linux/drivers/usb/dwc2/hcd_queue.c

836 lines
22 KiB
C

/*
* hcd_queue.c - DesignWare HS OTG Controller host queuing routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the functions to manage Queue Heads and Queue
* Transfer Descriptors for Host mode
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/**
* dwc2_qh_init() - Initializes a QH structure
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to init
* @urb: Holds the information about the device/endpoint needed to initialize
* the QH
*/
#define SCHEDULE_SLOP 10
static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
struct dwc2_hcd_urb *urb)
{
int dev_speed, hub_addr, hub_port;
char *speed, *type;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* Initialize QH */
qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
qh->data_toggle = DWC2_HC_PID_DATA0;
qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
INIT_LIST_HEAD(&qh->qtd_list);
INIT_LIST_HEAD(&qh->qh_list_entry);
/* FS/LS Endpoint on HS Hub, NOT virtual root hub */
dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
hub_addr != 0 && hub_addr != 1) {
dev_vdbg(hsotg->dev,
"QH init: EP %d: TT found at hub addr %d, for port %d\n",
dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
hub_port);
qh->do_split = 1;
}
if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
/* Compute scheduling parameters once and save them */
u32 hprt, prtspd;
/* Todo: Account for split transfers in the bus time */
int bytecount =
dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
qh->ep_type == USB_ENDPOINT_XFER_ISOC,
bytecount));
/* Start in a slightly future (micro)frame */
qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
SCHEDULE_SLOP);
qh->interval = urb->interval;
#if 0
/* Increase interrupt polling rate for debugging */
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
qh->interval = 8;
#endif
hprt = readl(hsotg->regs + HPRT0);
prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
if (prtspd == HPRT0_SPD_HIGH_SPEED &&
(dev_speed == USB_SPEED_LOW ||
dev_speed == USB_SPEED_FULL)) {
qh->interval *= 8;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
}
dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
dwc2_hcd_get_dev_addr(&urb->pipe_info));
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
dwc2_hcd_get_ep_num(&urb->pipe_info),
dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
qh->dev_speed = dev_speed;
switch (dev_speed) {
case USB_SPEED_LOW:
speed = "low";
break;
case USB_SPEED_FULL:
speed = "full";
break;
case USB_SPEED_HIGH:
speed = "high";
break;
default:
speed = "?";
break;
}
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
switch (qh->ep_type) {
case USB_ENDPOINT_XFER_ISOC:
type = "isochronous";
break;
case USB_ENDPOINT_XFER_INT:
type = "interrupt";
break;
case USB_ENDPOINT_XFER_CONTROL:
type = "control";
break;
case USB_ENDPOINT_XFER_BULK:
type = "bulk";
break;
default:
type = "?";
break;
}
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
qh->usecs);
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
qh->interval);
}
}
/**
* dwc2_hcd_qh_create() - Allocates and initializes a QH
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @urb: Holds the information about the device/endpoint needed
* to initialize the QH
* @atomic_alloc: Flag to do atomic allocation if needed
*
* Return: Pointer to the newly allocated QH, or NULL on error
*/
static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb,
gfp_t mem_flags)
{
struct dwc2_qh *qh;
if (!urb->priv)
return NULL;
/* Allocate memory */
qh = kzalloc(sizeof(*qh), mem_flags);
if (!qh)
return NULL;
dwc2_qh_init(hsotg, qh, urb);
if (hsotg->core_params->dma_desc_enable > 0 &&
dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
dwc2_hcd_qh_free(hsotg, qh);
return NULL;
}
return qh;
}
/**
* dwc2_hcd_qh_free() - Frees the QH
*
* @hsotg: HCD instance
* @qh: The QH to free
*
* QH should already be removed from the list. QTD list should already be empty
* if called from URB Dequeue.
