linux/drivers/net/wireless/iwlwifi/iwl-trans-pcie-rx.c

1454 lines
43 KiB
C

/******************************************************************************
*
* Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/gfp.h>
/*TODO: Remove include to iwl-core.h*/
#include "iwl-core.h"
#include "iwl-io.h"
#include "iwl-trans-pcie-int.h"
#include "iwl-wifi.h"
#include "iwl-op-mode.h"
#ifdef CONFIG_IWLWIFI_IDI
#include "iwl-amfh.h"
#endif
/******************************************************************************
*
* RX path functions
*
******************************************************************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of indexes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two index registers for managing the Rx buffers.
*
* The READ index maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ index is managed by the firmware once the card is enabled.
*
* The WRITE index maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* INDEX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ index
* and fire the RX interrupt. The driver can then query the READ index and
* process as many packets as possible, moving the WRITE index forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ INDEX is updated (updating the
* 'processed' and 'read' driver indexes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' index is updated.
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
* INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* iwl_rx_queue_alloc() Allocates rx_free
* iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
* iwl_rx_queue_restock
* iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE index. If insufficient rx_free buffers
* are available, schedules iwl_rx_replenish
*
* -- enable interrupts --
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
* READ INDEX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls iwl_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/**
* iwl_rx_queue_space - Return number of free slots available in queue.
*/
static int iwl_rx_queue_space(const struct iwl_rx_queue *q)
{
int s = q->read - q->write;
if (s <= 0)
s += RX_QUEUE_SIZE;
/* keep some buffer to not confuse full and empty queue */
s -= 2;
if (s < 0)
s = 0;
return s;
}
/**
* iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
*/
void iwl_rx_queue_update_write_ptr(struct iwl_trans *trans,
struct iwl_rx_queue *q)
{
unsigned long flags;
u32 reg;
spin_lock_irqsave(&q->lock, flags);
if (q->need_update == 0)
goto exit_unlock;
if (hw_params(trans).shadow_reg_enable) {
/* shadow register enabled */
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, q->write_actual);
} else {
/* If power-saving is in use, make sure device is awake */
if (test_bit(STATUS_POWER_PMI, &trans->shrd->status)) {
reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
IWL_DEBUG_INFO(trans,
"Rx queue requesting wakeup,"
" GP1 = 0x%x\n", reg);
iwl_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
goto exit_unlock;
}
q->write_actual = (q->write & ~0x7);
iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
q->write_actual);
/* Else device is assumed to be awake */
} else {
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
q->write_actual);
}
}
q->need_update = 0;
exit_unlock:
spin_unlock_irqrestore(&q->lock, flags);
}
/**
* iwlagn_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
*/
static inline __le32 iwlagn_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
return cpu_to_le32((u32)(dma_addr >> 8));
}
/**
* iwlagn_rx_queue_restock - refill RX queue from pre-allocated pool
*
* If there are slots in the RX queue that need to be restocked,
* and we have free pre-allocated buffers, fill the ranks as much
* as we can, pulling from rx_free.
*
* This moves the 'write' index forward to catch up with 'processed', and
* also updates the memory address in the firmware to reference the new
* target buffer.
*/
static void iwlagn_rx_queue_restock(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rx_queue *rxq = &trans_pcie->rxq;
struct list_head *element;
struct iwl_rx_mem_buffer *rxb;
unsigned long flags;
spin_lock_irqsave(&rxq->lock, flags);
while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
/* The overwritten rxb must be a used one */
rxb = rxq->queue[rxq->write];
BUG_ON(rxb && rxb->page);
/* Get next free Rx buffer, remove from free list */
element = rxq->rx_free.next;
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
list_del(element);
/* Point to Rx buffer via next RBD in circular buffer */
rxq->bd[rxq->write] = iwlagn_dma_addr2rbd_ptr(rxb->page_dma);
rxq->queue[rxq->write] = rxb;
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
rxq->free_count--;
}
spin_unlock_irqrestore(&rxq->lock, flags);
/* If the pre-allocated buffer pool is dropping low, schedule to
* refill it */
if (rxq->free_count <= RX_LOW_WATERMARK)
schedule_work(&trans_pcie->rx_replenish);
/* If we've added more space for the firmware to place data, tell it.
* Increment device's write pointer in multiples of 8. */
if (rxq->write_actual != (rxq->write & ~0x7)) {
spin_lock_irqsave(&rxq->lock, flags);
rxq->need_update = 1;
spin_unlock_irqrestore(&rxq->lock, flags);
iwl_rx_queue_update_write_ptr(trans, rxq);
}
}
/**
* iwlagn_rx_replenish - Move all used packet from rx_used to rx_free
*
* When moving to rx_free an SKB is allocated for the slot.
*
* Also restock the Rx queue via iwl_rx_queue_restock.
