linux/sound/pci/nm256/nm256.c

1658 lines
43 KiB
C

/*
* Driver for NeoMagic 256AV and 256ZX chipsets.
* Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
*
* Based on nm256_audio.c OSS driver in linux kernel.
* The original author of OSS nm256 driver wishes to remain anonymous,
* so I just put my acknoledgment to him/her here.
* The original author's web page is found at
* http://www.uglx.org/sony.html
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>
#define CARD_NAME "NeoMagic 256AV/ZX"
#define DRIVER_NAME "NM256"
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("NeoMagic NM256AV/ZX");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{NeoMagic,NM256AV},"
"{NeoMagic,NM256ZX}}");
/*
* some compile conditions.
*/
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static int playback_bufsize[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 16};
static int capture_bufsize[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 16};
static int force_ac97[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 0}; /* disabled as default */
static int buffer_top[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 0}; /* not specified */
static int use_cache[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 0}; /* disabled */
static int vaio_hack[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 0}; /* disabled */
static int reset_workaround[SNDRV_CARDS];
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable this soundcard.");
module_param_array(playback_bufsize, int, NULL, 0444);
MODULE_PARM_DESC(playback_bufsize, "DAC frame size in kB for " CARD_NAME " soundcard.");
module_param_array(capture_bufsize, int, NULL, 0444);
MODULE_PARM_DESC(capture_bufsize, "ADC frame size in kB for " CARD_NAME " soundcard.");
module_param_array(force_ac97, bool, NULL, 0444);
MODULE_PARM_DESC(force_ac97, "Force to use AC97 codec for " CARD_NAME " soundcard.");
module_param_array(buffer_top, int, NULL, 0444);
MODULE_PARM_DESC(buffer_top, "Set the top address of audio buffer for " CARD_NAME " soundcard.");
module_param_array(use_cache, bool, NULL, 0444);
MODULE_PARM_DESC(use_cache, "Enable the cache for coefficient table access.");
module_param_array(vaio_hack, bool, NULL, 0444);
MODULE_PARM_DESC(vaio_hack, "Enable workaround for Sony VAIO notebooks.");
module_param_array(reset_workaround, bool, NULL, 0444);
MODULE_PARM_DESC(reset_workaround, "Enable AC97 RESET workaround for some laptops.");
/*
* hw definitions
*/
/* The BIOS signature. */
#define NM_SIGNATURE 0x4e4d0000
/* Signature mask. */
#define NM_SIG_MASK 0xffff0000
/* Size of the second memory area. */
#define NM_PORT2_SIZE 4096
/* The base offset of the mixer in the second memory area. */
#define NM_MIXER_OFFSET 0x600
/* The maximum size of a coefficient entry. */
#define NM_MAX_PLAYBACK_COEF_SIZE 0x5000
#define NM_MAX_RECORD_COEF_SIZE 0x1260
/* The interrupt register. */
#define NM_INT_REG 0xa04
/* And its bits. */
#define NM_PLAYBACK_INT 0x40
#define NM_RECORD_INT 0x100
#define NM_MISC_INT_1 0x4000
#define NM_MISC_INT_2 0x1
#define NM_ACK_INT(chip, X) snd_nm256_writew(chip, NM_INT_REG, (X) << 1)
/* The AV's "mixer ready" status bit and location. */
#define NM_MIXER_STATUS_OFFSET 0xa04
#define NM_MIXER_READY_MASK 0x0800
#define NM_MIXER_PRESENCE 0xa06
#define NM_PRESENCE_MASK 0x0050
#define NM_PRESENCE_VALUE 0x0040
/*
* For the ZX. It uses the same interrupt register, but it holds 32
* bits instead of 16.
*/
#define NM2_PLAYBACK_INT 0x10000
#define NM2_RECORD_INT 0x80000
#define NM2_MISC_INT_1 0x8
#define NM2_MISC_INT_2 0x2
#define NM2_ACK_INT(chip, X) snd_nm256_writel(chip, NM_INT_REG, (X))
/* The ZX's "mixer ready" status bit and location. */
#define NM2_MIXER_STATUS_OFFSET 0xa06
#define NM2_MIXER_READY_MASK 0x0800
/* The playback registers start from here. */
#define NM_PLAYBACK_REG_OFFSET 0x0
/* The record registers start from here. */
#define NM_RECORD_REG_OFFSET 0x200
/* The rate register is located 2 bytes from the start of the register area. */
#define NM_RATE_REG_OFFSET 2
/* Mono/stereo flag, number of bits on playback, and rate mask. */
#define NM_RATE_STEREO 1
#define NM_RATE_BITS_16 2
#define NM_RATE_MASK 0xf0
/* Playback enable register. */
#define NM_PLAYBACK_ENABLE_REG (NM_PLAYBACK_REG_OFFSET + 0x1)
#define NM_PLAYBACK_ENABLE_FLAG 1
#define NM_PLAYBACK_ONESHOT 2
#define NM_PLAYBACK_FREERUN 4
