1 4
#define CMD_PDU_PORT0 0x008
#define CMD_PDU_PORT1 0x108
#define REBOOT_FLAG_PORT0 0x3f8
#define REBOOT_FLAG_PORT1 0x3fc
#define MCDI_RPC_TIMEOUT 10 /*seconds */
#define MCDI_PDU(efx) \
(efx_port_num(efx) ? CMD_PDU_PORT1 : CMD_PDU_PORT0)
#define MCDI_DOORBELL(efx) \
(efx_port_num(efx) ? CMD_NOTIFY_PORT1 : CMD_NOTIFY_PORT0)
#define MCDI_REBOOT_FLAG(efx) \
(efx_port_num(efx) ? REBOOT_FLAG_PORT1 : REBOOT_FLAG_PORT0)
#define SEQ_MASK \
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
{
struct siena_nic_data *nic_data;
EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
nic_data = efx->nic_data;
return &nic_data->mcdi;
}
void efx_mcdi_init(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
init_waitqueue_head(&mcdi->wq);
spin_lock_init(&mcdi->iface_lock);
atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
mcdi->mode = MCDI_MODE_POLL;
(void) efx_mcdi_poll_reboot(efx);
}
static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
const u8 *inbuf, size_t inlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
unsigned int i;
efx_dword_t hdr;
u32 xflags, seqno;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(inlen & 3 || inlen >= 0x100);
seqno = mcdi->seqno & SEQ_MASK;
xflags = 0;
if (mcdi->mode == MCDI_MODE_EVENTS)
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
EFX_POPULATE_DWORD_6(hdr,
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_CODE, cmd,
MCDI_HEADER_DATALEN, inlen,
MCDI_HEADER_SEQ, seqno,
MCDI_HEADER_XFLAGS, xflags);
efx_writed(efx, &hdr, pdu);
for (i = 0; i < inlen; i += 4)
_efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i);
/* Ensure the payload is written out before the header */
wmb();
/* ring the doorbell with a distinctive value */
_efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
}
static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
int i;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(outlen & 3 || outlen >= 0x100);
for (i = 0; i < outlen; i += 4)
*((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
}
static int efx_mcdi_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned int time, finish;
unsigned int respseq, respcmd, error;
unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
unsigned int rc, spins;
efx_dword_t reg;
/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
rc = -efx_mcdi_poll_reboot(efx);
if (rc)
goto out;
/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
* because generally mcdi responses are fast. After that, back off
* and poll once a jiffy (approximately)
*/
spins = TICK_USEC;
finish = get_seconds() + MCDI_RPC_TIMEOUT;
while (1) {
if (spins != 0) {
--spins;
udelay(1);
} else {
schedule_timeout_uninterruptible(1);
}
time = get_seconds();
rmb();
efx_readd(efx, &reg, pdu);
/* All 1's indicates that shared memory is in reset (and is
* not a valid header). Wait for it to come out reset before
* completing the command */
if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff &&
EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE))
break;
if (time >= finish)
return -ETIMEDOUT;
}
mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN);
respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ);
respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE);
error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR);
if (error && mcdi->resplen == 0) {
netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
rc = EIO;
} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
netif_err(efx, hw, efx->net_dev,
"MC response mismatch tx seq 0x%x rx seq 0x%x\n",
respseq, mcdi->seqno);
rc = EIO;
} else if (error) {
efx_readd(efx, &reg, pdu + 4);
switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) {
#define TRANSLATE_ERROR(name) \
case MC_CMD_ERR_ ## name: \
rc = name; \
break
TRANSLATE_ERROR(ENOENT);
TRANSLATE_ERROR(EINTR);