* This is called as a scheduled work item (except for during initialization)
*/
static void iwlagn_rx_allocate(struct iwl_trans *trans, gfp_t priority)
{
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rx_queue *rxq = &trans_pcie->rxq;
struct list_head *element;
struct iwl_rx_mem_buffer *rxb;
struct page *page;
unsigned long flags;
gfp_t gfp_mask = priority;
while (1) {
spin_lock_irqsave(&rxq->lock, flags);
if (list_empty(&rxq->rx_used)) {
spin_unlock_irqrestore(&rxq->lock, flags);
return;
}
spin_unlock_irqrestore(&rxq->lock, flags);
if (rxq->free_count > RX_LOW_WATERMARK)
gfp_mask |= __GFP_NOWARN;
if (hw_params(trans).rx_page_order > 0)
gfp_mask |= __GFP_COMP;
/* Alloc a new receive buffer */
page = alloc_pages(gfp_mask,
hw_params(trans).rx_page_order);
if (!page) {
if (net_ratelimit())
IWL_DEBUG_INFO(trans, "alloc_pages failed, "
"order: %d\n",
hw_params(trans).rx_page_order);
if ((rxq->free_count <= RX_LOW_WATERMARK) &&
net_ratelimit())
IWL_CRIT(trans, "Failed to alloc_pages with %s."
"Only %u free buffers remaining.\n",
priority == GFP_ATOMIC ?
"GFP_ATOMIC" : "GFP_KERNEL",
rxq->free_count);
/* We don't reschedule replenish work here -- we will
* call the restock method and if it still needs
* more buffers it will schedule replenish */
return;
}
spin_lock_irqsave(&rxq->lock, flags);
if (list_empty(&rxq->rx_used)) {
spin_unlock_irqrestore(&rxq->lock, flags);
__free_pages(page, hw_params(trans).rx_page_order);
return;
}
element = rxq->rx_used.next;
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
list_del(element);
spin_unlock_irqrestore(&rxq->lock, flags);
BUG_ON(rxb->page);
rxb->page = page;
/* Get physical address of the RB */
rxb->page_dma = dma_map_page(trans->dev, page, 0,
PAGE_SIZE << hw_params(trans).rx_page_order,
DMA_FROM_DEVICE);
/* dma address must be no more than 36 bits */
BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
/* and also 256 byte aligned! */
BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
spin_lock_irqsave(&rxq->lock, flags);
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
spin_unlock_irqrestore(&rxq->lock, flags);
}
}
void iwlagn_rx_replenish(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
unsigned long flags;
iwlagn_rx_allocate(trans, GFP_KERNEL);
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
iwlagn_rx_queue_restock(trans);
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
}
static void iwlagn_rx_replenish_now(struct iwl_trans *trans)
{
iwlagn_rx_allocate(trans, GFP_ATOMIC);
iwlagn_rx_queue_restock(trans);
}
void iwl_bg_rx_replenish(struct work_struct *data)
{
struct iwl_trans_pcie *trans_pcie =
container_of(data, struct iwl_trans_pcie, rx_replenish);
iwlagn_rx_replenish(trans_pcie->trans);
}
/**
* iwl_rx_handle - Main entry function for receiving responses from uCode
*
* Uses the priv->rx_handlers callback function array to invoke
* the appropriate handlers, including command responses,
* frame-received notifications, and other notifications.
*/
static void iwl_rx_handle(struct iwl_trans *trans)
{
struct iwl_rx_mem_buffer *rxb;
struct iwl_rx_packet *pkt;
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rx_queue *rxq = &trans_pcie->rxq;
struct iwl_tx_queue *txq = &trans_pcie->txq[trans->shrd->cmd_queue];
struct iwl_device_cmd *cmd;
u32 r, i;
int reclaim;
unsigned long flags;
u8 fill_rx = 0;
u32 count = 8;
int total_empty;
int index, cmd_index;
/* uCode's read index (stored in shared DRAM) indicates the last Rx
* buffer that the driver may process (last buffer filled by ucode). */
r = le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF;
i = rxq->read;
/* Rx interrupt, but nothing sent from uCode */
if (i == r)
IWL_DEBUG_RX(trans, "r = %d, i = %d\n", r, i);
/* calculate total frames need to be restock after handling RX */
total_empty = r - rxq->write_actual;
if (total_empty < 0)
total_empty += RX_QUEUE_SIZE;
if (total_empty > (RX_QUEUE_SIZE / 2))
fill_rx = 1;
while (i != r) {
int len, err;
u16 sequence;
rxb = rxq->queue[i];
/* If an RXB doesn't have a Rx queue slot associated with it,
* then a bug has been introduced in the queue refilling
* routines -- catch it here */
if (WARN_ON(rxb == NULL)) {
i = (i + 1) & RX_QUEUE_MASK;
continue;
}
rxq->queue[i] = NULL;
dma_unmap_page(trans->dev, rxb->page_dma,
PAGE_SIZE << hw_params(trans).rx_page_order,
DMA_FROM_DEVICE);
pkt = rxb_addr(rxb);
IWL_DEBUG_RX(trans, "r = %d, i = %d, %s, 0x%02x\n", r,
i, get_cmd_string(pkt->hdr.cmd), pkt->hdr.cmd);
len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
len += sizeof(u32); /* account for status word */
trace_iwlwifi_dev_rx(priv(trans), pkt, len);
/* Reclaim a command buffer only if this packet is a response
* to a (driver-originated) command.
* If the packet (e.g. Rx frame) originated from uCode,
* there is no command buffer to reclaim.