*
* Must NOT be called with interrupt disabled or spinlock held
*/
void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
u32 buf_size;
if (hsotg->core_params->dma_desc_enable > 0) {
dwc2_hcd_qh_free_ddma(hsotg, qh);
} else if (qh->dw_align_buf) {
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
buf_size = 4096;
else
buf_size = hsotg->core_params->max_transfer_size;
dma_free_coherent(hsotg->dev, buf_size, qh->dw_align_buf,
qh->dw_align_buf_dma);
}
kfree(qh);
}
/**
* dwc2_periodic_channel_available() - Checks that a channel is available for a
* periodic transfer
*
* @hsotg: The HCD state structure for the DWC OTG controller
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
{
/*
* Currently assuming that there is a dedicated host channel for
* each periodic transaction plus at least one host channel for
* non-periodic transactions
*/
int status;
int num_channels;
num_channels = hsotg->core_params->host_channels;
if (hsotg->periodic_channels + hsotg->non_periodic_channels <
num_channels
&& hsotg->periodic_channels < num_channels - 1) {
status = 0;
} else {
dev_dbg(hsotg->dev,
"%s: Total channels: %d, Periodic: %d, "
"Non-periodic: %d\n", __func__, num_channels,
hsotg->periodic_channels, hsotg->non_periodic_channels);
status = -ENOSPC;
}
return status;
}
/**
* dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
* for the specified QH in the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH containing periodic bandwidth required
*
* Return: 0 if successful, negative error code otherwise
*
* For simplicity, this calculation assumes that all the transfers in the
* periodic schedule may occur in the same (micro)frame
*/
static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
int status;
s16 max_claimed_usecs;
status = 0;
if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
/*
* High speed mode
* Max periodic usecs is 80% x 125 usec = 100 usec
*/
max_claimed_usecs = 100 - qh->usecs;
} else {
/*
* Full speed mode
* Max periodic usecs is 90% x 1000 usec = 900 usec
*/
max_claimed_usecs = 900 - qh->usecs;
}
if (hsotg->periodic_usecs > max_claimed_usecs) {
dev_err(hsotg->dev,
"%s: already claimed usecs %d, required usecs %d\n",
__func__, hsotg->periodic_usecs, qh->usecs);
status = -ENOSPC;
}
return status;
}
/**
* Microframe scheduler
* track the total use in hsotg->frame_usecs
* keep each qh use in qh->frame_usecs
* when surrendering the qh then donate the time back
*/
static const unsigned short max_uframe_usecs[] = {
100, 100, 100, 100, 100, 100, 30, 0
};
void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg)
{
int i;
for (i = 0; i < 8; i++)
hsotg->frame_usecs[i] = max_uframe_usecs[i];
}
static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
unsigned short utime = qh->usecs;
int i;
for (i = 0; i < 8; i++) {
/* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */
if (utime <= hsotg->frame_usecs[i]) {
hsotg->frame_usecs[i] -= utime;
qh->frame_usecs[i] += utime;
return i;
}
}
return -ENOSPC;
}
/*
* use this for FS apps that can span multiple uframes
*/
static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
unsigned short utime = qh->usecs;
unsigned short xtime;
int t_left;
int i;
int j;
int k;
for (i = 0; i < 8; i++) {
if (hsotg->frame_usecs[i] <= 0)
continue;
/*
* we need n consecutive slots so use j as a start slot
* j plus j+1 must be enough time (for now)
*/
xtime = hsotg->frame_usecs[i];
for (j = i + 1; j < 8; j++) {
/*
* if we add this frame remaining time to xtime we may
* be OK, if not we need to test j for a complete frame
*/
if (xtime + hsotg->frame_usecs[j] < utime) {
if (hsotg->frame_usecs[j] <
max_uframe_usecs[j])
continue;
}
if (xtime >= utime) {
t_left = utime;
for (k = i; k < 8; k++) {
t_left -= hsotg->frame_usecs[k];
if (t_left <= 0) {
qh->frame_usecs[k] +=
hsotg->frame_usecs[k]
+ t_left;
hsotg->frame_usecs[k] = -t_left;
return i;
} else {
qh->frame_usecs[k] +=
hsotg->frame_usecs[k];
hsotg->frame_usecs[k] = 0;
}
}
}
/* add the frame time to x time */
xtime += hsotg->frame_usecs[j];
/* we must have a fully available next frame or break */
if (xtime < utime &&
hsotg->frame_usecs[j] == max_uframe_usecs[j])
continue;
}
}
return -ENOSPC;
}
static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int ret;
if (qh->dev_speed == USB_SPEED_HIGH) {
/* if this is a hs transaction we need a full frame */
ret = dwc2_find_single_uframe(hsotg, qh);
} else {
/*
* if this is a fs transaction we may need a sequence
* of frames
*/
ret = dwc2_find_multi_uframe(hsotg, qh);
}
return ret;
}
/**
* dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
* host channel is large enough to handle the maximum data transfer in a single
* (micro)frame for a periodic transfer
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for a periodic endpoint
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
u32 max_xfer_size;
u32 max_channel_xfer_size;
int status = 0;
max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
max_channel_xfer_size = hsotg->core_params->max_transfer_size;
if (max_xfer_size > max_channel_xfer_size) {
dev_err(hsotg->dev,
"%s: Periodic xfer length %d > max xfer length for channel %d\n",
__func__, max_xfer_size, max_channel_xfer_size);
status = -ENOSPC;
}
return status;
}
/**
* dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
* the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer. The QH should already contain the
* scheduling information.