TRANSLATE_ERROR(EACCES);
TRANSLATE_ERROR(EBUSY);
TRANSLATE_ERROR(EINVAL);
TRANSLATE_ERROR(EDEADLK);
TRANSLATE_ERROR(ENOSYS);
TRANSLATE_ERROR(ETIME);
#undef TRANSLATE_ERROR
default:
rc = EIO;
break;
}
} else
rc = 0;
out:
mcdi->resprc = rc;
if (rc)
mcdi->resplen = 0;
/* Return rc=0 like wait_event_timeout() */
return 0;
}
/* Test and clear MC-rebooted flag for this port/function */
int efx_mcdi_poll_reboot(struct efx_nic *efx)
{
unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_REBOOT_FLAG(efx);
efx_dword_t reg;
uint32_t value;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return false;
efx_readd(efx, &reg, addr);
value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
if (value == 0)
return 0;
EFX_ZERO_DWORD(reg);
efx_writed(efx, &reg, addr);
if (value == MC_STATUS_DWORD_ASSERT)
return -EINTR;
else
return -EIO;
}
static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi)
{
/* Wait until the interface becomes QUIESCENT and we win the race
* to mark it RUNNING. */
wait_event(mcdi->wq,
atomic_cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT,
MCDI_STATE_RUNNING)
== MCDI_STATE_QUIESCENT);
}
static int efx_mcdi_await_completion(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
if (wait_event_timeout(
mcdi->wq,
atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED,
msecs_to_jiffies(MCDI_RPC_TIMEOUT * 1000)) == 0)
return -ETIMEDOUT;
/* Check if efx_mcdi_set_mode() switched us back to polled completions.
* In which case, poll for completions directly. If efx_mcdi_ev_cpl()
* completed the request first, then we'll just end up completing the
* request again, which is safe.
*
* We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
* wait_event_timeout() implicitly provides.
*/
if (mcdi->mode == MCDI_MODE_POLL)
return efx_mcdi_poll(efx);
return 0;
}
static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
{
/* If the interface is RUNNING, then move to COMPLETED and wake any
* waiters. If the interface isn't in RUNNING then we've received a
* duplicate completion after we've already transitioned back to
* QUIESCENT. [A subsequent invocation would increment seqno, so would
* have failed the seqno check].
*/
if (atomic_cmpxchg(&mcdi->state,
MCDI_STATE_RUNNING,
MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) {
wake_up(&mcdi->wq);
return true;
}
return false;
}
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
{
atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
wake_up(&mcdi->wq);
}
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
unsigned int datalen, unsigned int errno)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
bool wake = false;
spin_lock(&mcdi->iface_lock);
if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
if (mcdi->credits)
/* The request has been cancelled */
--mcdi->credits;
else
netif_err(efx, hw, efx->net_dev,
"MC response mismatch tx seq 0x%x rx "
"seq 0x%x\n", seqno, mcdi->seqno);
} else {
mcdi->resprc = errno;
mcdi->resplen = datalen;
wake = true;
}
spin_unlock(&mcdi->iface_lock);
if (wake)
efx_mcdi_complete(mcdi);
}
/* Issue the given command by writing the data into the shared memory PDU,
* ring the doorbell and wait for completion. Copyout the result. */
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen,
size_t *outlen_actual)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
int rc;
BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
efx_mcdi_acquire(mcdi);
/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
spin_unlock_bh(&mcdi->iface_lock);
efx_mcdi_copyin(efx, cmd, inbuf, inlen);
if (mcdi->mode == MCDI_MODE_POLL)
rc = efx_mcdi_poll(efx);
else
rc = efx_mcdi_await_completion(efx);
if (rc != 0) {
/* Close the race with efx_mcdi_ev_cpl() executing just too late
* and completing a request we've just cancelled, by ensuring
* that the seqno check therein fails.