* Ucode should set SEQ_RX_FRAME bit if ucode-originated,
* but apparently a few don't get set; catch them here. */
reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME) &&
(pkt->hdr.cmd != REPLY_RX_PHY_CMD) &&
(pkt->hdr.cmd != REPLY_RX) &&
(pkt->hdr.cmd != REPLY_RX_MPDU_CMD) &&
(pkt->hdr.cmd != REPLY_COMPRESSED_BA) &&
(pkt->hdr.cmd != STATISTICS_NOTIFICATION) &&
(pkt->hdr.cmd != REPLY_TX);
sequence = le16_to_cpu(pkt->hdr.sequence);
index = SEQ_TO_INDEX(sequence);
cmd_index = get_cmd_index(&txq->q, index);
if (reclaim)
cmd = txq->cmd[cmd_index];
else
cmd = NULL;
/* warn if this is cmd response / notification and the uCode
* didn't set the SEQ_RX_FRAME for a frame that is
* uCode-originated
* If you saw this code after the second half of 2012, then
* please remove it
*/
WARN(pkt->hdr.cmd != REPLY_TX && reclaim == false &&
(!(pkt->hdr.sequence & SEQ_RX_FRAME)),
"reclaim is false, SEQ_RX_FRAME unset: %s\n",
get_cmd_string(pkt->hdr.cmd));
err = iwl_op_mode_rx(trans->op_mode, rxb, cmd);
/*
* XXX: After here, we should always check rxb->page
* against NULL before touching it or its virtual
* memory (pkt). Because some rx_handler might have
* already taken or freed the pages.
*/
if (reclaim) {
/* Invoke any callbacks, transfer the buffer to caller,
* and fire off the (possibly) blocking
* iwl_trans_send_cmd()
* as we reclaim the driver command queue */
if (rxb->page)
iwl_tx_cmd_complete(trans, rxb, err);
else
IWL_WARN(trans, "Claim null rxb?\n");
}
/* Reuse the page if possible. For notification packets and
* SKBs that fail to Rx correctly, add them back into the
* rx_free list for reuse later. */
spin_lock_irqsave(&rxq->lock, flags);
if (rxb->page != NULL) {
rxb->page_dma = dma_map_page(trans->dev, rxb->page,
0, PAGE_SIZE <<
hw_params(trans).rx_page_order,
DMA_FROM_DEVICE);
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
} else
list_add_tail(&rxb->list, &rxq->rx_used);
spin_unlock_irqrestore(&rxq->lock, flags);
i = (i + 1) & RX_QUEUE_MASK;
/* If there are a lot of unused frames,
* restock the Rx queue so ucode wont assert. */
if (fill_rx) {
count++;
if (count >= 8) {
rxq->read = i;
iwlagn_rx_replenish_now(trans);
count = 0;
}
}
}
/* Backtrack one entry */
rxq->read = i;
if (fill_rx)
iwlagn_rx_replenish_now(trans);
else
iwlagn_rx_queue_restock(trans);
}
static const char * const desc_lookup_text[] = {
"OK",
"FAIL",
"BAD_PARAM",
"BAD_CHECKSUM",
"NMI_INTERRUPT_WDG",
"SYSASSERT",
"FATAL_ERROR",
"BAD_COMMAND",
"HW_ERROR_TUNE_LOCK",
"HW_ERROR_TEMPERATURE",
"ILLEGAL_CHAN_FREQ",
"VCC_NOT_STABLE",
"FH_ERROR",
"NMI_INTERRUPT_HOST",
"NMI_INTERRUPT_ACTION_PT",
"NMI_INTERRUPT_UNKNOWN",
"UCODE_VERSION_MISMATCH",
"HW_ERROR_ABS_LOCK",
"HW_ERROR_CAL_LOCK_FAIL",
"NMI_INTERRUPT_INST_ACTION_PT",
"NMI_INTERRUPT_DATA_ACTION_PT",
"NMI_TRM_HW_ER",
"NMI_INTERRUPT_TRM",
"NMI_INTERRUPT_BREAK_POINT",
"DEBUG_0",
"DEBUG_1",
"DEBUG_2",
"DEBUG_3",
};
static struct { char *name; u8 num; } advanced_lookup[] = {
{ "NMI_INTERRUPT_WDG", 0x34 },
{ "SYSASSERT", 0x35 },
{ "UCODE_VERSION_MISMATCH", 0x37 },
{ "BAD_COMMAND", 0x38 },
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
{ "FATAL_ERROR", 0x3D },
{ "NMI_TRM_HW_ERR", 0x46 },
{ "NMI_INTERRUPT_TRM", 0x4C },
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
{ "NMI_INTERRUPT_HOST", 0x66 },
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
{ "ADVANCED_SYSASSERT", 0 },
};
static const char *desc_lookup(u32 num)
{
int i;
int max = ARRAY_SIZE(desc_lookup_text);
if (num < max)
return desc_lookup_text[num];
max = ARRAY_SIZE(advanced_lookup) - 1;
for (i = 0; i < max; i++) {
if (advanced_lookup[i].num == num)
break;
}