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int status;
if (hsotg->core_params->uframe_sched > 0) {
int frame = -1;
status = dwc2_find_uframe(hsotg, qh);
if (status == 0)
frame = 7;
else if (status > 0)
frame = status - 1;
/* Set the new frame up */
if (frame >= 0) {
qh->sched_frame &= ~0x7;
qh->sched_frame |= (frame & 7);
}
if (status > 0)
status = 0;
} else {
status = dwc2_periodic_channel_available(hsotg);
if (status) {
dev_info(hsotg->dev,
"%s: No host channel available for periodic transfer\n",
__func__);
return status;
}
status = dwc2_check_periodic_bandwidth(hsotg, qh);
}
if (status) {
dev_dbg(hsotg->dev,
"%s: Insufficient periodic bandwidth for periodic transfer\n",
__func__);
return status;
}
status = dwc2_check_max_xfer_size(hsotg, qh);
if (status) {
dev_dbg(hsotg->dev,
"%s: Channel max transfer size too small for periodic transfer\n",
__func__);
return status;
}
if (hsotg->core_params->dma_desc_enable > 0)
/* Don't rely on SOF and start in ready schedule */
list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
else
/* Always start in inactive schedule */
list_add_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_inactive);
if (hsotg->core_params->uframe_sched <= 0)
/* Reserve periodic channel */
hsotg->periodic_channels++;
/* Update claimed usecs per (micro)frame */
hsotg->periodic_usecs += qh->usecs;
return status;
}
/**
* dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
* from the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer
*/
static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
int i;
list_del_init(&qh->qh_list_entry);
/* Update claimed usecs per (micro)frame */
hsotg->periodic_usecs -= qh->usecs;
if (hsotg->core_params->uframe_sched > 0) {
for (i = 0; i < 8; i++) {
hsotg->frame_usecs[i] += qh->frame_usecs[i];
qh->frame_usecs[i] = 0;
}
} else {
/* Release periodic channel reservation */
hsotg->periodic_channels--;
}
}
/**
* dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
* schedule if it is not already in the schedule. If the QH is already in
* the schedule, no action is taken.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to add
*
* Return: 0 if successful, negative error code otherwise
*/
int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int status;
u32 intr_mask;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (!list_empty(&qh->qh_list_entry))
/* QH already in a schedule */
return 0;
/* Add the new QH to the appropriate schedule */
if (dwc2_qh_is_non_per(qh)) {
/* Always start in inactive schedule */
list_add_tail(&qh->qh_list_entry,
&hsotg->non_periodic_sched_inactive);
return 0;
}
status = dwc2_schedule_periodic(hsotg, qh);
if (status)
return status;
if (!hsotg->periodic_qh_count) {
intr_mask = readl(hsotg->regs + GINTMSK);
intr_mask |= GINTSTS_SOF;
writel(intr_mask, hsotg->regs + GINTMSK);
}
hsotg->periodic_qh_count++;
return 0;
}
/**
* dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
* schedule. Memory is not freed.
*
* @hsotg: The HCD state structure
* @qh: QH to remove from schedule
*/
void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
u32 intr_mask;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (list_empty(&qh->qh_list_entry))
/* QH is not in a schedule */
return;
if (dwc2_qh_is_non_per(qh)) {
if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
hsotg->non_periodic_qh_ptr =
hsotg->non_periodic_qh_ptr->next;
list_del_init(&qh->qh_list_entry);
return;
}
dwc2_deschedule_periodic(hsotg, qh);
hsotg->periodic_qh_count--;
if (!hsotg->periodic_qh_count) {
intr_mask = readl(hsotg->regs + GINTMSK);
intr_mask &= ~GINTSTS_SOF;
writel(intr_mask, hsotg->regs + GINTMSK);
}
}
/*
* Schedule the next continuing periodic split transfer
*/
static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, u16 frame_number,
int sched_next_periodic_split)
{
u16 incr;
if (sched_next_periodic_split) {
qh->sched_frame = frame_number;
incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
if (dwc2_frame_num_le(frame_number, incr)) {
/*
* Allow one frame to elapse after start split
* microframe before scheduling complete split, but
* DON'T if we are doing the next start split in the
* same frame for an ISOC out
*/
if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
qh->ep_is_in != 0) {
qh->sched_frame =
dwc2_frame_num_inc(qh->sched_frame, 1);
}
}
} else {
qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
qh->interval);
if (dwc2_frame_num_le(qh->sched_frame, frame_number))
qh->sched_frame = frame_number;
qh->sched_frame |= 0x7;
qh->start_split_frame = qh->sched_frame;
}
}
/*
* Deactivates a QH. For non-periodic QHs, removes the QH from the active
* non-periodic schedule. The QH is added to the inactive non-periodic
* schedule if any QTDs are still attached to the QH.