/* Mutes the audio output. */
#define NM_AUDIO_MUTE_REG (NM_PLAYBACK_REG_OFFSET + 0x18)
#define NM_AUDIO_MUTE_LEFT 0x8000
#define NM_AUDIO_MUTE_RIGHT 0x0080
/* Recording enable register. */
#define NM_RECORD_ENABLE_REG (NM_RECORD_REG_OFFSET + 0)
#define NM_RECORD_ENABLE_FLAG 1
#define NM_RECORD_FREERUN 2
/* coefficient buffer pointer */
#define NM_COEFF_START_OFFSET 0x1c
#define NM_COEFF_END_OFFSET 0x20
/* DMA buffer offsets */
#define NM_RBUFFER_START (NM_RECORD_REG_OFFSET + 0x4)
#define NM_RBUFFER_END (NM_RECORD_REG_OFFSET + 0x10)
#define NM_RBUFFER_WMARK (NM_RECORD_REG_OFFSET + 0xc)
#define NM_RBUFFER_CURRP (NM_RECORD_REG_OFFSET + 0x8)
#define NM_PBUFFER_START (NM_PLAYBACK_REG_OFFSET + 0x4)
#define NM_PBUFFER_END (NM_PLAYBACK_REG_OFFSET + 0x14)
#define NM_PBUFFER_WMARK (NM_PLAYBACK_REG_OFFSET + 0xc)
#define NM_PBUFFER_CURRP (NM_PLAYBACK_REG_OFFSET + 0x8)
/*
* type definitions
*/
typedef struct snd_nm256 nm256_t;
typedef struct snd_nm256_stream nm256_stream_t;
struct snd_nm256_stream {
nm256_t *chip;
snd_pcm_substream_t *substream;
int running;
u32 buf; /* offset from chip->buffer */
int bufsize; /* buffer size in bytes */
void __iomem *bufptr; /* mapped pointer */
unsigned long bufptr_addr; /* physical address of the mapped pointer */
int dma_size; /* buffer size of the substream in bytes */
int period_size; /* period size in bytes */
int periods; /* # of periods */
int shift; /* bit shifts */
int cur_period; /* current period # */
};
struct snd_nm256 {
snd_card_t *card;
void __iomem *cport; /* control port */
struct resource *res_cport; /* its resource */
unsigned long cport_addr; /* physical address */
void __iomem *buffer; /* buffer */
struct resource *res_buffer; /* its resource */
unsigned long buffer_addr; /* buffer phyiscal address */
u32 buffer_start; /* start offset from pci resource 0 */
u32 buffer_end; /* end offset */
u32 buffer_size; /* total buffer size */
u32 all_coeff_buf; /* coefficient buffer */
u32 coeff_buf[2]; /* coefficient buffer for each stream */
unsigned int coeffs_current: 1; /* coeff. table is loaded? */
unsigned int use_cache: 1; /* use one big coef. table */
unsigned int reset_workaround: 1; /* Workaround for some laptops to avoid freeze */
int mixer_base; /* register offset of ac97 mixer */
int mixer_status_offset; /* offset of mixer status reg. */
int mixer_status_mask; /* bit mask to test the mixer status */
int irq;
irqreturn_t (*interrupt)(int, void *, struct pt_regs *);
int badintrcount; /* counter to check bogus interrupts */
nm256_stream_t streams[2];
ac97_t *ac97;
snd_pcm_t *pcm;
struct pci_dev *pci;
spinlock_t reg_lock;
};
/*
* include coefficient table
*/
#include "nm256_coef.c"
/*
* PCI ids
*/
#ifndef PCI_VENDOR_ID_NEOMAGIC
#define PCI_VENDOR_ID_NEOMEGIC 0x10c8
#endif
#ifndef PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO
#define PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO 0x8005
#endif
#ifndef PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO
#define PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO 0x8006
#endif
#ifndef PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO
#define PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO 0x8016
#endif
static struct pci_device_id snd_nm256_ids[] = {
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0,},
};
MODULE_DEVICE_TABLE(pci, snd_nm256_ids);
/*
* lowlvel stuffs
*/
inline static u8
snd_nm256_readb(nm256_t *chip, int offset)
{
return readb(chip->cport + offset);
}
inline static u16
snd_nm256_readw(nm256_t *chip, int offset)
{
return readw(chip->cport + offset);
}
inline static u32
snd_nm256_readl(nm256_t *chip, int offset)
{
return readl(chip->cport + offset);
}
inline static void
snd_nm256_writeb(nm256_t *chip, int offset, u8 val)
{
writeb(val, chip->cport + offset);
}
inline static void
snd_nm256_writew(nm256_t *chip, int offset, u16 val)
{
writew(val, chip->cport + offset);
}
inline static void
snd_nm256_writel(nm256_t *chip, int offset, u32 val)
{
writel(val, chip->cport + offset);
}
inline static void
snd_nm256_write_buffer(nm256_t *chip, void *src, int offset, int size)
{
offset -= chip->buffer_start;
#ifdef SNDRV_CONFIG_DEBUG
if (offset < 0 || offset >= chip->buffer_size) {
snd_printk("write_buffer invalid offset = %d size = %d\n", offset, size);
return;
}
#endif
memcpy_toio(chip->buffer + offset, src, size);
}
/*
* coefficient handlers -- what a magic!