return advanced_lookup[i].name;
}
#define ERROR_START_OFFSET (1 * sizeof(u32))
#define ERROR_ELEM_SIZE (7 * sizeof(u32))
static void iwl_dump_nic_error_log(struct iwl_trans *trans)
{
u32 base;
struct iwl_error_event_table table;
struct iwl_nic *nic = nic(trans);
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
base = trans->shrd->device_pointers.error_event_table;
if (trans->shrd->ucode_type == IWL_UCODE_INIT) {
if (!base)
base = nic->init_errlog_ptr;
} else {
if (!base)
base = nic->inst_errlog_ptr;
}
if (!iwlagn_hw_valid_rtc_data_addr(base)) {
IWL_ERR(trans,
"Not valid error log pointer 0x%08X for %s uCode\n",
base,
(trans->shrd->ucode_type == IWL_UCODE_INIT)
? "Init" : "RT");
return;
}
iwl_read_targ_mem_words(trans, base, &table, sizeof(table));
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
IWL_ERR(trans, "Start IWL Error Log Dump:\n");
IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
trans->shrd->status, table.valid);
}
trans_pcie->isr_stats.err_code = table.error_id;
trace_iwlwifi_dev_ucode_error(priv(nic), table.error_id, table.tsf_low,
table.data1, table.data2, table.line,
table.blink1, table.blink2, table.ilink1,
table.ilink2, table.bcon_time, table.gp1,
table.gp2, table.gp3, table.ucode_ver,
table.hw_ver, table.brd_ver);
IWL_ERR(trans, "0x%08X | %-28s\n", table.error_id,
desc_lookup(table.error_id));
IWL_ERR(trans, "0x%08X | uPc\n", table.pc);
IWL_ERR(trans, "0x%08X | branchlink1\n", table.blink1);
IWL_ERR(trans, "0x%08X | branchlink2\n", table.blink2);
IWL_ERR(trans, "0x%08X | interruptlink1\n", table.ilink1);
IWL_ERR(trans, "0x%08X | interruptlink2\n", table.ilink2);
IWL_ERR(trans, "0x%08X | data1\n", table.data1);
IWL_ERR(trans, "0x%08X | data2\n", table.data2);
IWL_ERR(trans, "0x%08X | line\n", table.line);
IWL_ERR(trans, "0x%08X | beacon time\n", table.bcon_time);
IWL_ERR(trans, "0x%08X | tsf low\n", table.tsf_low);
IWL_ERR(trans, "0x%08X | tsf hi\n", table.tsf_hi);
IWL_ERR(trans, "0x%08X | time gp1\n", table.gp1);
IWL_ERR(trans, "0x%08X | time gp2\n", table.gp2);
IWL_ERR(trans, "0x%08X | time gp3\n", table.gp3);
IWL_ERR(trans, "0x%08X | uCode version\n", table.ucode_ver);
IWL_ERR(trans, "0x%08X | hw version\n", table.hw_ver);
IWL_ERR(trans, "0x%08X | board version\n", table.brd_ver);
IWL_ERR(trans, "0x%08X | hcmd\n", table.hcmd);
IWL_ERR(trans, "0x%08X | isr0\n", table.isr0);
IWL_ERR(trans, "0x%08X | isr1\n", table.isr1);
IWL_ERR(trans, "0x%08X | isr2\n", table.isr2);
IWL_ERR(trans, "0x%08X | isr3\n", table.isr3);
IWL_ERR(trans, "0x%08X | isr4\n", table.isr4);
IWL_ERR(trans, "0x%08X | isr_pref\n", table.isr_pref);
IWL_ERR(trans, "0x%08X | wait_event\n", table.wait_event);
IWL_ERR(trans, "0x%08X | l2p_control\n", table.l2p_control);
IWL_ERR(trans, "0x%08X | l2p_duration\n", table.l2p_duration);
IWL_ERR(trans, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
IWL_ERR(trans, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
IWL_ERR(trans, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
IWL_ERR(trans, "0x%08X | timestamp\n", table.u_timestamp);
IWL_ERR(trans, "0x%08X | flow_handler\n", table.flow_handler);
}
/**
* iwl_irq_handle_error - called for HW or SW error interrupt from card
*/
static void iwl_irq_handle_error(struct iwl_trans *trans)
{
struct iwl_priv *priv = priv(trans);
/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
if (cfg(priv)->internal_wimax_coex &&
(!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
APMS_CLK_VAL_MRB_FUNC_MODE) ||
(iwl_read_prph(trans, APMG_PS_CTRL_REG) &
APMG_PS_CTRL_VAL_RESET_REQ))) {
/*
* Keep the restart process from trying to send host
* commands by clearing the ready bit.
