linux/arch/parisc/kernel/firmware.c

1501 lines
43 KiB
C

/*
* arch/parisc/kernel/firmware.c - safe PDC access routines
*
* PDC == Processor Dependent Code
*
* See http://www.parisc-linux.org/documentation/index.html
* for documentation describing the entry points and calling
* conventions defined below.
*
* Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
* Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
* Copyright 2003 Grant Grundler <grundler parisc-linux org>
* Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
* Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
/* I think it would be in everyone's best interest to follow this
* guidelines when writing PDC wrappers:
*
* - the name of the pdc wrapper should match one of the macros
* used for the first two arguments
* - don't use caps for random parts of the name
* - use the static PDC result buffers and "copyout" to structs
* supplied by the caller to encapsulate alignment restrictions
* - hold pdc_lock while in PDC or using static result buffers
* - use __pa() to convert virtual (kernel) pointers to physical
* ones.
* - the name of the struct used for pdc return values should equal
* one of the macros used for the first two arguments to the
* corresponding PDC call
* - keep the order of arguments
* - don't be smart (setting trailing NUL bytes for strings, return
* something useful even if the call failed) unless you are sure
* it's not going to affect functionality or performance
*
* Example:
* int pdc_cache_info(struct pdc_cache_info *cache_info )
* {
* int retval;
*
* spin_lock_irq(&pdc_lock);
* retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
* convert_to_wide(pdc_result);
* memcpy(cache_info, pdc_result, sizeof(*cache_info));
* spin_unlock_irq(&pdc_lock);
*
* return retval;
* }
* prumpf 991016
*/
#include <stdarg.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <asm/page.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/system.h>
#include <asm/processor.h> /* for boot_cpu_data */
static DEFINE_SPINLOCK(pdc_lock);
static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
#ifdef CONFIG_64BIT
#define WIDE_FIRMWARE 0x1
#define NARROW_FIRMWARE 0x2
/* Firmware needs to be initially set to narrow to determine the
* actual firmware width. */
int parisc_narrow_firmware __read_mostly = 1;
#endif
/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
* and MEM_PDC calls are always the same width as the OS.
* Some PAT boxes may have 64-bit IODC I/O.
*
* Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
* 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
* This allowed wide kernels to run on Cxxx boxes.
* We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
* when running a 64-bit kernel on such boxes (e.g. C200 or C360).
*/
#ifdef CONFIG_64BIT
long real64_call(unsigned long function, ...);
#endif
long real32_call(unsigned long function, ...);
#ifdef CONFIG_64BIT
# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
#else
# define MEM_PDC (unsigned long)PAGE0->mem_pdc
# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
#endif
/**
* f_extend - Convert PDC addresses to kernel addresses.
* @address: Address returned from PDC.
*
* This function is used to convert PDC addresses into kernel addresses
* when the PDC address size and kernel address size are different.
*/
static unsigned long f_extend(unsigned long address)
{
#ifdef CONFIG_64BIT
if(unlikely(parisc_narrow_firmware)) {
if((address & 0xff000000) == 0xf0000000)
return 0xf0f0f0f000000000UL | (u32)address;
if((address & 0xf0000000) == 0xf0000000)
return 0xffffffff00000000UL | (u32)address;
}
#endif
return address;
}
/**
* convert_to_wide - Convert the return buffer addresses into kernel addresses.
* @address: The return buffer from PDC.
*
* This function is used to convert the return buffer addresses retrieved from PDC
* into kernel addresses when the PDC address size and kernel address size are
* different.
*/
static void convert_to_wide(unsigned long *addr)
{
#ifdef CONFIG_64BIT
int i;
unsigned int *p = (unsigned int *)addr;
if(unlikely(parisc_narrow_firmware)) {
for(i = 31; i >= 0; --i)
addr[i] = p[i];
}
#endif
}
/**
* set_firmware_width - Determine if the firmware is wide or narrow.
*
* This function must be called before any pdc_* function that uses the convert_to_wide
* function.