*/
static u16
snd_nm256_get_start_offset(int which)
{
u16 offset = 0;
while (which-- > 0)
offset += coefficient_sizes[which];
return offset;
}
static void
snd_nm256_load_one_coefficient(nm256_t *chip, int stream, u32 port, int which)
{
u32 coeff_buf = chip->coeff_buf[stream];
u16 offset = snd_nm256_get_start_offset(which);
u16 size = coefficient_sizes[which];
snd_nm256_write_buffer(chip, coefficients + offset, coeff_buf, size);
snd_nm256_writel(chip, port, coeff_buf);
/* ??? Record seems to behave differently than playback. */
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
size--;
snd_nm256_writel(chip, port + 4, coeff_buf + size);
}
static void
snd_nm256_load_coefficient(nm256_t *chip, int stream, int number)
{
/* The enable register for the specified engine. */
u32 poffset = (stream == SNDRV_PCM_STREAM_CAPTURE ? NM_RECORD_ENABLE_REG : NM_PLAYBACK_ENABLE_REG);
u32 addr = NM_COEFF_START_OFFSET;
addr += (stream == SNDRV_PCM_STREAM_CAPTURE ? NM_RECORD_REG_OFFSET : NM_PLAYBACK_REG_OFFSET);
if (snd_nm256_readb(chip, poffset) & 1) {
snd_printd("NM256: Engine was enabled while loading coefficients!\n");
return;
}
/* The recording engine uses coefficient values 8-15. */
number &= 7;
if (stream == SNDRV_PCM_STREAM_CAPTURE)
number += 8;
if (! chip->use_cache) {
snd_nm256_load_one_coefficient(chip, stream, addr, number);
return;
}
if (! chip->coeffs_current) {
snd_nm256_write_buffer(chip, coefficients, chip->all_coeff_buf,
NM_TOTAL_COEFF_COUNT * 4);
chip->coeffs_current = 1;
} else {
u32 base = chip->all_coeff_buf;
u32 offset = snd_nm256_get_start_offset(number);
u32 end_offset = offset + coefficient_sizes[number];
snd_nm256_writel(chip, addr, base + offset);
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
end_offset--;
snd_nm256_writel(chip, addr + 4, base + end_offset);
}
}
/* The actual rates supported by the card. */
static unsigned int samplerates[8] = {
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000,
};
static snd_pcm_hw_constraint_list_t constraints_rates = {
.count = ARRAY_SIZE(samplerates),
.list = samplerates,
.mask = 0,
};
/*
* return the index of the target rate
*/
static int
snd_nm256_fixed_rate(unsigned int rate)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
if (rate == samplerates[i])
return i;
}
snd_BUG();
return 0;
}
/*
* set sample rate and format
*/
static void
snd_nm256_set_format(nm256_t *chip, nm256_stream_t *s, snd_pcm_substream_t *substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
int rate_index = snd_nm256_fixed_rate(runtime->rate);
unsigned char ratebits = (rate_index << 4) & NM_RATE_MASK;
s->shift = 0;
if (snd_pcm_format_width(runtime->format) == 16) {
ratebits |= NM_RATE_BITS_16;
s->shift++;
}
if (runtime->channels > 1) {
ratebits |= NM_RATE_STEREO;
s->shift++;
}
runtime->rate = samplerates[rate_index];
switch (substream->stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
snd_nm256_load_coefficient(chip, 0, rate_index); /* 0 = playback */
snd_nm256_writeb(chip,
NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET,
ratebits);
break;
case SNDRV_PCM_STREAM_CAPTURE:
snd_nm256_load_coefficient(chip, 1, rate_index); /* 1 = record */
snd_nm256_writeb(chip,
NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET,
ratebits);
break;
}
}
/*
* start / stop
*/
/* update the watermark (current period) */
static void snd_nm256_pcm_mark(nm256_t *chip, nm256_stream_t *s, int reg)
{
s->cur_period++;
s->cur_period %= s->periods;
snd_nm256_writel(chip, reg, s->buf + s->cur_period * s->period_size);
}
#define snd_nm256_playback_mark(chip, s) snd_nm256_pcm_mark(chip, s, NM_PBUFFER_WMARK)
#define snd_nm256_capture_mark(chip, s) snd_nm256_pcm_mark(chip, s, NM_RBUFFER_WMARK)
static void
snd_nm256_playback_start(nm256_t *chip, nm256_stream_t *s, snd_pcm_substream_t *substream)
{
/* program buffer pointers */
snd_nm256_writel(chip, NM_PBUFFER_START, s->buf);
snd_nm256_writel(chip, NM_PBUFFER_END, s->buf + s->dma_size - (1 << s->shift));
snd_nm256_writel(chip, NM_PBUFFER_CURRP, s->buf);
snd_nm256_playback_mark(chip, s);
/* Enable playback engine and interrupts. */
snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG,
NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN);
/* Enable both channels. */
snd_nm256_writew(chip, NM_AUDIO_MUTE_REG, 0x0);
}
static void
snd_nm256_capture_start(nm256_t *chip, nm256_stream_t *s, snd_pcm_substream_t *substream)
{
/* program buffer pointers */
snd_nm256_writel(chip, NM_RBUFFER_START, s->buf);
snd_nm256_writel(chip, NM_RBUFFER_END, s->buf + s->dma_size);
snd_nm256_writel(chip, NM_RBUFFER_CURRP, s->buf);
snd_nm256_capture_mark(chip, s);
/* Enable playback engine and interrupts. */
snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG,
NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN);
}
/* Stop the play engine. */
static void
snd_nm256_playback_stop(nm256_t *chip)
{
/* Shut off sound from both channels. */
snd_nm256_writew(chip, NM_AUDIO_MUTE_REG,
NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT);
/* Disable play engine. */
snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG, 0);
}
static void
snd_nm256_capture_stop(nm256_t *chip)
{
/* Disable recording engine. */
snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG, 0);
}
static int
snd_nm256_playback_trigger(snd_pcm_substream_t *substream, int cmd)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
nm256_stream_t *s = (nm256_stream_t*)substream->runtime->private_data;
int err = 0;
snd_assert(s != NULL, return -ENXIO);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (! s->running) {
snd_nm256_playback_start(chip, s, substream);
s->running = 1;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (s->running) {
snd_nm256_playback_stop(chip);
s->running = 0;
}
break;
default:
err = -EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return err;
}
static int
snd_nm256_capture_trigger(snd_pcm_substream_t *substream, int cmd)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