*
* For periodic QHs, the QH is removed from the periodic queued schedule. If
* there are any QTDs still attached to the QH, the QH is added to either the
* periodic inactive schedule or the periodic ready schedule and its next
* scheduled frame is calculated. The QH is placed in the ready schedule if
* the scheduled frame has been reached already. Otherwise it's placed in the
* inactive schedule. If there are no QTDs attached to the QH, the QH is
* completely removed from the periodic schedule.
*/
void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
int sched_next_periodic_split)
{
u16 frame_number;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (dwc2_qh_is_non_per(qh)) {
dwc2_hcd_qh_unlink(hsotg, qh);
if (!list_empty(&qh->qtd_list))
/* Add back to inactive non-periodic schedule */
dwc2_hcd_qh_add(hsotg, qh);
return;
}
frame_number = dwc2_hcd_get_frame_number(hsotg);
if (qh->do_split) {
dwc2_sched_periodic_split(hsotg, qh, frame_number,
sched_next_periodic_split);
} else {
qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
qh->interval);
if (dwc2_frame_num_le(qh->sched_frame, frame_number))
qh->sched_frame = frame_number;
}
if (list_empty(&qh->qtd_list)) {
dwc2_hcd_qh_unlink(hsotg, qh);
return;
}
/*
* Remove from periodic_sched_queued and move to
* appropriate queue
*/
if ((hsotg->core_params->uframe_sched > 0 &&
dwc2_frame_num_le(qh->sched_frame, frame_number)) ||
(hsotg->core_params->uframe_sched <= 0 &&
qh->sched_frame == frame_number))
list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
else
list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive);
}
/**
* dwc2_hcd_qtd_init() - Initializes a QTD structure
*
* @qtd: The QTD to initialize
* @urb: The associated URB
*/
void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
{
qtd->urb = urb;
if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
USB_ENDPOINT_XFER_CONTROL) {
/*
* The only time the QTD data toggle is used is on the data
* phase of control transfers. This phase always starts with
* DATA1.
*/
qtd->data_toggle = DWC2_HC_PID_DATA1;
qtd->control_phase = DWC2_CONTROL_SETUP;
}
/* Start split */
qtd->complete_split = 0;
qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
qtd->isoc_split_offset = 0;
qtd->in_process = 0;
/* Store the qtd ptr in the urb to reference the QTD */
urb->qtd = qtd;
}
/**
* dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
*
* @hsotg: The DWC HCD structure
* @qtd: The QTD to add
* @qh: Out parameter to return queue head
* @atomic_alloc: Flag to do atomic alloc if needed
*
* Return: 0 if successful, negative error code otherwise
*
* Finds the correct QH to place the QTD into. If it does not find a QH, it
* will create a new QH. If the QH to which the QTD is added is not currently
* scheduled, it is placed into the proper schedule based on its EP type.
*/
int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
struct dwc2_qh **qh, gfp_t mem_flags)
{
struct dwc2_hcd_urb *urb = qtd->urb;
unsigned long flags;
int allocated = 0;
int retval;
/*
* Get the QH which holds the QTD-list to insert to. Create QH if it
* doesn't exist.
*/
if (*qh == NULL) {
*qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
if (*qh == NULL)
return -ENOMEM;
allocated = 1;
}
spin_lock_irqsave(&hsotg->lock, flags);
retval = dwc2_hcd_qh_add(hsotg, *qh);
if (retval)
goto fail;
qtd->qh = *qh;
list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
fail:
if (allocated) {
struct dwc2_qtd *qtd2, *qtd2_tmp;
struct dwc2_qh *qh_tmp = *qh;
*qh = NULL;
dwc2_hcd_qh_unlink(hsotg, qh_tmp);
/* Free each QTD in the QH's QTD list */
list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
qtd_list_entry)
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hcd_qh_free(hsotg, qh_tmp);
} else {
spin_unlock_irqrestore(&hsotg->lock, flags);
}
return retval;
}