*/
void __init set_firmware_width(void)
{
#ifdef CONFIG_64BIT
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
if(pdc_result[0] != NARROW_FIRMWARE)
parisc_narrow_firmware = 0;
spin_unlock_irqrestore(&pdc_lock, flags);
#endif
}
/**
* pdc_emergency_unlock - Unlock the linux pdc lock
*
* This call unlocks the linux pdc lock in case we need some PDC functions
* (like pdc_add_valid) during kernel stack dump.
*/
void pdc_emergency_unlock(void)
{
/* Spinlock DEBUG code freaks out if we unconditionally unlock */
if (spin_is_locked(&pdc_lock))
spin_unlock(&pdc_lock);
}
/**
* pdc_add_valid - Verify address can be accessed without causing a HPMC.
* @address: Address to be verified.
*
* This PDC call attempts to read from the specified address and verifies
* if the address is valid.
*
* The return value is PDC_OK (0) in case accessing this address is valid.
*/
int pdc_add_valid(unsigned long address)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_add_valid);
/**
* pdc_chassis_info - Return chassis information.
* @result: The return buffer.
* @chassis_info: The memory buffer address.
* @len: The size of the memory buffer address.
*
* An HVERSION dependent call for returning the chassis information.
*/
int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
memcpy(&pdc_result2, led_info, len);
retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
__pa(pdc_result), __pa(pdc_result2), len);
memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
memcpy(led_info, pdc_result2, len);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
* @retval: -1 on error, 0 on success. Other value are PDC errors
*
* Must be correctly formatted or expect system crash
*/
#ifdef CONFIG_64BIT
int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
{
int retval = 0;
unsigned long flags;
if (!is_pdc_pat())
return -1;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#endif
/**
* pdc_chassis_disp - Updates chassis code
* @retval: -1 on error, 0 on success
*/
int pdc_chassis_disp(unsigned long disp)
{
int retval = 0;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_chassis_warn - Fetches chassis warnings
* @retval: -1 on error, 0 on success
*/
int pdc_chassis_warn(unsigned long *warn)
{
int retval = 0;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
*warn = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_coproc_cfg - To identify coprocessors attached to the processor.
* @pdc_coproc_info: Return buffer address.
*
* This PDC call returns the presence and status of all the coprocessors
* attached to the processor.
*/
int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
convert_to_wide(pdc_result);
pdc_coproc_info->ccr_functional = pdc_result[0];
pdc_coproc_info->ccr_present = pdc_result[1];
pdc_coproc_info->revision = pdc_result[17];
pdc_coproc_info->model = pdc_result[18];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_iodc_read - Read data from the modules IODC.
* @actcnt: The actual number of bytes.
* @hpa: The HPA of the module for the iodc read.
* @index: The iodc entry point.
* @iodc_data: A buffer memory for the iodc options.
* @iodc_data_size: Size of the memory buffer.
*
* This PDC call reads from the IODC of the module specified by the hpa
* argument.
*/
int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
void *iodc_data, unsigned int iodc_data_size)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
index, __pa(pdc_result2), iodc_data_size);
convert_to_wide(pdc_result);
*actcnt = pdc_result[0];
memcpy(iodc_data, pdc_result2, iodc_data_size);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_iodc_read);
/**
* pdc_system_map_find_mods - Locate unarchitected modules.
* @pdc_mod_info: Return buffer address.
* @mod_path: pointer to dev path structure.
* @mod_index: fixed address module index.
*
* To locate and identify modules which reside at fixed I/O addresses, which
* do not self-identify via architected bus walks.
*/
int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
struct pdc_module_path *mod_path, long mod_index)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
__pa(pdc_result2), mod_index);
convert_to_wide(pdc_result);
memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
memcpy(mod_path, pdc_result2, sizeof(*mod_path));
spin_unlock_irqrestore(&pdc_lock, flags);
pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
return retval;
}
/**
* pdc_system_map_find_addrs - Retrieve additional address ranges.
* @pdc_addr_info: Return buffer address.
* @mod_index: Fixed address module index.
* @addr_index: Address range index.
*
* Retrieve additional information about subsequent address ranges for modules
* with multiple address ranges.
*/
int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
long mod_index, long addr_index)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
mod_index, addr_index);
convert_to_wide(pdc_result);
memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
spin_unlock_irqrestore(&pdc_lock, flags);
pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
return retval;
}
/**
* pdc_model_info - Return model information about the processor.
