linux/arch/arm/mm/flush.c

421 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/mm/flush.c
*
* Copyright (C) 1995-2002 Russell King
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/highmem.h>
#include <asm/smp_plat.h>
#include <asm/tlbflush.h>
#include <linux/hugetlb.h>
#include "mm.h"
#ifdef CONFIG_ARM_HEAVY_MB
void (*soc_mb)(void);
void arm_heavy_mb(void)
{
#ifdef CONFIG_OUTER_CACHE_SYNC
if (outer_cache.sync)
outer_cache.sync();
#endif
if (soc_mb)
soc_mb();
}
EXPORT_SYMBOL(arm_heavy_mb);
#endif
#ifdef CONFIG_CPU_CACHE_VIPT
static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
{
unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
const int zero = 0;
set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
asm( "mcrr p15, 0, %1, %0, c14\n"
" mcr p15, 0, %2, c7, c10, 4"
:
: "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero)
: "cc");
}
static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
{
unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
unsigned long offset = vaddr & (PAGE_SIZE - 1);
unsigned long to;
set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
to = va + offset;
flush_icache_range(to, to + len);
}
void flush_cache_mm(struct mm_struct *mm)
{
if (cache_is_vivt()) {
vivt_flush_cache_mm(mm);
return;
}
if (cache_is_vipt_aliasing()) {
asm( "mcr p15, 0, %0, c7, c14, 0\n"
" mcr p15, 0, %0, c7, c10, 4"
:
: "r" (0)
: "cc");
}
}
void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
if (cache_is_vivt()) {
vivt_flush_cache_range(vma, start, end);
return;
}
if (cache_is_vipt_aliasing()) {
asm( "mcr p15, 0, %0, c7, c14, 0\n"
" mcr p15, 0, %0, c7, c10, 4"
:
: "r" (0)
: "cc");
}
if (vma->vm_flags & VM_EXEC)
__flush_icache_all();
}
void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
{
if (cache_is_vivt()) {
vivt_flush_cache_page(vma, user_addr, pfn);
return;
}
if (cache_is_vipt_aliasing()) {
flush_pfn_alias(pfn, user_addr);
__flush_icache_all();
}
if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
__flush_icache_all();
}
#else
#define flush_pfn_alias(pfn,vaddr) do { } while (0)
#define flush_icache_alias(pfn,vaddr,len) do { } while (0)
#endif
#define FLAG_PA_IS_EXEC 1
#define FLAG_PA_CORE_IN_MM 2
static void flush_ptrace_access_other(void *args)
{
__flush_icache_all();
}
static inline
void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
unsigned long len, unsigned int flags)
{
if (cache_is_vivt()) {
if (flags & FLAG_PA_CORE_IN_MM) {
unsigned long addr = (unsigned long)kaddr;
__cpuc_coherent_kern_range(addr, addr + len);
}
return;
}
if (cache_is_vipt_aliasing()) {
flush_pfn_alias(page_to_pfn(page), uaddr);
__flush_icache_all();
return;
}
/* VIPT non-aliasing D-cache */
if (flags & FLAG_PA_IS_EXEC) {
unsigned long addr = (unsigned long)kaddr;
if (icache_is_vipt_aliasing())
flush_icache_alias(page_to_pfn(page), uaddr, len);
else
__cpuc_coherent_kern_range(addr, addr + len);
if (cache_ops_need_broadcast())
smp_call_function(flush_ptrace_access_other,
NULL, 1);
}
}
static
void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *kaddr, unsigned long len)
{
unsigned int flags = 0;
if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
flags |= FLAG_PA_CORE_IN_MM;
if (vma->vm_flags & VM_EXEC)
flags |= FLAG_PA_IS_EXEC;
__flush_ptrace_access(page, uaddr, kaddr, len, flags);
}
void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
void *kaddr, unsigned long len)
{
unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
__flush_ptrace_access(page, uaddr, kaddr, len, flags);
}
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*
* Note that this code needs to run on the current CPU.
*/
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long uaddr, void *dst, const void *src,
unsigned long len)
{
#ifdef CONFIG_SMP
preempt_disable();
#endif
memcpy(dst, src, len);
flush_ptrace_access(vma, page, uaddr, dst, len);
#ifdef CONFIG_SMP
preempt_enable();
#endif
}
void __flush_dcache_page(struct address_space *mapping, struct page *page)
{
/*
* Writeback any data associated with the kernel mapping of this
* page. This ensures that data in the physical page is mutually
* coherent with the kernels mapping.
*/
if (!PageHighMem(page)) {
size_t page_size = PAGE_SIZE << compound_order(page);
__cpuc_flush_dcache_area(page_address(page), page_size);
} else {
unsigned long i;
if (cache_is_vipt_nonaliasing()) {
for (i = 0; i < (1 << compound_order(page)); i++) {
void *addr = kmap_atomic(page + i);
__cpuc_flush_dcache_area(addr, PAGE_SIZE);
kunmap_atomic(addr);
}
} else {
for (i = 0; i < (1 << compound_order(page)); i++) {
void *addr = kmap_high_get(page + i);
if (addr) {
__cpuc_flush_dcache_area(addr, PAGE_SIZE);
kunmap_high(page + i);
}
}
}
}
/*
* If this is a page cache page, and we have an aliasing VIPT cache,
* we only need to do one flush - which would be at the relevant
* userspace colour, which is congruent with page->index.