nm256_stream_t *s = (nm256_stream_t*)substream->runtime->private_data;
int err = 0;
snd_assert(s != NULL, return -ENXIO);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (! s->running) {
snd_nm256_capture_start(chip, s, substream);
s->running = 1;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (s->running) {
snd_nm256_capture_stop(chip);
s->running = 0;
}
break;
default:
err = -EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return err;
}
/*
* prepare playback/capture channel
*/
static int snd_nm256_pcm_prepare(snd_pcm_substream_t *substream)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
snd_pcm_runtime_t *runtime = substream->runtime;
nm256_stream_t *s = (nm256_stream_t*)runtime->private_data;
snd_assert(s, return -ENXIO);
s->dma_size = frames_to_bytes(runtime, substream->runtime->buffer_size);
s->period_size = frames_to_bytes(runtime, substream->runtime->period_size);
s->periods = substream->runtime->periods;
s->cur_period = 0;
spin_lock_irq(&chip->reg_lock);
s->running = 0;
snd_nm256_set_format(chip, s, substream);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
/*
* get the current pointer
*/
static snd_pcm_uframes_t
snd_nm256_playback_pointer(snd_pcm_substream_t * substream)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
nm256_stream_t *s = (nm256_stream_t*)substream->runtime->private_data;
unsigned long curp;
snd_assert(s, return 0);
curp = snd_nm256_readl(chip, NM_PBUFFER_CURRP) - (unsigned long)s->buf;
curp %= s->dma_size;
return bytes_to_frames(substream->runtime, curp);
}
static snd_pcm_uframes_t
snd_nm256_capture_pointer(snd_pcm_substream_t * substream)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
nm256_stream_t *s = (nm256_stream_t*)substream->runtime->private_data;
unsigned long curp;
snd_assert(s != NULL, return 0);
curp = snd_nm256_readl(chip, NM_RBUFFER_CURRP) - (unsigned long)s->buf;
curp %= s->dma_size;
return bytes_to_frames(substream->runtime, curp);
}
/* Remapped I/O space can be accessible as pointer on i386 */
/* This might be changed in the future */
#ifndef __i386__
/*
* silence / copy for playback
*/
static int
snd_nm256_playback_silence(snd_pcm_substream_t *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
snd_pcm_runtime_t *runtime = substream->runtime;
nm256_stream_t *s = (nm256_stream_t*)runtime->private_data;
count = frames_to_bytes(runtime, count);
pos = frames_to_bytes(runtime, pos);
memset_io(s->bufptr + pos, 0, count);
return 0;
}
static int
snd_nm256_playback_copy(snd_pcm_substream_t *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void __user *src,
snd_pcm_uframes_t count)
{
snd_pcm_runtime_t *runtime = substream->runtime;
nm256_stream_t *s = (nm256_stream_t*)runtime->private_data;
count = frames_to_bytes(runtime, count);
pos = frames_to_bytes(runtime, pos);
if (copy_from_user_toio(s->bufptr + pos, src, count))
return -EFAULT;
return 0;
}
/*
* copy to user
*/
static int
snd_nm256_capture_copy(snd_pcm_substream_t *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void __user *dst,
snd_pcm_uframes_t count)
{
snd_pcm_runtime_t *runtime = substream->runtime;
nm256_stream_t *s = (nm256_stream_t*)runtime->private_data;
count = frames_to_bytes(runtime, count);
pos = frames_to_bytes(runtime, pos);
if (copy_to_user_fromio(dst, s->bufptr + pos, count))
return -EFAULT;
return 0;
}
#endif /* !__i386__ */
/*
* update playback/capture watermarks
*/
/* spinlock held! */
static void
snd_nm256_playback_update(nm256_t *chip)
{
nm256_stream_t *s;
s = &chip->streams[SNDRV_PCM_STREAM_PLAYBACK];
if (s->running && s->substream) {
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(s->substream);
spin_lock(&chip->reg_lock);
snd_nm256_playback_mark(chip, s);
}
}
/* spinlock held! */
static void
snd_nm256_capture_update(nm256_t *chip)
{
nm256_stream_t *s;
s = &chip->streams[SNDRV_PCM_STREAM_CAPTURE];
if (s->running && s->substream) {
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(s->substream);
spin_lock(&chip->reg_lock);
snd_nm256_capture_mark(chip, s);
}
}
/*
* hardware info
*/
static snd_pcm_hardware_t snd_nm256_playback =
{
.info = SNDRV_PCM_INFO_MMAP_IOMEM |SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
/*SNDRV_PCM_INFO_PAUSE |*/
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.periods_min = 2,
.periods_max = 1024,
.buffer_bytes_max = 128 * 1024,
.period_bytes_min = 256,
.period_bytes_max = 128 * 1024,
};
static snd_pcm_hardware_t snd_nm256_capture =
{
.info = SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
/*SNDRV_PCM_INFO_PAUSE |*/
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.periods_min = 2,
.periods_max = 1024,
.buffer_bytes_max = 128 * 1024,
.period_bytes_min = 256,
.period_bytes_max = 128 * 1024,
};
/* set dma transfer size */
static int snd_nm256_pcm_hw_params(snd_pcm_substream_t *substream, snd_pcm_hw_params_t *hw_params)
{
/* area and addr are already set and unchanged */
substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
return 0;
}
/*
* open
*/
static void snd_nm256_setup_stream(nm256_t *chip, nm256_stream_t *s,
snd_pcm_substream_t *substream,
snd_pcm_hardware_t *hw_ptr)
{
snd_pcm_runtime_t *runtime = substream->runtime;
s->running = 0;
runtime->hw = *hw_ptr;
runtime->hw.buffer_bytes_max = s->bufsize;
runtime->hw.period_bytes_max = s->bufsize / 2;
runtime->dma_area = (void*) s->bufptr;
runtime->dma_addr = s->bufptr_addr;
runtime->dma_bytes = s->bufsize;
runtime->private_data = s;
s->substream = substream;
snd_pcm_set_sync(substream);
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&constraints_rates);
}
static int
snd_nm256_playback_open(snd_pcm_substream_t *substream)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_PLAYBACK],
substream, &snd_nm256_playback);
return 0;
}
static int
snd_nm256_capture_open(snd_pcm_substream_t *substream)
{
nm256_t *chip = snd_pcm_substream_chip(substream);
snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_CAPTURE],
substream, &snd_nm256_capture);
return 0;
}
/*
* close - we don't have to do special..