*/
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
++mcdi->credits;
spin_unlock_bh(&mcdi->iface_lock);
netif_err(efx, hw, efx->net_dev,
"MC command 0x%x inlen %d mode %d timed out\n",
cmd, (int)inlen, mcdi->mode);
} else {
size_t resplen;
/* At the very least we need a memory barrier here to ensure
* we pick up changes from efx_mcdi_ev_cpl(). Protect against
* a spurious efx_mcdi_ev_cpl() running concurrently by
* acquiring the iface_lock. */
spin_lock_bh(&mcdi->iface_lock);
rc = -mcdi->resprc;
resplen = mcdi->resplen;
spin_unlock_bh(&mcdi->iface_lock);
if (rc == 0) {
efx_mcdi_copyout(efx, outbuf,
min(outlen, mcdi->resplen + 3) & ~0x3);
if (outlen_actual != NULL)
*outlen_actual = resplen;
} else if (cmd == MC_CMD_REBOOT && rc == -EIO)
; /* Don't reset if MC_CMD_REBOOT returns EIO */
else if (rc == -EIO || rc == -EINTR) {
netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
-rc);
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
} else
netif_err(efx, hw, efx->net_dev,
"MC command 0x%x inlen %d failed rc=%d\n",
cmd, (int)inlen, -rc);
}
efx_mcdi_release(mcdi);
return rc;
}
void efx_mcdi_mode_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
if (mcdi->mode == MCDI_MODE_POLL)
return;
/* We can switch from event completion to polled completion, because
* mcdi requests are always completed in shared memory. We do this by
* switching the mode to POLL'd then completing the request.
* efx_mcdi_await_completion() will then call efx_mcdi_poll().
*
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
* which efx_mcdi_complete() provides for us.
*/
mcdi->mode = MCDI_MODE_POLL;
efx_mcdi_complete(mcdi);
}
void efx_mcdi_mode_event(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
if (mcdi->mode == MCDI_MODE_EVENTS)
return;
/* We can't switch from polled to event completion in the middle of a
* request, because the completion method is specified in the request.
* So acquire the interface to serialise the requestors. We don't need
* to acquire the iface_lock to change the mode here, but we do need a
* write memory barrier ensure that efx_mcdi_rpc() sees it, which
* efx_mcdi_acquire() provides.
*/
efx_mcdi_acquire(mcdi);
mcdi->mode = MCDI_MODE_EVENTS;
efx_mcdi_release(mcdi);
}
static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
/* If there is an outstanding MCDI request, it has been terminated
* either by a BADASSERT or REBOOT event. If the mcdi interface is
* in polled mode, then do nothing because the MC reboot handler will
* set the header correctly. However, if the mcdi interface is waiting
* for a CMDDONE event it won't receive it [and since all MCDI events
* are sent to the same queue, we can't be racing with
* efx_mcdi_ev_cpl()]
*
* There's a race here with efx_mcdi_rpc(), because we might receive
* a REBOOT event *before* the request has been copied out. In polled
* mode (during startup) this is irrelevent, because efx_mcdi_complete()
* is ignored. In event mode, this condition is just an edge-case of
* receiving a REBOOT event after posting the MCDI request. Did the mc
* reboot before or after the copyout? The best we can do always is
* just return failure.
*/
spin_lock(&mcdi->iface_lock);
if (efx_mcdi_complete(mcdi)) {
if (mcdi->mode == MCDI_MODE_EVENTS) {
mcdi->resprc = rc;
mcdi->resplen = 0;
}
} else
/* Nobody was waiting for an MCDI request, so trigger a reset */
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
spin_unlock(&mcdi->iface_lock);
}
static unsigned int efx_mcdi_event_link_speed[] = {
[MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100,
[MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000,
[MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000,
};
static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
{
u32 flags, fcntl, speed, lpa;
speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED);
EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed));
speed = efx_mcdi_event_link_speed[speed];
flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS);
fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL);
lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP);
/* efx->link_state is only modified by efx_mcdi_phy_get_link(),
* which is only run after flushing the event queues. Therefore, it
* is safe to modify the link state outside of the mac_lock here.