*/
clear_bit(STATUS_READY, &trans->shrd->status);
clear_bit(STATUS_HCMD_ACTIVE, &trans->shrd->status);
wake_up(&priv->shrd->wait_command_queue);
IWL_ERR(trans, "RF is used by WiMAX\n");
return;
}
IWL_ERR(trans, "Loaded firmware version: %s\n",
priv->hw->wiphy->fw_version);
iwl_dump_nic_error_log(trans);
iwl_dump_csr(trans);
iwl_dump_fh(trans, NULL, false);
iwl_dump_nic_event_log(trans, false, NULL, false);
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_get_debug_level(trans->shrd) & IWL_DL_FW_ERRORS)
iwl_print_rx_config_cmd(priv(trans), IWL_RXON_CTX_BSS);
#endif
iwlagn_fw_error(priv, false);
}
#define EVENT_START_OFFSET (4 * sizeof(u32))
/**
* iwl_print_event_log - Dump error event log to syslog
*
*/
static int iwl_print_event_log(struct iwl_trans *trans, u32 start_idx,
u32 num_events, u32 mode,
int pos, char **buf, size_t bufsz)
{
u32 i;
u32 base; /* SRAM byte address of event log header */
u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
u32 ptr; /* SRAM byte address of log data */
u32 ev, time, data; /* event log data */
unsigned long reg_flags;
struct iwl_nic *nic = nic(trans);
if (num_events == 0)
return pos;
base = trans->shrd->device_pointers.log_event_table;
if (trans->shrd->ucode_type == IWL_UCODE_INIT) {
if (!base)
base = nic->init_evtlog_ptr;
} else {
if (!base)
base = nic->inst_evtlog_ptr;
}
if (mode == 0)
event_size = 2 * sizeof(u32);
else
event_size = 3 * sizeof(u32);
ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
/* Make sure device is powered up for SRAM reads */
spin_lock_irqsave(&trans->reg_lock, reg_flags);
iwl_grab_nic_access(trans);
/* Set starting address; reads will auto-increment */
iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
rmb();
/* "time" is actually "data" for mode 0 (no timestamp).
* place event id # at far right for easier visual parsing. */
for (i = 0; i < num_events; i++) {
ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
if (mode == 0) {
/* data, ev */
if (bufsz) {
pos += scnprintf(*buf + pos, bufsz - pos,
"EVT_LOG:0x%08x:%04u\n",
time, ev);
} else {
trace_iwlwifi_dev_ucode_event(priv(trans), 0,
time, ev);
IWL_ERR(trans, "EVT_LOG:0x%08x:%04u\n",
time, ev);
}
} else {
data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
if (bufsz) {
pos += scnprintf(*buf + pos, bufsz - pos,
"EVT_LOGT:%010u:0x%08x:%04u\n",
time, data, ev);
} else {
IWL_ERR(trans, "EVT_LOGT:%010u:0x%08x:%04u\n",
time, data, ev);
trace_iwlwifi_dev_ucode_event(priv(trans), time,
data, ev);
}
}
}
/* Allow device to power down */
iwl_release_nic_access(trans);
spin_unlock_irqrestore(&trans->reg_lock, reg_flags);
return pos;
}
/**
* iwl_print_last_event_logs - Dump the newest # of event log to syslog
*/
static int iwl_print_last_event_logs(struct iwl_trans *trans, u32 capacity,
u32 num_wraps, u32 next_entry,
u32 size, u32 mode,
int pos, char **buf, size_t bufsz)
{
/*
* display the newest DEFAULT_LOG_ENTRIES entries
* i.e the entries just before the next ont that uCode would fill.
*/
if (num_wraps) {
if (next_entry < size) {
pos = iwl_print_event_log(trans,
capacity - (size - next_entry),
size - next_entry, mode,
pos, buf, bufsz);
pos = iwl_print_event_log(trans, 0,
next_entry, mode,
pos, buf, bufsz);
} else
pos = iwl_print_event_log(trans, next_entry - size,
size, mode, pos, buf, bufsz);
} else {
if (next_entry < size) {
pos = iwl_print_event_log(trans, 0, next_entry,
mode, pos, buf, bufsz);
} else {
pos = iwl_print_event_log(trans, next_entry - size,
size, mode, pos, buf, bufsz);
}
}
return pos;
}
#define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
int iwl_dump_nic_event_log(struct iwl_trans *trans, bool full_log,
char **buf, bool display)
{
u32 base; /* SRAM byte address of event log header */
u32 capacity; /* event log capacity in # entries */
u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */
u32 num_wraps; /* # times uCode wrapped to top of log */
u32 next_entry; /* index of next entry to be written by uCode */
u32 size; /* # entries that we'll print */
u32 logsize;
int pos = 0;
size_t bufsz = 0;
struct iwl_nic *nic = nic(trans);
base = trans->shrd->device_pointers.log_event_table;
if (trans->shrd->ucode_type == IWL_UCODE_INIT) {
logsize = nic->init_evtlog_size;
if (!base)
base = nic->init_evtlog_ptr;
} else {
logsize = nic->inst_evtlog_size;
if (!base)
base = nic->inst_evtlog_ptr;
}
if (!iwlagn_hw_valid_rtc_data_addr(base)) {
IWL_ERR(trans,
"Invalid event log pointer 0x%08X for %s uCode\n",
base,
(trans->shrd->ucode_type == IWL_UCODE_INIT)
? "Init" : "RT");
return -EINVAL;
}
/* event log header */
capacity = iwl_read_targ_mem(trans, base);
mode = iwl_read_targ_mem(trans, base + (1 * sizeof(u32)));
num_wraps = iwl_read_targ_mem(trans, base + (2 * sizeof(u32)));
next_entry = iwl_read_targ_mem(trans, base + (3 * sizeof(u32)));
if (capacity > logsize) {
IWL_ERR(trans, "Log capacity %d is bogus, limit to %d "
"entries\n", capacity, logsize);
capacity = logsize;
}
if (next_entry > logsize) {
IWL_ERR(trans, "Log write index %d is bogus, limit to %d\n",
next_entry, logsize);
next_entry = logsize;
}
size = num_wraps ? capacity : next_entry;
/* bail out if nothing in log */
if (size == 0) {
IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
return pos;
}
#ifdef CONFIG_IWLWIFI_DEBUG
if (!(iwl_get_debug_level(trans->shrd) & IWL_DL_FW_ERRORS) && !full_log)
size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
#else
size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
#endif
IWL_ERR(trans, "Start IWL Event Log Dump: display last %u entries\n",
size);
#ifdef CONFIG_IWLWIFI_DEBUG
if (display) {
if (full_log)
bufsz = capacity * 48;
else
bufsz = size * 48;
*buf = kmalloc(bufsz, GFP_KERNEL);
if (!*buf)
return -ENOMEM;
}
if ((iwl_get_debug_level(trans->shrd) & IWL_DL_FW_ERRORS) || full_log) {
/*
* if uCode has wrapped back to top of log,
* start at the oldest entry,
* i.e the next one that uCode would fill.