*/
static int
snd_nm256_playback_close(snd_pcm_substream_t *substream)
{
return 0;
}
static int
snd_nm256_capture_close(snd_pcm_substream_t *substream)
{
return 0;
}
/*
* create a pcm instance
*/
static snd_pcm_ops_t snd_nm256_playback_ops = {
.open = snd_nm256_playback_open,
.close = snd_nm256_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_nm256_pcm_hw_params,
.prepare = snd_nm256_pcm_prepare,
.trigger = snd_nm256_playback_trigger,
.pointer = snd_nm256_playback_pointer,
#ifndef __i386__
.copy = snd_nm256_playback_copy,
.silence = snd_nm256_playback_silence,
#endif
.mmap = snd_pcm_lib_mmap_iomem,
};
static snd_pcm_ops_t snd_nm256_capture_ops = {
.open = snd_nm256_capture_open,
.close = snd_nm256_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_nm256_pcm_hw_params,
.prepare = snd_nm256_pcm_prepare,
.trigger = snd_nm256_capture_trigger,
.pointer = snd_nm256_capture_pointer,
#ifndef __i386__
.copy = snd_nm256_capture_copy,
#endif
.mmap = snd_pcm_lib_mmap_iomem,
};
static int __devinit
snd_nm256_pcm(nm256_t *chip, int device)
{
snd_pcm_t *pcm;
int i, err;
for (i = 0; i < 2; i++) {
nm256_stream_t *s = &chip->streams[i];
s->bufptr = chip->buffer + (s->buf - chip->buffer_start);
s->bufptr_addr = chip->buffer_addr + (s->buf - chip->buffer_start);
}
err = snd_pcm_new(chip->card, chip->card->driver, device,
1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_nm256_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_nm256_capture_ops);
pcm->private_data = chip;
pcm->info_flags = 0;
chip->pcm = pcm;
return 0;
}
/*
* Initialize the hardware.
*/
static void
snd_nm256_init_chip(nm256_t *chip)
{
spin_lock_irq(&chip->reg_lock);
/* Reset everything. */
snd_nm256_writeb(chip, 0x0, 0x11);
snd_nm256_writew(chip, 0x214, 0);
/* stop sounds.. */
//snd_nm256_playback_stop(chip);
//snd_nm256_capture_stop(chip);
spin_unlock_irq(&chip->reg_lock);
}
inline static void
snd_nm256_intr_check(nm256_t *chip)
{
if (chip->badintrcount++ > 1000) {
/*
* I'm not sure if the best thing is to stop the card from
* playing or just release the interrupt (after all, we're in
* a bad situation, so doing fancy stuff may not be such a good
* idea).
*
* I worry about the card engine continuing to play noise
* over and over, however--that could become a very
* obnoxious problem. And we know that when this usually
* happens things are fairly safe, it just means the user's
* inserted a PCMCIA card and someone's spamming us with IRQ 9s.
*/
if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running)
snd_nm256_playback_stop(chip);
if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running)
snd_nm256_capture_stop(chip);
chip->badintrcount = 0;
}
}
/*
* Handle a potential interrupt for the device referred to by DEV_ID.
*
* I don't like the cut-n-paste job here either between the two routines,
* but there are sufficient differences between the two interrupt handlers
* that parameterizing it isn't all that great either. (Could use a macro,
* I suppose...yucky bleah.)
*/
static irqreturn_t
snd_nm256_interrupt(int irq, void *dev_id, struct pt_regs *dummy)
{
nm256_t *chip = dev_id;
u16 status;
u8 cbyte;
status = snd_nm256_readw(chip, NM_INT_REG);
/* Not ours. */
if (status == 0) {
snd_nm256_intr_check(chip);
return IRQ_NONE;
}
chip->badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
spin_lock(&chip->reg_lock);
if (status & NM_PLAYBACK_INT) {
status &= ~NM_PLAYBACK_INT;
NM_ACK_INT(chip, NM_PLAYBACK_INT);
snd_nm256_playback_update(chip);
}
if (status & NM_RECORD_INT) {
status &= ~NM_RECORD_INT;
NM_ACK_INT(chip, NM_RECORD_INT);
snd_nm256_capture_update(chip);
}
if (status & NM_MISC_INT_1) {
status &= ~NM_MISC_INT_1;
NM_ACK_INT(chip, NM_MISC_INT_1);
snd_printd("NM256: Got misc interrupt #1\n");
snd_nm256_writew(chip, NM_INT_REG, 0x8000);
cbyte = snd_nm256_readb(chip, 0x400);
snd_nm256_writeb(chip, 0x400, cbyte | 2);
}
if (status & NM_MISC_INT_2) {
status &= ~NM_MISC_INT_2;
NM_ACK_INT(chip, NM_MISC_INT_2);
snd_printd("NM256: Got misc interrupt #2\n");
cbyte = snd_nm256_readb(chip, 0x400);
snd_nm256_writeb(chip, 0x400, cbyte & ~2);
}
/* Unknown interrupt. */
if (status) {
snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n",
status);
/* Pray. */
NM_ACK_INT(chip, status);
}
spin_unlock(&chip->reg_lock);
return IRQ_HANDLED;
}
/*
* Handle a potential interrupt for the device referred to by DEV_ID.
* This handler is for the 256ZX, and is very similar to the non-ZX
* routine.