*/
efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl);
efx_mcdi_phy_check_fcntl(efx, lpa);
efx_link_status_changed(efx);
}
static const char *sensor_names[] = {
[MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor",
[MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor",
[MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling",
[MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor",
[MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling",
[MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor",
[MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling",
[MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor",
[MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor",
[MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor",
[MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor",
[MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor",
[MC_CMD_SENSOR_IN_12V0] = "12V supply sensor"
};
static const char *sensor_status_names[] = {
[MC_CMD_SENSOR_STATE_OK] = "OK",
[MC_CMD_SENSOR_STATE_WARNING] = "Warning",
[MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
[MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
};
static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
{
unsigned int monitor, state, value;
const char *name, *state_txt;
monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);
/* Deal gracefully with the board having more drivers than we
* know about, but do not expect new sensor states. */
name = (monitor >= ARRAY_SIZE(sensor_names))
? "No sensor name available" :
sensor_names[monitor];
EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
state_txt = sensor_status_names[state];
netif_err(efx, hw, efx->net_dev,
"Sensor %d (%s) reports condition '%s' for raw value %d\n",
monitor, name, state_txt, value);
}
/* Called from falcon_process_eventq for MCDI events */
void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
switch (code) {
case MCDI_EVENT_CODE_BADSSERT:
netif_err(efx, hw, efx->net_dev,
"MC watchdog or assertion failure at 0x%x\n", data);
efx_mcdi_ev_death(efx, EINTR);
break;
case MCDI_EVENT_CODE_PMNOTICE:
netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
break;
case MCDI_EVENT_CODE_CMDDONE:
efx_mcdi_ev_cpl(efx,
MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
break;
case MCDI_EVENT_CODE_LINKCHANGE:
efx_mcdi_process_link_change(efx, event);
break;
case MCDI_EVENT_CODE_SENSOREVT:
efx_mcdi_sensor_event(efx, event);
break;
case MCDI_EVENT_CODE_SCHEDERR:
netif_info(efx, hw, efx->net_dev,
"MC Scheduler error address=0x%x\n", data);
break;
case MCDI_EVENT_CODE_REBOOT:
netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
efx_mcdi_ev_death(efx, EIO);
break;
case MCDI_EVENT_CODE_MAC_STATS_DMA:
/* MAC stats are gather lazily. We can ignore this. */
break;
default:
netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
code);
}
}
/**************************************************************************
*
* Specific request functions
*
**************************************************************************
*/
int efx_mcdi_fwver(struct efx_nic *efx, u64 *version, u32 *build)
{
u8 outbuf[ALIGN(MC_CMD_GET_VERSION_V1_OUT_LEN, 4)];
size_t outlength;
const __le16 *ver_words;
int rc;
BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
outbuf, sizeof(outbuf), &outlength);
if (rc)
goto fail;
if (outlength == MC_CMD_GET_VERSION_V0_OUT_LEN) {
*version = 0;
*build = MCDI_DWORD(outbuf, GET_VERSION_OUT_FIRMWARE);
return 0;
}
if (outlength < MC_CMD_GET_VERSION_V1_OUT_LEN) {
rc = -EIO;
goto fail;
}
ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
*version = (((u64)le16_to_cpu(ver_words[0]) << 48) |
((u64)le16_to_cpu(ver_words[1]) << 32) |
((u64)le16_to_cpu(ver_words[2]) << 16) |
le16_to_cpu(ver_words[3]));
*build = MCDI_DWORD(outbuf, GET_VERSION_OUT_FIRMWARE);
return 0;
fail:
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached)
{
u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN];
u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
driver_operating ? 1 : 0);
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
rc = -EIO;
goto fail;
}
if (was_attached != NULL)
*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
return 0;
fail:
netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list)
{
uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LEN];
size_t outlen;
int port_num = efx_port_num(efx);
int offset;
int rc;
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LEN) {
rc = -EIO;
goto fail;
}
offset = (port_num)
? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
: MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST;
if (mac_address)
memcpy(mac_address, outbuf + offset, ETH_ALEN);
if (fw_subtype_list)
memcpy(fw_subtype_list,
outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST,
MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
__func__, rc, (int)outlen);
return rc;
}
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
{
u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN];