*/
if (num_wraps)
pos = iwl_print_event_log(trans, next_entry,
capacity - next_entry, mode,
pos, buf, bufsz);
/* (then/else) start at top of log */
pos = iwl_print_event_log(trans, 0,
next_entry, mode, pos, buf, bufsz);
} else
pos = iwl_print_last_event_logs(trans, capacity, num_wraps,
next_entry, size, mode,
pos, buf, bufsz);
#else
pos = iwl_print_last_event_logs(trans, capacity, num_wraps,
next_entry, size, mode,
pos, buf, bufsz);
#endif
return pos;
}
/* tasklet for iwlagn interrupt */
void iwl_irq_tasklet(struct iwl_trans *trans)
{
u32 inta = 0;
u32 handled = 0;
unsigned long flags;
u32 i;
#ifdef CONFIG_IWLWIFI_DEBUG
u32 inta_mask;
#endif
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
/* Ack/clear/reset pending uCode interrupts.
* Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
*/
/* There is a hardware bug in the interrupt mask function that some
* interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
* they are disabled in the CSR_INT_MASK register. Furthermore the
* ICT interrupt handling mechanism has another bug that might cause
* these unmasked interrupts fail to be detected. We workaround the
* hardware bugs here by ACKing all the possible interrupts so that
* interrupt coalescing can still be achieved.
*/
iwl_write32(trans, CSR_INT,
trans_pcie->inta | ~trans_pcie->inta_mask);
inta = trans_pcie->inta;
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_get_debug_level(trans->shrd) & IWL_DL_ISR) {
/* just for debug */
inta_mask = iwl_read32(trans, CSR_INT_MASK);
IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n ",
inta, inta_mask);
}
#endif
/* saved interrupt in inta variable now we can reset trans_pcie->inta */
trans_pcie->inta = 0;
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
/* Now service all interrupt bits discovered above. */
if (inta & CSR_INT_BIT_HW_ERR) {
IWL_ERR(trans, "Hardware error detected. Restarting.\n");
/* Tell the device to stop sending interrupts */
iwl_disable_interrupts(trans);
isr_stats->hw++;
iwl_irq_handle_error(trans);
handled |= CSR_INT_BIT_HW_ERR;
return;
}
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_get_debug_level(trans->shrd) & (IWL_DL_ISR)) {
/* NIC fires this, but we don't use it, redundant with WAKEUP */
if (inta & CSR_INT_BIT_SCD) {
IWL_DEBUG_ISR(trans, "Scheduler finished to transmit "
"the frame/frames.\n");
isr_stats->sch++;
}
/* Alive notification via Rx interrupt will do the real work */
if (inta & CSR_INT_BIT_ALIVE) {
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
isr_stats->alive++;
}
}
#endif
/* Safely ignore these bits for debug checks below */
inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
/* HW RF KILL switch toggled */
if (inta & CSR_INT_BIT_RF_KILL) {
int hw_rf_kill = 0;
if (!(iwl_read32(trans, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
hw_rf_kill = 1;
IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
hw_rf_kill ? "disable radio" : "enable radio");
isr_stats->rfkill++;
/* driver only loads ucode once setting the interface up.
* the driver allows loading the ucode even if the radio
* is killed. Hence update the killswitch state here. The
* rfkill handler will care about restarting if needed.
*/
if (!test_bit(STATUS_ALIVE, &trans->shrd->status)) {
if (hw_rf_kill)
set_bit(STATUS_RF_KILL_HW,
&trans->shrd->status);
else
clear_bit(STATUS_RF_KILL_HW,
&trans->shrd->status);
iwl_set_hw_rfkill_state(priv(trans), hw_rf_kill);
}
handled |= CSR_INT_BIT_RF_KILL;
}
/* Chip got too hot and stopped itself */
if (inta & CSR_INT_BIT_CT_KILL) {
IWL_ERR(trans, "Microcode CT kill error detected.\n");
isr_stats->ctkill++;
handled |= CSR_INT_BIT_CT_KILL;
}
/* Error detected by uCode */
if (inta & CSR_INT_BIT_SW_ERR) {
IWL_ERR(trans, "Microcode SW error detected. "
" Restarting 0x%X.\n", inta);
isr_stats->sw++;
iwl_irq_handle_error(trans);
handled |= CSR_INT_BIT_SW_ERR;
}
/* uCode wakes up after power-down sleep */
if (inta & CSR_INT_BIT_WAKEUP) {
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
iwl_rx_queue_update_write_ptr(trans, &trans_pcie->rxq);
for (i = 0; i < hw_params(trans).max_txq_num; i++)
iwl_txq_update_write_ptr(trans,
&trans_pcie->txq[i]);
isr_stats->wakeup++;
handled |= CSR_INT_BIT_WAKEUP;
}
/* All uCode command responses, including Tx command responses,
* Rx "responses" (frame-received notification), and other
* notifications from uCode come through here*/
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
CSR_INT_BIT_RX_PERIODIC)) {
IWL_DEBUG_ISR(trans, "Rx interrupt\n");
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
iwl_write32(trans, CSR_FH_INT_STATUS,
CSR_FH_INT_RX_MASK);
}
if (inta & CSR_INT_BIT_RX_PERIODIC) {
handled |= CSR_INT_BIT_RX_PERIODIC;
iwl_write32(trans,
CSR_INT, CSR_INT_BIT_RX_PERIODIC);
}
/* Sending RX interrupt require many steps to be done in the
* the device:
* 1- write interrupt to current index in ICT table.