* @model: The return buffer.
*
* Returns the version numbers, identifiers, and capabilities from the processor module.
*/
int pdc_model_info(struct pdc_model *model)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
memcpy(model, pdc_result, sizeof(*model));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_model_sysmodel - Get the system model name.
* @name: A char array of at least 81 characters.
*
* Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
* Using OS_ID_HPUX will return the equivalent of the 'modelname' command
* on HP/UX.
*/
int pdc_model_sysmodel(char *name)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
OS_ID_HPUX, __pa(name));
convert_to_wide(pdc_result);
if (retval == PDC_OK) {
name[pdc_result[0]] = '\0'; /* add trailing '\0' */
} else {
name[0] = 0;
}
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_model_versions - Identify the version number of each processor.
* @cpu_id: The return buffer.
* @id: The id of the processor to check.
*
* Returns the version number for each processor component.
*
* This comment was here before, but I do not know what it means :( -RB
* id: 0 = cpu revision, 1 = boot-rom-version
*/
int pdc_model_versions(unsigned long *versions, int id)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
convert_to_wide(pdc_result);
*versions = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_model_cpuid - Returns the CPU_ID.
* @cpu_id: The return buffer.
*
* Returns the CPU_ID value which uniquely identifies the cpu portion of
* the processor module.
*/
int pdc_model_cpuid(unsigned long *cpu_id)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
*cpu_id = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_model_capabilities - Returns the platform capabilities.
* @capabilities: The return buffer.
*
* Returns information about platform support for 32- and/or 64-bit
* OSes, IO-PDIR coherency, and virtual aliasing.
*/
int pdc_model_capabilities(unsigned long *capabilities)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
*capabilities = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_cache_info - Return cache and TLB information.
* @cache_info: The return buffer.
*
* Returns information about the processor's cache and TLB.
*/
int pdc_cache_info(struct pdc_cache_info *cache_info)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
memcpy(cache_info, pdc_result, sizeof(*cache_info));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_spaceid_bits - Return whether Space ID hashing is turned on.
* @space_bits: Should be 0, if not, bad mojo!
*
* Returns information about Space ID hashing.
*/
int pdc_spaceid_bits(unsigned long *space_bits)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = 0;
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
*space_bits = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#ifndef CONFIG_PA20
/**
* pdc_btlb_info - Return block TLB information.
* @btlb: The return buffer.
*
* Returns information about the hardware Block TLB.
*/
int pdc_btlb_info(struct pdc_btlb_info *btlb)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
memcpy(btlb, pdc_result, sizeof(*btlb));
spin_unlock_irqrestore(&pdc_lock, flags);
if(retval < 0) {
btlb->max_size = 0;
}
return retval;
}
/**
* pdc_mem_map_hpa - Find fixed module information.
* @address: The return buffer
* @mod_path: pointer to dev path structure.
*
* This call was developed for S700 workstations to allow the kernel to find
* the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
* call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
* call.
*
* This call is supported by all existing S700 workstations (up to Gecko).
*/
int pdc_mem_map_hpa(struct pdc_memory_map *address,
struct pdc_module_path *mod_path)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
memcpy(pdc_result2, mod_path, sizeof(*mod_path));
retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
__pa(pdc_result2));
memcpy(address, pdc_result, sizeof(*address));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#endif /* !CONFIG_PA20 */
/**
* pdc_lan_station_id - Get the LAN address.
* @lan_addr: The return buffer.
* @hpa: The network device HPA.
*
* Get the LAN station address when it is not directly available from the LAN hardware.
*/
int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
__pa(pdc_result), hpa);
if (retval < 0) {
/* FIXME: else read MAC from NVRAM */
memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
} else {
memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
}
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_lan_station_id);
/**
* pdc_stable_read - Read data from Stable Storage.
* @staddr: Stable Storage address to access.
* @memaddr: The memory address where Stable Storage data shall be copied.
* @count: number of bytes to transfer. count is multiple of 4.
*
* This PDC call reads from the Stable Storage address supplied in staddr
* and copies count bytes to the memory address memaddr.
* The call will fail if staddr+count > PDC_STABLE size.
