linux/drivers/net/ethernet/atheros/atl1c/atl1c_hw.c

864 lines
23 KiB
C

/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include "atl1c.h"
/*
* check_eeprom_exist
* return 1 if eeprom exist
*/
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
{
u32 data;
AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
if (data & TWSI_DEBUG_DEV_EXIST)
return 1;
AT_READ_REG(hw, REG_MASTER_CTRL, &data);
if (data & MASTER_CTRL_OTP_SEL)
return 1;
return 0;
}
void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = mac_addr[2] << 24 |
mac_addr[3] << 16 |
mac_addr[4] << 8 |
mac_addr[5];
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = mac_addr[0] << 8 |
mac_addr[1];
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/* read mac address from hardware register */
static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
{
u32 addr[2];
AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
*(u32 *) &eth_addr[2] = htonl(addr[0]);
*(u16 *) &eth_addr[0] = htons((u16)addr[1]);
return is_valid_ether_addr(eth_addr);
}
/*
* atl1c_get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
{
u32 i;
u32 otp_ctrl_data;
u32 twsi_ctrl_data;
u16 phy_data;
bool raise_vol = false;
/* MAC-address from BIOS is the 1st priority */
if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
return 0;
/* init */
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
if (atl1c_check_eeprom_exist(hw)) {
if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
/* Enable OTP CLK */
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
otp_ctrl_data |= OTP_CTRL_CLK_EN;
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
AT_WRITE_FLUSH(hw);
msleep(1);
}
}
/* raise voltage temporally for l2cb */
if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
phy_data &= ~ANACTRL_HB_EN;
atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
phy_data |= VOLT_CTRL_SWLOWEST;
atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
udelay(20);
raise_vol = true;
}
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
msleep(10);
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
break;
}
if (i >= AT_TWSI_EEPROM_TIMEOUT)
return -1;
}
/* Disable OTP_CLK */
if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
msleep(1);
}
if (raise_vol) {
atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
phy_data |= ANACTRL_HB_EN;
atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
phy_data &= ~VOLT_CTRL_SWLOWEST;
atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
udelay(20);
}
if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
return 0;
return -1;
}
bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
{
int i;
bool ret = false;
u32 otp_ctrl_data;
u32 control;
u32 data;
if (offset & 3)
return ret; /* address do not align */
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
AT_WRITE_REG(hw, REG_OTP_CTRL,
(otp_ctrl_data | OTP_CTRL_CLK_EN));
AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
for (i = 0; i < 10; i++) {
udelay(100);
AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
if (control & EEPROM_CTRL_RW)
break;
}
if (control & EEPROM_CTRL_RW) {
AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
data = data & 0xFFFF;
*p_value = swab32((data << 16) | (*p_value >> 16));
ret = true;
}
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
return ret;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
int atl1c_read_mac_addr(struct atl1c_hw *hw)
{
int err = 0;
err = atl1c_get_permanent_address(hw);
if (err)
eth_random_addr(hw->perm_mac_addr);
memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
return err;
}
/*
* atl1c_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
{
u32 crc32;
u32 value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper bit of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* wait mdio module be idle
* return true: idle
* false: still busy
*/
bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
{
u32 val;
int i;
for (i = 0; i < MDIO_MAX_AC_TO; i++) {
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
break;
udelay(10);
}
return i != MDIO_MAX_AC_TO;
}
void atl1c_stop_phy_polling(struct atl1c_hw *hw)
{
if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
return;
AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
atl1c_wait_mdio_idle(hw);
}
void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
{
u32 val;
if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
return;
val = MDIO_CTRL_SPRES_PRMBL |
FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
FIELDX(MDIO_CTRL_REG, 1) |
MDIO_CTRL_START |
MDIO_CTRL_OP_READ;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
atl1c_wait_mdio_idle(hw);
val |= MDIO_CTRL_AP_EN;
val &= ~MDIO_CTRL_START;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
udelay(30);
}
/*
* atl1c_read_phy_core
* core function to read register in PHY via MDIO control register.