*/
if (mapping && cache_is_vipt_aliasing())
flush_pfn_alias(page_to_pfn(page),
page->index << PAGE_SHIFT);
}
static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
{
struct mm_struct *mm = current->active_mm;
struct vm_area_struct *mpnt;
pgoff_t pgoff;
/*
* There are possible user space mappings of this page:
* - VIVT cache: we need to also write back and invalidate all user
* data in the current VM view associated with this page.
* - aliasing VIPT: we only need to find one mapping of this page.
*/
pgoff = page->index;
flush_dcache_mmap_lock(mapping);
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
unsigned long offset;
/*
* If this VMA is not in our MM, we can ignore it.
*/
if (mpnt->vm_mm != mm)
continue;
if (!(mpnt->vm_flags & VM_MAYSHARE))
continue;
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
}
flush_dcache_mmap_unlock(mapping);
}
#if __LINUX_ARM_ARCH__ >= 6
void __sync_icache_dcache(pte_t pteval)
{
unsigned long pfn;
struct page *page;
struct address_space *mapping;
if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
/* only flush non-aliasing VIPT caches for exec mappings */
return;
pfn = pte_pfn(pteval);
if (!pfn_valid(pfn))
return;
page = pfn_to_page(pfn);
if (cache_is_vipt_aliasing())
mapping = page_mapping_file(page);
else
mapping = NULL;
if (!test_and_set_bit(PG_dcache_clean, &page->flags))
__flush_dcache_page(mapping, page);
if (pte_exec(pteval))
__flush_icache_all();
}
#endif
/*
* Ensure cache coherency between kernel mapping and userspace mapping
* of this page.
*
* We have three cases to consider:
* - VIPT non-aliasing cache: fully coherent so nothing required.
* - VIVT: fully aliasing, so we need to handle every alias in our
* current VM view.
* - VIPT aliasing: need to handle one alias in our current VM view.
*
* If we need to handle aliasing:
* If the page only exists in the page cache and there are no user
* space mappings, we can be lazy and remember that we may have dirty
* kernel cache lines for later. Otherwise, we assume we have
* aliasing mappings.
*
* Note that we disable the lazy flush for SMP configurations where
* the cache maintenance operations are not automatically broadcasted.
*/
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
/*
* The zero page is never written to, so never has any dirty
* cache lines, and therefore never needs to be flushed.
*/
if (page == ZERO_PAGE(0))
return;
if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) {
if (test_bit(PG_dcache_clean, &page->flags))
clear_bit(PG_dcache_clean, &page->flags);
return;
}
mapping = page_mapping_file(page);
if (!cache_ops_need_broadcast() &&
mapping && !page_mapcount(page))
clear_bit(PG_dcache_clean, &page->flags);
else {
__flush_dcache_page(mapping, page);
if (mapping && cache_is_vivt())
__flush_dcache_aliases(mapping, page);
else if (mapping)
__flush_icache_all();
set_bit(PG_dcache_clean, &page->flags);
}
}
EXPORT_SYMBOL(flush_dcache_page);
/*
* Ensure cache coherency for the kernel mapping of this page. We can
* assume that the page is pinned via kmap.
*
* If the page only exists in the page cache and there are no user
* space mappings, this is a no-op since the page was already marked
* dirty at creation. Otherwise, we need to flush the dirty kernel
* cache lines directly.
*/
void flush_kernel_dcache_page(struct page *page)
{
if (cache_is_vivt() || cache_is_vipt_aliasing()) {
struct address_space *mapping;
mapping = page_mapping_file(page);
if (!mapping || mapping_mapped(mapping)) {
void *addr;
addr = page_address(page);
/*
* kmap_atomic() doesn't set the page virtual
* address for highmem pages, and
* kunmap_atomic() takes care of cache
* flushing already.
*/
if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
__cpuc_flush_dcache_area(addr, PAGE_SIZE);
}
}
}
EXPORT_SYMBOL(flush_kernel_dcache_page);
/*
* Flush an anonymous page so that users of get_user_pages()
* can safely access the data. The expected sequence is:
*
* get_user_pages()
* -> flush_anon_page
* memcpy() to/from page
* if written to page, flush_dcache_page()
*/
void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
{
unsigned long pfn;
/* VIPT non-aliasing caches need do nothing */
if (cache_is_vipt_nonaliasing())
return;
/*
* Write back and invalidate userspace mapping.
*/
pfn = page_to_pfn(page);
if (cache_is_vivt()) {
flush_cache_page(vma, vmaddr, pfn);
} else {
/*
* For aliasing VIPT, we can flush an alias of the
* userspace address only.
*/
flush_pfn_alias(pfn, vmaddr);
__flush_icache_all();
}
/*
* Invalidate kernel mapping. No data should be contained
* in this mapping of the page. FIXME: this is overkill
* since we actually ask for a write-back and invalidate.
*/
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}