*/
static irqreturn_t
snd_nm256_interrupt_zx(int irq, void *dev_id, struct pt_regs *dummy)
{
nm256_t *chip = dev_id;
u32 status;
u8 cbyte;
status = snd_nm256_readl(chip, NM_INT_REG);
/* Not ours. */
if (status == 0) {
snd_nm256_intr_check(chip);
return IRQ_NONE;
}
chip->badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
spin_lock(&chip->reg_lock);
if (status & NM2_PLAYBACK_INT) {
status &= ~NM2_PLAYBACK_INT;
NM2_ACK_INT(chip, NM2_PLAYBACK_INT);
snd_nm256_playback_update(chip);
}
if (status & NM2_RECORD_INT) {
status &= ~NM2_RECORD_INT;
NM2_ACK_INT(chip, NM2_RECORD_INT);
snd_nm256_capture_update(chip);
}
if (status & NM2_MISC_INT_1) {
status &= ~NM2_MISC_INT_1;
NM2_ACK_INT(chip, NM2_MISC_INT_1);
snd_printd("NM256: Got misc interrupt #1\n");
cbyte = snd_nm256_readb(chip, 0x400);
snd_nm256_writeb(chip, 0x400, cbyte | 2);
}
if (status & NM2_MISC_INT_2) {
status &= ~NM2_MISC_INT_2;
NM2_ACK_INT(chip, NM2_MISC_INT_2);
snd_printd("NM256: Got misc interrupt #2\n");
cbyte = snd_nm256_readb(chip, 0x400);
snd_nm256_writeb(chip, 0x400, cbyte & ~2);
}
/* Unknown interrupt. */
if (status) {
snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n",
status);
/* Pray. */
NM2_ACK_INT(chip, status);
}
spin_unlock(&chip->reg_lock);
return IRQ_HANDLED;
}
/*
* AC97 interface
*/
/*
* Waits for the mixer to become ready to be written; returns a zero value
* if it timed out.
*/
static int
snd_nm256_ac97_ready(nm256_t *chip)
{
int timeout = 10;
u32 testaddr;
u16 testb;
testaddr = chip->mixer_status_offset;
testb = chip->mixer_status_mask;
/*
* Loop around waiting for the mixer to become ready.
*/
while (timeout-- > 0) {
if ((snd_nm256_readw(chip, testaddr) & testb) == 0)
return 1;
udelay(100);
}
return 0;
}
/*
*/
static unsigned short
snd_nm256_ac97_read(ac97_t *ac97, unsigned short reg)
{
nm256_t *chip = ac97->private_data;
int res;
if (reg >= 128)
return 0;
if (! snd_nm256_ac97_ready(chip))
return 0;
res = snd_nm256_readw(chip, chip->mixer_base + reg);
/* Magic delay. Bleah yucky. */
msleep(1);
return res;
}
/*
*/
static void
snd_nm256_ac97_write(ac97_t *ac97,
unsigned short reg, unsigned short val)
{
nm256_t *chip = ac97->private_data;
int tries = 2;
u32 base;
base = chip->mixer_base;
snd_nm256_ac97_ready(chip);
/* Wait for the write to take, too. */
while (tries-- > 0) {
snd_nm256_writew(chip, base + reg, val);
msleep(1); /* a little delay here seems better.. */
if (snd_nm256_ac97_ready(chip))
return;
}
snd_printd("nm256: ac97 codec not ready..\n");
}
/* initialize the ac97 into a known state */
static void
snd_nm256_ac97_reset(ac97_t *ac97)
{
nm256_t *chip = ac97->private_data;
/* Reset the mixer. 'Tis magic! */
snd_nm256_writeb(chip, 0x6c0, 1);
if (! chip->reset_workaround) {
/* Dell latitude LS will lock up by this */
snd_nm256_writeb(chip, 0x6cc, 0x87);
}
snd_nm256_writeb(chip, 0x6cc, 0x80);
snd_nm256_writeb(chip, 0x6cc, 0x0);
}
/* create an ac97 mixer interface */
static int __devinit
snd_nm256_mixer(nm256_t *chip)
{
ac97_bus_t *pbus;
ac97_template_t ac97;
int i, err;
static ac97_bus_ops_t ops = {
.reset = snd_nm256_ac97_reset,
.write = snd_nm256_ac97_write,
.read = snd_nm256_ac97_read,
};
/* looks like nm256 hangs up when unexpected registers are touched... */
static int mixer_regs[] = {
AC97_MASTER, AC97_HEADPHONE, AC97_MASTER_MONO,
AC97_PC_BEEP, AC97_PHONE, AC97_MIC, AC97_LINE, AC97_CD,
AC97_VIDEO, AC97_AUX, AC97_PCM, AC97_REC_SEL,
AC97_REC_GAIN, AC97_GENERAL_PURPOSE, AC97_3D_CONTROL,
AC97_EXTENDED_ID,
AC97_VENDOR_ID1, AC97_VENDOR_ID2,
-1
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
return err;
memset(&ac97, 0, sizeof(ac97));
ac97.scaps = AC97_SCAP_AUDIO; /* we support audio! */
ac97.limited_regs = 1;
for (i = 0; mixer_regs[i] >= 0; i++)
set_bit(mixer_regs[i], ac97.reg_accessed);
ac97.private_data = chip;
err = snd_ac97_mixer(pbus, &ac97, &chip->ac97);
if (err < 0)
return err;
if (! (chip->ac97->id & (0xf0000000))) {
/* looks like an invalid id */
sprintf(chip->card->mixername, "%s AC97", chip->card->driver);
}
return 0;
}
/*
* See if the signature left by the NM256 BIOS is intact; if so, we use
* the associated address as the end of our audio buffer in the video
* RAM.