* ext: extension register (see IEEE 802.3)
* dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
* reg: reg to read
*/
int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
u16 reg, u16 *phy_data)
{
u32 val;
u16 clk_sel = MDIO_CTRL_CLK_25_4;
atl1c_stop_phy_polling(hw);
*phy_data = 0;
/* only l2c_b2 & l1d_2 could use slow clock */
if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
hw->hibernate)
clk_sel = MDIO_CTRL_CLK_25_128;
if (ext) {
val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
val = MDIO_CTRL_SPRES_PRMBL |
FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
MDIO_CTRL_START |
MDIO_CTRL_MODE_EXT |
MDIO_CTRL_OP_READ;
} else {
val = MDIO_CTRL_SPRES_PRMBL |
FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
FIELDX(MDIO_CTRL_REG, reg) |
MDIO_CTRL_START |
MDIO_CTRL_OP_READ;
}
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
if (!atl1c_wait_mdio_idle(hw))
return -1;
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
*phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
atl1c_start_phy_polling(hw, clk_sel);
return 0;
}
/*
* atl1c_write_phy_core
* core function to write to register in PHY via MDIO control register.
* ext: extension register (see IEEE 802.3)
* dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
* reg: reg to write
*/
int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
u16 reg, u16 phy_data)
{
u32 val;
u16 clk_sel = MDIO_CTRL_CLK_25_4;
atl1c_stop_phy_polling(hw);
/* only l2c_b2 & l1d_2 could use slow clock */
if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
hw->hibernate)
clk_sel = MDIO_CTRL_CLK_25_128;
if (ext) {
val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
val = MDIO_CTRL_SPRES_PRMBL |
FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
FIELDX(MDIO_CTRL_DATA, phy_data) |
MDIO_CTRL_START |
MDIO_CTRL_MODE_EXT;
} else {
val = MDIO_CTRL_SPRES_PRMBL |
FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
FIELDX(MDIO_CTRL_DATA, phy_data) |
FIELDX(MDIO_CTRL_REG, reg) |
MDIO_CTRL_START;
}
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
if (!atl1c_wait_mdio_idle(hw))
return -1;
atl1c_start_phy_polling(hw, clk_sel);
return 0;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
{
return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
}
/* read from PHY extension register */
int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
u16 reg_addr, u16 *phy_data)
{
return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
}
/* write to PHY extension register */
int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
u16 reg_addr, u16 phy_data)
{
return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
}
int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
int err;
err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
if (unlikely(err))
return err;
else
err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
return err;
}
int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
{
int err;
err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
if (unlikely(err))
return err;
else
err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
return err;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
{
u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
~GIGA_CR_1000T_SPEED_MASK;
if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
mii_adv_data |= ADVERTISE_10HALF;
if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
mii_adv_data |= ADVERTISE_10FULL;
if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
mii_adv_data |= ADVERTISE_100HALF;
if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
mii_adv_data |= ADVERTISE_100FULL;
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL;
if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
mii_giga_ctrl_data |= ADVERTISE_1000HALF;
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
mii_giga_ctrl_data |= ADVERTISE_1000FULL;
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
mii_giga_ctrl_data |= ADVERTISE_1000HALF |
ADVERTISE_1000FULL;
}
if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
return -1;
return 0;
}
void atl1c_phy_disable(struct atl1c_hw *hw)
{
atl1c_power_saving(hw, 0);
}
int atl1c_phy_reset(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
u16 phy_data;
u32 phy_ctrl_data, lpi_ctrl;
int err;
/* reset PHY core */
AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
else
phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
AT_WRITE_FLUSH(hw);
udelay(10);
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
AT_WRITE_FLUSH(hw);
udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */
/* switch clock */
if (hw->nic_type == athr_l2c_b) {
atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
}
/* tx-half amplitude issue fix */
if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
phy_data |= CABLE1TH_DET_EN;
atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
}
/* clear bit3 of dbgport 3B to lower voltage */
if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
phy_data &= ~VOLT_CTRL_SWLOWEST;
atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
}
/* power saving config */
phy_data =
hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
/* hib */
atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
SYSMODCTRL_IECHOADJ_DEF);
} else {
/* disable pws */
atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
phy_data & ~LEGCYPS_EN);
/* disable hibernate */
atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
phy_data & HIBNEG_PSHIB_EN);
}
/* disable AZ(EEE) by default */
if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