* 2- dma RX frame.
* 3- update RX shared data to indicate last write index.
* 4- send interrupt.
* This could lead to RX race, driver could receive RX interrupt
* but the shared data changes does not reflect this;
* periodic interrupt will detect any dangling Rx activity.
*/
/* Disable periodic interrupt; we use it as just a one-shot. */
iwl_write8(trans, CSR_INT_PERIODIC_REG,
CSR_INT_PERIODIC_DIS);
#ifdef CONFIG_IWLWIFI_IDI
iwl_amfh_rx_handler();
#else
iwl_rx_handle(trans);
#endif
/*
* Enable periodic interrupt in 8 msec only if we received
* real RX interrupt (instead of just periodic int), to catch
* any dangling Rx interrupt. If it was just the periodic
* interrupt, there was no dangling Rx activity, and no need
* to extend the periodic interrupt; one-shot is enough.
*/
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
iwl_write8(trans, CSR_INT_PERIODIC_REG,
CSR_INT_PERIODIC_ENA);
isr_stats->rx++;
}
/* This "Tx" DMA channel is used only for loading uCode */
if (inta & CSR_INT_BIT_FH_TX) {
iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
isr_stats->tx++;
handled |= CSR_INT_BIT_FH_TX;
/* Wake up uCode load routine, now that load is complete */
trans->ucode_write_complete = 1;
wake_up(&trans->shrd->wait_command_queue);
}
if (inta & ~handled) {
IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
isr_stats->unhandled++;
}
if (inta & ~(trans_pcie->inta_mask)) {
IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
inta & ~trans_pcie->inta_mask);
}
/* Re-enable all interrupts */
/* only Re-enable if disabled by irq */
if (test_bit(STATUS_INT_ENABLED, &trans->shrd->status))
iwl_enable_interrupts(trans);
/* Re-enable RF_KILL if it occurred */
else if (handled & CSR_INT_BIT_RF_KILL) {
IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
iwl_write32(trans, CSR_INT_MASK, CSR_INT_BIT_RF_KILL);
}
}
/******************************************************************************
*
* ICT functions
*
******************************************************************************/
/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT 12
#define ICT_SIZE (1 << ICT_SHIFT)
#define ICT_COUNT (ICT_SIZE / sizeof(u32))
/* Free dram table */
void iwl_free_isr_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
if (trans_pcie->ict_tbl) {
dma_free_coherent(trans->dev, ICT_SIZE,
trans_pcie->ict_tbl,
trans_pcie->ict_tbl_dma);
trans_pcie->ict_tbl = NULL;
trans_pcie->ict_tbl_dma = 0;
}
}
/*
* allocate dram shared table, it is an aligned memory
* block of ICT_SIZE.
* also reset all data related to ICT table interrupt.
*/
int iwl_alloc_isr_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
trans_pcie->ict_tbl =
dma_alloc_coherent(trans->dev, ICT_SIZE,
&trans_pcie->ict_tbl_dma,
GFP_KERNEL);
if (!trans_pcie->ict_tbl)
return -ENOMEM;
/* just an API sanity check ... it is guaranteed to be aligned */
if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
iwl_free_isr_ict(trans);
return -EINVAL;
}
IWL_DEBUG_ISR(trans, "ict dma addr %Lx\n",
(unsigned long long)trans_pcie->ict_tbl_dma);
IWL_DEBUG_ISR(trans, "ict vir addr %p\n", trans_pcie->ict_tbl);
/* reset table and index to all 0 */
memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
trans_pcie->ict_index = 0;
/* add periodic RX interrupt */
trans_pcie->inta_mask |= CSR_INT_BIT_RX_PERIODIC;
return 0;
}
/* Device is going up inform it about using ICT interrupt table,
* also we need to tell the driver to start using ICT interrupt.