*/
int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
__pa(pdc_result), count);
convert_to_wide(pdc_result);
memcpy(memaddr, pdc_result, count);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_stable_read);
/**
* pdc_stable_write - Write data to Stable Storage.
* @staddr: Stable Storage address to access.
* @memaddr: The memory address where Stable Storage data shall be read from.
* @count: number of bytes to transfer. count is multiple of 4.
*
* This PDC call reads count bytes from the supplied memaddr address,
* and copies count bytes to the Stable Storage address staddr.
* The call will fail if staddr+count > PDC_STABLE size.
*/
int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
memcpy(pdc_result, memaddr, count);
convert_to_wide(pdc_result);
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
__pa(pdc_result), count);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_stable_write);
/**
* pdc_stable_get_size - Get Stable Storage size in bytes.
* @size: pointer where the size will be stored.
*
* This PDC call returns the number of bytes in the processor's Stable
* Storage, which is the number of contiguous bytes implemented in Stable
* Storage starting from staddr=0. size in an unsigned 64-bit integer
* which is a multiple of four.
*/
int pdc_stable_get_size(unsigned long *size)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
*size = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_stable_get_size);
/**
* pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
*
* This PDC call is meant to be used to check the integrity of the current
* contents of Stable Storage.
*/
int pdc_stable_verify_contents(void)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_stable_verify_contents);
/**
* pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
* the validity indicator.
*
* This PDC call will erase all contents of Stable Storage. Use with care!
*/
int pdc_stable_initialize(void)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_stable_initialize);
/**
* pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
* @hwpath: fully bc.mod style path to the device.
* @initiator: the array to return the result into
*
* Get the SCSI operational parameters from PDC.
* Needed since HPUX never used BIOS or symbios card NVRAM.
* Most ncr/sym cards won't have an entry and just use whatever
* capabilities of the card are (eg Ultra, LVD). But there are
* several cases where it's useful:
* o set SCSI id for Multi-initiator clusters,
* o cable too long (ie SE scsi 10Mhz won't support 6m length),
* o bus width exported is less than what the interface chip supports.
*/
int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
__pa(pdc_result), __pa(hwpath));
if (retval < PDC_OK)
goto out;
if (pdc_result[0] < 16) {
initiator->host_id = pdc_result[0];
} else {
initiator->host_id = -1;
}
/*
* Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
* 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
*/
switch (pdc_result[1]) {
case 1: initiator->factor = 50; break;
case 2: initiator->factor = 25; break;
case 5: initiator->factor = 12; break;
case 25: initiator->factor = 10; break;
case 20: initiator->factor = 12; break;
case 40: initiator->factor = 10; break;
default: initiator->factor = -1; break;
}
if (IS_SPROCKETS()) {
initiator->width = pdc_result[4];
initiator->mode = pdc_result[5];
} else {
initiator->width = -1;
initiator->mode = -1;
}
out:
spin_unlock_irqrestore(&pdc_lock, flags);
return (retval >= PDC_OK);
}
EXPORT_SYMBOL(pdc_get_initiator);
/**
* pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
* @num_entries: The return value.
* @hpa: The HPA for the device.
*
* This PDC function returns the number of entries in the specified cell's
* interrupt table.
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
*/
int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
__pa(pdc_result), hpa);
convert_to_wide(pdc_result);
*num_entries = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pci_irt - Get the PCI interrupt routing table.
* @num_entries: The number of entries in the table.
* @hpa: The Hard Physical Address of the device.
* @tbl:
*
* Get the PCI interrupt routing table for the device at the given HPA.
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
*/
int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
{
int retval;
unsigned long flags;
BUG_ON((unsigned long)tbl & 0x7);
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = num_entries;
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
__pa(pdc_result), hpa, __pa(tbl));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#if 0 /* UNTEST CODE - left here in case someone needs it */
/**
* pdc_pci_config_read - read PCI config space.
* @hpa token from PDC to indicate which PCI device
* @pci_addr configuration space address to read from
*
* Read PCI Configuration space *before* linux PCI subsystem is running.
*/
unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = 0;
pdc_result[1] = 0;
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
__pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval ? ~0 : (unsigned int) pdc_result[0];
}
/**
* pdc_pci_config_write - read PCI config space.