hw->nic_type == athr_l2c_b2) {
AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
L2CB_CLDCTRL3);
}
/* other debug port to set */
atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
/* UNH-IOL test issue, set bit7 */
atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
/* set phy interrupt mask */
phy_data = IER_LINK_UP | IER_LINK_DOWN;
err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
if (err) {
if (netif_msg_hw(adapter))
dev_err(&pdev->dev,
"Error enable PHY linkChange Interrupt\n");
return err;
}
return 0;
}
int atl1c_phy_init(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
int ret_val;
u16 mii_bmcr_data = BMCR_RESET;
if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
dev_err(&pdev->dev, "Error get phy ID\n");
return -1;
}
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
ret_val = atl1c_phy_setup_adv(hw);
if (ret_val) {
if (netif_msg_link(adapter))
dev_err(&pdev->dev,
"Error Setting up Auto-Negotiation\n");
return ret_val;
}
mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
break;
case MEDIA_TYPE_100M_FULL:
mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
break;
case MEDIA_TYPE_100M_HALF:
mii_bmcr_data |= BMCR_SPEED100;
break;
case MEDIA_TYPE_10M_FULL:
mii_bmcr_data |= BMCR_FULLDPLX;
break;
case MEDIA_TYPE_10M_HALF:
break;
default:
if (netif_msg_link(adapter))
dev_err(&pdev->dev, "Wrong Media type %d\n",
hw->media_type);
return -1;
}
ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return 0;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
{
int err;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
if (err)
return err;
if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
return -1;
switch (phy_data & GIGA_PSSR_SPEED) {
case GIGA_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case GIGA_PSSR_100MBS:
*speed = SPEED_100;
break;
case GIGA_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return -1;
}
if (phy_data & GIGA_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
/* select one link mode to get lower power consumption */
int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
int ret = 0;
u16 autoneg_advertised = ADVERTISED_10baseT_Half;
u16 save_autoneg_advertised;
u16 phy_data;
u16 mii_lpa_data;
u16 speed = SPEED_0;
u16 duplex = FULL_DUPLEX;
int i;
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
if (phy_data & BMSR_LSTATUS) {
atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
if (mii_lpa_data & LPA_10FULL)
autoneg_advertised = ADVERTISED_10baseT_Full;
else if (mii_lpa_data & LPA_10HALF)
autoneg_advertised = ADVERTISED_10baseT_Half;
else if (mii_lpa_data & LPA_100HALF)
autoneg_advertised = ADVERTISED_100baseT_Half;
else if (mii_lpa_data & LPA_100FULL)
autoneg_advertised = ADVERTISED_100baseT_Full;
save_autoneg_advertised = hw->autoneg_advertised;
hw->phy_configured = false;
hw->autoneg_advertised = autoneg_advertised;
if (atl1c_restart_autoneg(hw) != 0) {
dev_dbg(&pdev->dev, "phy autoneg failed\n");
ret = -1;
}
hw->autoneg_advertised = save_autoneg_advertised;
if (mii_lpa_data) {
for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
mdelay(100);
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
if (phy_data & BMSR_LSTATUS) {
if (atl1c_get_speed_and_duplex(hw, &speed,
&duplex) != 0)
dev_dbg(&pdev->dev,
"get speed and duplex failed\n");
break;
}
}
}
} else {
speed = SPEED_10;
duplex = HALF_DUPLEX;
}
adapter->link_speed = speed;
adapter->link_duplex = duplex;
return ret;
}
int atl1c_restart_autoneg(struct atl1c_hw *hw)
{
int err = 0;
u16 mii_bmcr_data = BMCR_RESET;
err = atl1c_phy_setup_adv(hw);
if (err)
return err;
mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
}
int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
{
struct atl1c_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
u32 master_ctrl, mac_ctrl, phy_ctrl;
u32 wol_ctrl, speed;
u16 phy_data;
wol_ctrl = 0;
speed = adapter->link_speed == SPEED_1000 ?
MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
if (adapter->link_duplex == FULL_DUPLEX)
mac_ctrl |= MAC_CTRL_DUPLX;
phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
GPHY_CTRL_HIB_EN;
if (!wufc) { /* without WoL */
master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
hw->phy_configured = false; /* re-init PHY when resume */
return 0;
}
phy_ctrl |= GPHY_CTRL_EXT_RESET;
if (wufc & AT_WUFC_MAG) {
mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
}
if (wufc & AT_WUFC_LNKC) {
wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
atl1c_driver_name);
}
}
/* clear PHY interrupt */
atl1c_read_phy_reg(hw, MII_ISR, &phy_data);
dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
return 0;
}
/* configure phy after Link change Event */
void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
{
u16 phy_val;
bool adj_thresh = false;
if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
adj_thresh = true;
if (link_speed != SPEED_0) { /* link up */
/* az with brcm, half-amp */
if (hw->nic_type == athr_l1d_2) {
atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
&phy_val);
phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
AZ_ANADECT_LONG : AZ_ANADECT_DEF;
atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
}
/* threshold adjust */
if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
L1D_SYSMODCTRL_IECHOADJ_DEF);
}
} else { /* link down */
if (adj_thresh && hw->msi_lnkpatch) {
atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
SYSMODCTRL_IECHOADJ_DEF);
atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
L1D_MSE16DB_DOWN);
}
}
}