u32 dest = 0;
int rc;
if (uart)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
if (evq)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
{
u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN];
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
rc = -EIO;
goto fail;
}
*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc);
return rc;
}
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
size_t *size_out, size_t *erase_size_out,
bool *protected_out)
{
u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN];
u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
rc = -EIO;
goto fail;
}
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_PROTECTED_LBN));
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
{
u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
loff_t offset, u8 *buffer, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN];
u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
loff_t offset, const u8 *buffer, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
loff_t offset, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
{
u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
{
u8 inbuf[MC_CMD_NVRAM_TEST_IN_LEN];
u8 outbuf[MC_CMD_NVRAM_TEST_OUT_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc)
return rc;
switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
case MC_CMD_NVRAM_TEST_PASS:
case MC_CMD_NVRAM_TEST_NOTSUPP:
return 0;
default:
return -EIO;
}
}
int efx_mcdi_nvram_test_all(struct efx_nic *efx)
{
u32 nvram_types;
unsigned int type;
int rc;
rc = efx_mcdi_nvram_types(efx, &nvram_types);
if (rc)
goto fail1;
type = 0;
while (nvram_types != 0) {
if (nvram_types & 1) {
rc = efx_mcdi_nvram_test(efx, type);
if (rc)
goto fail2;
}
type++;
nvram_types >>= 1;
}
return 0;
fail2:
netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
__func__, type);
fail1:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_read_assertion(struct efx_nic *efx)
{
u8 inbuf[MC_CMD_GET_ASSERTS_IN_LEN];
u8 outbuf[MC_CMD_GET_ASSERTS_OUT_LEN];
unsigned int flags, index, ofst;
const char *reason;
size_t outlen;
int retry;
int rc;
/* Attempt to read any stored assertion state before we reboot
* the mcfw out of the assertion handler. Retry twice, once
* because a boot-time assertion might cause this command to fail
* with EINTR. And once again because GET_ASSERTS can race with
* MC_CMD_REBOOT running on the other port. */
retry = 2;
do {
MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
outbuf, sizeof(outbuf), &outlen);
} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
if (rc)
return rc;
if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
return -EIO;
/* Print out any recorded assertion state */
flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
return 0;
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
? "system-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
? "thread-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
? "watchdog reset"
: "unknown assertion";
netif_err(efx, hw, efx->net_dev,
"MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
/* Print out the registers */
ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
for (index = 1; index < 32; index++) {
netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index,
MCDI_DWORD2(outbuf, ofst));
ofst += sizeof(efx_dword_t);
}
return 0;
}
static void efx_mcdi_exit_assertion(struct efx_nic *efx)
{
u8 inbuf[MC_CMD_REBOOT_IN_LEN];
/* Atomically reboot the mcfw out of the assertion handler */
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
NULL, 0, NULL);
}
int efx_mcdi_handle_assertion(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_read_assertion(efx);
if (rc)
return rc;
efx_mcdi_exit_assertion(efx);
return 0;
}
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN];
int rc;
BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc);
}
int efx_mcdi_reset_port(struct efx_nic *efx)
{
int rc = efx_mcdi_rpc(efx, MC_CMD_PORT_RESET, NULL, 0, NULL, 0, NULL);
if (rc)
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc);
return rc;
}
int efx_mcdi_reset_mc(struct efx_nic *efx)
{
u8 inbuf[MC_CMD_REBOOT_IN_LEN];
int rc;
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
/* White is black, and up is down */
if (rc == -EIO)
return 0;
if (rc == 0)
rc = -EIO;
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
const u8 *mac, int *id_out)
{
u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN];
u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
MC_CMD_FILTER_MODE_SIMPLE);
memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
rc = -EIO;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
{
return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
}
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
{
u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN];
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
rc = -EIO;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
{
u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}