*/
void iwl_reset_ict(struct iwl_trans *trans)
{
u32 val;
unsigned long flags;
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
if (!trans_pcie->ict_tbl)
return;
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
iwl_disable_interrupts(trans);
memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
val |= CSR_DRAM_INT_TBL_ENABLE;
val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
trans_pcie->use_ict = true;
trans_pcie->ict_index = 0;
iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
iwl_enable_interrupts(trans);
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
}
/* Device is going down disable ict interrupt usage */
void iwl_disable_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie =
IWL_TRANS_GET_PCIE_TRANS(trans);
unsigned long flags;
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
trans_pcie->use_ict = false;
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
}
static irqreturn_t iwl_isr(int irq, void *data)
{
struct iwl_trans *trans = data;
struct iwl_trans_pcie *trans_pcie;
u32 inta, inta_mask;
unsigned long flags;
#ifdef CONFIG_IWLWIFI_DEBUG
u32 inta_fh;
#endif
if (!trans)
return IRQ_NONE;
trace_iwlwifi_dev_irq(priv(trans));
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
/* Disable (but don't clear!) interrupts here to avoid
* back-to-back ISRs and sporadic interrupts from our NIC.
* If we have something to service, the tasklet will re-enable ints.
* If we *don't* have something, we'll re-enable before leaving here. */
inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* Discover which interrupts are active/pending */
inta = iwl_read32(trans, CSR_INT);
/* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC. */
if (!inta) {
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
goto none;
}
if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
/* Hardware disappeared. It might have already raised
* an interrupt */
IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
goto unplugged;
}
#ifdef CONFIG_IWLWIFI_DEBUG
if (iwl_get_debug_level(trans->shrd) & (IWL_DL_ISR)) {
inta_fh = iwl_read32(trans, CSR_FH_INT_STATUS);
IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x, "
"fh 0x%08x\n", inta, inta_mask, inta_fh);
}
#endif
trans_pcie->inta |= inta;
/* iwl_irq_tasklet() will service interrupts and re-enable them */
if (likely(inta))
tasklet_schedule(&trans_pcie->irq_tasklet);
else if (test_bit(STATUS_INT_ENABLED, &trans->shrd->status) &&
!trans_pcie->inta)
iwl_enable_interrupts(trans);
unplugged:
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
return IRQ_HANDLED;
none:
/* re-enable interrupts here since we don't have anything to service. */
/* only Re-enable if disabled by irq and no schedules tasklet. */
if (test_bit(STATUS_INT_ENABLED, &trans->shrd->status) &&
!trans_pcie->inta)
iwl_enable_interrupts(trans);
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
return IRQ_NONE;
}
/* interrupt handler using ict table, with this interrupt driver will
* stop using INTA register to get device's interrupt, reading this register
* is expensive, device will write interrupts in ICT dram table, increment
* index then will fire interrupt to driver, driver will OR all ICT table
* entries from current index up to table entry with 0 value. the result is
* the interrupt we need to service, driver will set the entries back to 0 and
* set index.
*/
irqreturn_t iwl_isr_ict(int irq, void *data)
{
struct iwl_trans *trans = data;
struct iwl_trans_pcie *trans_pcie;
u32 inta, inta_mask;
u32 val = 0;
u32 read;
unsigned long flags;
if (!trans)
return IRQ_NONE;
trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/* dram interrupt table not set yet,
* use legacy interrupt.
*/
if (!trans_pcie->use_ict)
return iwl_isr(irq, data);
trace_iwlwifi_dev_irq(priv(trans));
spin_lock_irqsave(&trans_pcie->irq_lock, flags);
/* Disable (but don't clear!) interrupts here to avoid
* back-to-back ISRs and sporadic interrupts from our NIC.
* If we have something to service, the tasklet will re-enable ints.
* If we *don't* have something, we'll re-enable before leaving here.
*/
inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC. */
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
trace_iwlwifi_dev_ict_read(priv(trans), trans_pcie->ict_index, read);
if (!read) {
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
goto none;
}
/*
* Collect all entries up to the first 0, starting from ict_index;
* note we already read at ict_index.
*/
do {
val |= read;
IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
trans_pcie->ict_index, read);
trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
trans_pcie->ict_index =
iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
trace_iwlwifi_dev_ict_read(priv(trans), trans_pcie->ict_index,
read);
} while (read);
/* We should not get this value, just ignore it. */
if (val == 0xffffffff)
val = 0;
/*
* this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
* (bit 15 before shifting it to 31) to clear when using interrupt
* coalescing. fortunately, bits 18 and 19 stay set when this happens
* so we use them to decide on the real state of the Rx bit.
* In order words, bit 15 is set if bit 18 or bit 19 are set.
*/
if (val & 0xC0000)
val |= 0x8000;
inta = (0xff & val) | ((0xff00 & val) << 16);
IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x ict 0x%08x\n",
inta, inta_mask, val);
inta &= trans_pcie->inta_mask;
trans_pcie->inta |= inta;
/* iwl_irq_tasklet() will service interrupts and re-enable them */
if (likely(inta))
tasklet_schedule(&trans_pcie->irq_tasklet);
else if (test_bit(STATUS_INT_ENABLED, &trans->shrd->status) &&
!trans_pcie->inta) {
/* Allow interrupt if was disabled by this handler and
* no tasklet was schedules, We should not enable interrupt,
* tasklet will enable it.
*/
iwl_enable_interrupts(trans);
}
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
return IRQ_HANDLED;
none:
/* re-enable interrupts here since we don't have anything to service.
* only Re-enable if disabled by irq.
*/
if (test_bit(STATUS_INT_ENABLED, &trans->shrd->status) &&
!trans_pcie->inta)
iwl_enable_interrupts(trans);
spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
return IRQ_NONE;
}