*/
static int __devinit
snd_nm256_peek_for_sig(nm256_t *chip)
{
/* The signature is located 1K below the end of video RAM. */
void __iomem *temp;
/* Default buffer end is 5120 bytes below the top of RAM. */
unsigned long pointer_found = chip->buffer_end - 0x1400;
u32 sig;
temp = ioremap_nocache(chip->buffer_addr + chip->buffer_end - 0x400, 16);
if (temp == NULL) {
snd_printk("Unable to scan for card signature in video RAM\n");
return -EBUSY;
}
sig = readl(temp);
if ((sig & NM_SIG_MASK) == NM_SIGNATURE) {
u32 pointer = readl(temp + 4);
/*
* If it's obviously invalid, don't use it
*/
if (pointer == 0xffffffff ||
pointer < chip->buffer_size ||
pointer > chip->buffer_end) {
snd_printk("invalid signature found: 0x%x\n", pointer);
iounmap(temp);
return -ENODEV;
} else {
pointer_found = pointer;
printk(KERN_INFO "nm256: found card signature in video RAM: 0x%x\n", pointer);
}
}
iounmap(temp);
chip->buffer_end = pointer_found;
return 0;
}
#ifdef CONFIG_PM
/*
* APM event handler, so the card is properly reinitialized after a power
* event.
*/
static int nm256_suspend(snd_card_t *card, pm_message_t state)
{
nm256_t *chip = card->pm_private_data;
snd_pcm_suspend_all(chip->pcm);
snd_ac97_suspend(chip->ac97);
chip->coeffs_current = 0;
pci_disable_device(chip->pci);
return 0;
}
static int nm256_resume(snd_card_t *card)
{
nm256_t *chip = card->pm_private_data;
/* Perform a full reset on the hardware */
pci_enable_device(chip->pci);
snd_nm256_init_chip(chip);
/* restore ac97 */
snd_ac97_resume(chip->ac97);
return 0;
}
#endif /* CONFIG_PM */
static int snd_nm256_free(nm256_t *chip)
{
if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running)
snd_nm256_playback_stop(chip);
if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running)
snd_nm256_capture_stop(chip);
if (chip->irq >= 0)
synchronize_irq(chip->irq);
if (chip->cport)
iounmap(chip->cport);
if (chip->buffer)
iounmap(chip->buffer);
if (chip->res_cport) {
release_resource(chip->res_cport);
kfree_nocheck(chip->res_cport);
}
if (chip->res_buffer) {
release_resource(chip->res_buffer);
kfree_nocheck(chip->res_buffer);
}
if (chip->irq >= 0)
free_irq(chip->irq, (void*)chip);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_nm256_dev_free(snd_device_t *device)
{
nm256_t *chip = device->device_data;
return snd_nm256_free(chip);
}
static int __devinit
snd_nm256_create(snd_card_t *card, struct pci_dev *pci,
int play_bufsize, int capt_bufsize,
int force_load,
u32 buffertop,
int usecache,
nm256_t **chip_ret)
{
nm256_t *chip;
int err, pval;
static snd_device_ops_t ops = {
.dev_free = snd_nm256_dev_free,
};
u32 addr;
*chip_ret = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->card = card;
chip->pci = pci;
chip->use_cache = usecache;
spin_lock_init(&chip->reg_lock);
chip->irq = -1;
chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize = play_bufsize;
chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize = capt_bufsize;
/*
* The NM256 has two memory ports. The first port is nothing
* more than a chunk of video RAM, which is used as the I/O ring
* buffer. The second port has the actual juicy stuff (like the
* mixer and the playback engine control registers).
*/
chip->buffer_addr = pci_resource_start(pci, 0);
chip->cport_addr = pci_resource_start(pci, 1);
/* Init the memory port info. */
/* remap control port (#2) */
chip->res_cport = request_mem_region(chip->cport_addr, NM_PORT2_SIZE,
card->driver);
if (chip->res_cport == NULL) {
snd_printk("memory region 0x%lx (size 0x%x) busy\n",
chip->cport_addr, NM_PORT2_SIZE);
err = -EBUSY;
goto __error;
}
chip->cport = ioremap_nocache(chip->cport_addr, NM_PORT2_SIZE);
if (chip->cport == NULL) {
snd_printk("unable to map control port %lx\n", chip->cport_addr);
err = -ENOMEM;
goto __error;
}
if (!strcmp(card->driver, "NM256AV")) {
/* Ok, try to see if this is a non-AC97 version of the hardware. */
pval = snd_nm256_readw(chip, NM_MIXER_PRESENCE);
if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) {
if (! force_load) {
printk(KERN_ERR "nm256: no ac97 is found!\n");
printk(KERN_ERR " force the driver to load by passing in the module parameter\n");
printk(KERN_ERR " force_ac97=1\n");
printk(KERN_ERR " or try sb16 or cs423x drivers instead.\n");
err = -ENXIO;
goto __error;
}
}
chip->buffer_end = 2560 * 1024;
chip->interrupt = snd_nm256_interrupt;
chip->mixer_status_offset = NM_MIXER_STATUS_OFFSET;
chip->mixer_status_mask = NM_MIXER_READY_MASK;
} else {
/* Not sure if there is any relevant detect for the ZX or not. */
if (snd_nm256_readb(chip, 0xa0b) != 0)
chip->buffer_end = 6144 * 1024;
else
chip->buffer_end = 4096 * 1024;
chip->interrupt = snd_nm256_interrupt_zx;
chip->mixer_status_offset = NM2_MIXER_STATUS_OFFSET;
chip->mixer_status_mask = NM2_MIXER_READY_MASK;
}
chip->buffer_size = chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize + chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize;
if (chip->use_cache)
chip->buffer_size += NM_TOTAL_COEFF_COUNT * 4;
else
chip->buffer_size += NM_MAX_PLAYBACK_COEF_SIZE + NM_MAX_RECORD_COEF_SIZE;
if (buffertop >= chip->buffer_size && buffertop < chip->buffer_end)