* @hpa token from PDC to indicate which PCI device
* @pci_addr configuration space address to write
* @val value we want in the 32-bit register
*
* Write PCI Configuration space *before* linux PCI subsystem is running.
*/
void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
pdc_result[0] = 0;
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
__pa(pdc_result), hpa,
cfg_addr&~3UL, 4UL, (unsigned long) val);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#endif /* UNTESTED CODE */
/**
* pdc_tod_read - Read the Time-Of-Day clock.
* @tod: The return buffer:
*
* Read the Time-Of-Day clock
*/
int pdc_tod_read(struct pdc_tod *tod)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
convert_to_wide(pdc_result);
memcpy(tod, pdc_result, sizeof(*tod));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_tod_read);
/**
* pdc_tod_set - Set the Time-Of-Day clock.
* @sec: The number of seconds since epoch.
* @usec: The number of micro seconds.
*
* Set the Time-Of-Day clock.
*/
int pdc_tod_set(unsigned long sec, unsigned long usec)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
EXPORT_SYMBOL(pdc_tod_set);
#ifdef CONFIG_64BIT
int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
struct pdc_memory_table *tbl, unsigned long entries)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
convert_to_wide(pdc_result);
memcpy(r_addr, pdc_result, sizeof(*r_addr));
memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#endif /* CONFIG_64BIT */
/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
* so I guessed at unsigned long. Someone who knows what this does, can fix
* it later. :)
*/
int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
PDC_FIRM_TEST_MAGIC, ftc_bitmap);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/*
* pdc_do_reset - Reset the system.
*
* Reset the system.
*/
int pdc_do_reset(void)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/*
* pdc_soft_power_info - Enable soft power switch.
* @power_reg: address of soft power register
*
* Return the absolute address of the soft power switch register
*/
int __init pdc_soft_power_info(unsigned long *power_reg)
{
int retval;
unsigned long flags;
*power_reg = (unsigned long) (-1);
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
if (retval == PDC_OK) {
convert_to_wide(pdc_result);
*power_reg = f_extend(pdc_result[0]);
}
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/*
* pdc_soft_power_button - Control the soft power button behaviour
* @sw_control: 0 for hardware control, 1 for software control
*
*
* This PDC function places the soft power button under software or
* hardware control.
* Under software control the OS may control to when to allow to shut
* down the system. Under hardware control pressing the power button
* powers off the system immediately.
*/
int pdc_soft_power_button(int sw_control)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/*
* pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
* Primarily a problem on T600 (which parisc-linux doesn't support) but
* who knows what other platform firmware might do with this OS "hook".
*/
void pdc_io_reset(void)
{
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
spin_unlock_irqrestore(&pdc_lock, flags);
}
/*
* pdc_io_reset_devices - Hack to Stop USB controller
*
* If PDC used the usb controller, the usb controller
* is still running and will crash the machines during iommu
* setup, because of still running DMA. This PDC call
* stops the USB controller.
* Normally called after calling pdc_io_reset().
*/
void pdc_io_reset_devices(void)
{
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
spin_unlock_irqrestore(&pdc_lock, flags);
}
/**
* pdc_iodc_putc - Console character print using IODC.
* @c: the character to output.
*
* Note that only these special chars are architected for console IODC io:
* BEL, BS, CR, and LF. Others are passed through.
* Since the HP console requires CR+LF to perform a 'newline', we translate
* "\n" to "\r\n".
*/
void pdc_iodc_putc(unsigned char c)
{
/* XXX Should we spinlock posx usage */
static int posx; /* for simple TAB-Simulation... */
static int __attribute__((aligned(8))) iodc_retbuf[32];
static char __attribute__((aligned(64))) iodc_dbuf[4096];
unsigned int n;
unsigned long flags;
switch (c) {
case '\n':
iodc_dbuf[0] = '\r';
iodc_dbuf[1] = '\n';
n = 2;
posx = 0;
break;
case '\t':
pdc_iodc_putc(' ');
while (posx & 7) /* expand TAB */
pdc_iodc_putc(' ');
return; /* return since IODC can't handle this */
case '\b':
posx-=2; /* BS */
default:
iodc_dbuf[0] = c;
n = 1;
posx++;
break;
}
spin_lock_irqsave(&pdc_lock, flags);
real32_call(PAGE0->mem_cons.iodc_io,
(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
spin_unlock_irqrestore(&pdc_lock, flags);
}
/**
* pdc_iodc_outc - Console character print using IODC (without conversions).