chip->buffer_end = buffertop;
else {
/* get buffer end pointer from signature */
if ((err = snd_nm256_peek_for_sig(chip)) < 0)
goto __error;
}
chip->buffer_start = chip->buffer_end - chip->buffer_size;
chip->buffer_addr += chip->buffer_start;
printk(KERN_INFO "nm256: Mapping port 1 from 0x%x - 0x%x\n",
chip->buffer_start, chip->buffer_end);
chip->res_buffer = request_mem_region(chip->buffer_addr,
chip->buffer_size,
card->driver);
if (chip->res_buffer == NULL) {
snd_printk("nm256: buffer 0x%lx (size 0x%x) busy\n",
chip->buffer_addr, chip->buffer_size);
err = -EBUSY;
goto __error;
}
chip->buffer = ioremap_nocache(chip->buffer_addr, chip->buffer_size);
if (chip->buffer == NULL) {
err = -ENOMEM;
snd_printk("unable to map ring buffer at %lx\n", chip->buffer_addr);
goto __error;
}
/* set offsets */
addr = chip->buffer_start;
chip->streams[SNDRV_PCM_STREAM_PLAYBACK].buf = addr;
addr += chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize;
chip->streams[SNDRV_PCM_STREAM_CAPTURE].buf = addr;
addr += chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize;
if (chip->use_cache) {
chip->all_coeff_buf = addr;
} else {
chip->coeff_buf[SNDRV_PCM_STREAM_PLAYBACK] = addr;
addr += NM_MAX_PLAYBACK_COEF_SIZE;
chip->coeff_buf[SNDRV_PCM_STREAM_CAPTURE] = addr;
}
/* acquire interrupt */
if (request_irq(pci->irq, chip->interrupt, SA_INTERRUPT|SA_SHIRQ,
card->driver, (void*)chip)) {
err = -EBUSY;
snd_printk("unable to grab IRQ %d\n", pci->irq);
goto __error;
}
chip->irq = pci->irq;
/* Fixed setting. */
chip->mixer_base = NM_MIXER_OFFSET;
chip->coeffs_current = 0;
snd_nm256_init_chip(chip);
// pci_set_master(pci); /* needed? */
snd_card_set_pm_callback(card, nm256_suspend, nm256_resume, chip);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __error;
snd_card_set_dev(card, &pci->dev);
*chip_ret = chip;
return 0;
__error:
snd_nm256_free(chip);
return err;
}
struct nm256_quirk {
unsigned short vendor;
unsigned short device;
int type;
};
enum { NM_BLACKLISTED, NM_RESET_WORKAROUND };
static struct nm256_quirk nm256_quirks[] __devinitdata = {
/* HP omnibook 4150 has cs4232 codec internally */
{ .vendor = 0x103c, .device = 0x0007, .type = NM_BLACKLISTED },
/* Sony PCG-F305 */
{ .vendor = 0x104d, .device = 0x8041, .type = NM_RESET_WORKAROUND },
/* Dell Latitude LS */
{ .vendor = 0x1028, .device = 0x0080, .type = NM_RESET_WORKAROUND },
{ } /* terminator */
};
static int __devinit snd_nm256_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
snd_card_t *card;
nm256_t *chip;
int err;
unsigned int xbuffer_top;
struct nm256_quirk *q;
u16 subsystem_vendor, subsystem_device;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
pci_read_config_word(pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &subsystem_device);
for (q = nm256_quirks; q->vendor; q++) {
if (q->vendor == subsystem_vendor && q->device == subsystem_device) {
switch (q->type) {
case NM_BLACKLISTED:
printk(KERN_INFO "nm256: The device is blacklisted. Loading stopped\n");
return -ENODEV;
case NM_RESET_WORKAROUND:
reset_workaround[dev] = 1;
break;
}
}
}
card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
if (card == NULL)
return -ENOMEM;
switch (pci->device) {
case PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO:
strcpy(card->driver, "NM256AV");
break;
case PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO:
strcpy(card->driver, "NM256ZX");
break;
case PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO:
strcpy(card->driver, "NM256XL+");
break;
default:
snd_printk("invalid device id 0x%x\n", pci->device);
snd_card_free(card);
return -EINVAL;
}
if (vaio_hack[dev])
xbuffer_top = 0x25a800; /* this avoids conflicts with XFree86 server */
else
xbuffer_top = buffer_top[dev];
if (playback_bufsize[dev] < 4)
playback_bufsize[dev] = 4;
if (playback_bufsize[dev] > 128)
playback_bufsize[dev] = 128;
if (capture_bufsize[dev] < 4)
capture_bufsize[dev] = 4;
if (capture_bufsize[dev] > 128)
capture_bufsize[dev] = 128;
if ((err = snd_nm256_create(card, pci,
playback_bufsize[dev] * 1024, /* in bytes */
capture_bufsize[dev] * 1024, /* in bytes */
force_ac97[dev],
xbuffer_top,
use_cache[dev],
&chip)) < 0) {
snd_card_free(card);
return err;
}
if (reset_workaround[dev]) {
snd_printdd(KERN_INFO "nm256: reset_workaround activated\n");
chip->reset_workaround = 1;
}
if ((err = snd_nm256_pcm(chip, 0)) < 0 ||
(err = snd_nm256_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
sprintf(card->shortname, "NeoMagic %s", card->driver);
sprintf(card->longname, "%s at 0x%lx & 0x%lx, irq %d",
card->shortname,
chip->buffer_addr, chip->cport_addr, chip->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_nm256_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
static struct pci_driver driver = {
.name = "NeoMagic 256",
.id_table = snd_nm256_ids,
.probe = snd_nm256_probe,
.remove = __devexit_p(snd_nm256_remove),
SND_PCI_PM_CALLBACKS
};
static int __init alsa_card_nm256_init(void)
{
return pci_module_init(&driver);
}
static void __exit alsa_card_nm256_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_nm256_init)
module_exit(alsa_card_nm256_exit)