* @c: the character to output.
*
* Write the character directly to the IODC console.
*/
void pdc_iodc_outc(unsigned char c)
{
unsigned int n;
unsigned long flags;
/* fill buffer with one caracter and print it */
static int __attribute__((aligned(8))) iodc_retbuf[32];
static char __attribute__((aligned(64))) iodc_dbuf[4096];
n = 1;
iodc_dbuf[0] = c;
spin_lock_irqsave(&pdc_lock, flags);
real32_call(PAGE0->mem_cons.iodc_io,
(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
spin_unlock_irqrestore(&pdc_lock, flags);
}
/**
* pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
*
* Read a character (non-blocking) from the PDC console, returns -1 if
* key is not present.
*/
int pdc_iodc_getc(void)
{
unsigned long flags;
static int __attribute__((aligned(8))) iodc_retbuf[32];
static char __attribute__((aligned(64))) iodc_dbuf[4096];
int ch;
int status;
/* Bail if no console input device. */
if (!PAGE0->mem_kbd.iodc_io)
return 0;
/* wait for a keyboard (rs232)-input */
spin_lock_irqsave(&pdc_lock, flags);
real32_call(PAGE0->mem_kbd.iodc_io,
(unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
ch = *iodc_dbuf;
status = *iodc_retbuf;
spin_unlock_irqrestore(&pdc_lock, flags);
if (status == 0)
return -1;
return ch;
}
int pdc_sti_call(unsigned long func, unsigned long flags,
unsigned long inptr, unsigned long outputr,
unsigned long glob_cfg)
{
int retval;
unsigned long irqflags;
spin_lock_irqsave(&pdc_lock, irqflags);
retval = real32_call(func, flags, inptr, outputr, glob_cfg);
spin_unlock_irqrestore(&pdc_lock, irqflags);
return retval;
}
EXPORT_SYMBOL(pdc_sti_call);
#ifdef CONFIG_64BIT
/**
* pdc_pat_cell_get_number - Returns the cell number.
* @cell_info: The return buffer.
*
* This PDC call returns the cell number of the cell from which the call
* is made.
*/
int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
memcpy(cell_info, pdc_result, sizeof(*cell_info));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_cell_module - Retrieve the cell's module information.
* @actcnt: The number of bytes written to mem_addr.
* @ploc: The physical location.
* @mod: The module index.
* @view_type: The view of the address type.
* @mem_addr: The return buffer.
*
* This PDC call returns information about each module attached to the cell
* at the specified location.
*/
int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
unsigned long view_type, void *mem_addr)
{
int retval;
unsigned long flags;
static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
ploc, mod, view_type, __pa(&result));
if(!retval) {
*actcnt = pdc_result[0];
memcpy(mem_addr, &result, *actcnt);
}
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_cpu_get_number - Retrieve the cpu number.
* @cpu_info: The return buffer.
* @hpa: The Hard Physical Address of the CPU.
*
* Retrieve the cpu number for the cpu at the specified HPA.
*/
int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
__pa(&pdc_result), hpa);
memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
* @num_entries: The return value.
* @cell_num: The target cell.
*
* This PDC function returns the number of entries in the specified cell's
* interrupt table.
*/
int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
__pa(pdc_result), cell_num);
*num_entries = pdc_result[0];
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_get_irt - Retrieve the cell's interrupt table.
* @r_addr: The return buffer.
* @cell_num: The target cell.
*
* This PDC function returns the actual interrupt table for the specified cell.
*/
int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
__pa(r_addr), cell_num);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
* @actlen: The return buffer.
* @mem_addr: Pointer to the memory buffer.
* @count: The number of bytes to read from the buffer.
* @offset: The offset with respect to the beginning of the buffer.
*
*/
int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
unsigned long count, unsigned long offset)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
__pa(pdc_result2), count, offset);
*actual_len = pdc_result[0];
memcpy(mem_addr, pdc_result2, *actual_len);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_io_pci_cfg_read - Read PCI configuration space.
* @pci_addr: PCI configuration space address for which the read request is being made.
* @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
* @mem_addr: Pointer to return memory buffer.
*
*/
int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
__pa(pdc_result), pci_addr, pci_size);
switch(pci_size) {
case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
}
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
/**
* pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
* @pci_addr: PCI configuration space address for which the write request is being made.
* @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
* @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
* written to PCI Config space.
*
*/
int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
{
int retval;
unsigned long flags;
spin_lock_irqsave(&pdc_lock, flags);
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
pci_addr, pci_size, val);
spin_unlock_irqrestore(&pdc_lock, flags);
return retval;
}
#endif /* CONFIG_64BIT */
/***************** 32-bit real-mode calls ***********/
/* The struct below is used
* to overlay real_stack (real2.S), preparing a 32-bit call frame.
* real32_call_asm() then uses this stack in narrow real mode
*/
struct narrow_stack {
/* use int, not long which is 64 bits */
unsigned int arg13;
unsigned int arg12;
unsigned int arg11;
unsigned int arg10;
unsigned int arg9;
unsigned int arg8;
unsigned int arg7;
unsigned int arg6;
unsigned int arg5;
unsigned int arg4;
unsigned int arg3;
unsigned int arg2;
unsigned int arg1;
unsigned int arg0;
unsigned int frame_marker[8];
unsigned int sp;
/* in reality, there's nearly 8k of stack after this */
};
long real32_call(unsigned long fn, ...)
{
va_list args;
extern struct narrow_stack real_stack;
extern unsigned long real32_call_asm(unsigned int *,
unsigned int *,
unsigned int);
va_start(args, fn);
real_stack.arg0 = va_arg(args, unsigned int);
real_stack.arg1 = va_arg(args, unsigned int);
real_stack.arg2 = va_arg(args, unsigned int);
real_stack.arg3 = va_arg(args, unsigned int);
real_stack.arg4 = va_arg(args, unsigned int);
real_stack.arg5 = va_arg(args, unsigned int);
real_stack.arg6 = va_arg(args, unsigned int);
real_stack.arg7 = va_arg(args, unsigned int);
real_stack.arg8 = va_arg(args, unsigned int);
real_stack.arg9 = va_arg(args, unsigned int);
real_stack.arg10 = va_arg(args, unsigned int);
real_stack.arg11 = va_arg(args, unsigned int);
real_stack.arg12 = va_arg(args, unsigned int);
real_stack.arg13 = va_arg(args, unsigned int);
va_end(args);
return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
}
#ifdef CONFIG_64BIT
/***************** 64-bit real-mode calls ***********/
struct wide_stack {
unsigned long arg0;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long arg6;
unsigned long arg7;
unsigned long arg8;
unsigned long arg9;
unsigned long arg10;
unsigned long arg11;
unsigned long arg12;
unsigned long arg13;
unsigned long frame_marker[2]; /* rp, previous sp */
unsigned long sp;
/* in reality, there's nearly 8k of stack after this */
};
long real64_call(unsigned long fn, ...)
{
va_list args;
extern struct wide_stack real64_stack;
extern unsigned long real64_call_asm(unsigned long *,
unsigned long *,
unsigned long);
va_start(args, fn);
real64_stack.arg0 = va_arg(args, unsigned long);
real64_stack.arg1 = va_arg(args, unsigned long);
real64_stack.arg2 = va_arg(args, unsigned long);
real64_stack.arg3 = va_arg(args, unsigned long);
real64_stack.arg4 = va_arg(args, unsigned long);
real64_stack.arg5 = va_arg(args, unsigned long);
real64_stack.arg6 = va_arg(args, unsigned long);
real64_stack.arg7 = va_arg(args, unsigned long);
real64_stack.arg8 = va_arg(args, unsigned long);
real64_stack.arg9 = va_arg(args, unsigned long);
real64_stack.arg10 = va_arg(args, unsigned long);
real64_stack.arg11 = va_arg(args, unsigned long);
real64_stack.arg12 = va_arg(args, unsigned long);
real64_stack.arg13 = va_arg(args, unsigned long);
va_end(args);
return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
}
#endif /* CONFIG_64BIT */