linux/drivers/net/phy/at803x.c

1255 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/phy/at803x.c
*
* Driver for Qualcomm Atheros AR803x PHY
*
* Author: Matus Ujhelyi <ujhelyi.m@gmail.com>
*/
#include <linux/phy.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool_netlink.h>
#include <linux/of_gpio.h>
#include <linux/bitfield.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/consumer.h>
#include <dt-bindings/net/qca-ar803x.h>
#define AT803X_SPECIFIC_FUNCTION_CONTROL 0x10
#define AT803X_SFC_ASSERT_CRS BIT(11)
#define AT803X_SFC_FORCE_LINK BIT(10)
#define AT803X_SFC_MDI_CROSSOVER_MODE_M GENMASK(6, 5)
#define AT803X_SFC_AUTOMATIC_CROSSOVER 0x3
#define AT803X_SFC_MANUAL_MDIX 0x1
#define AT803X_SFC_MANUAL_MDI 0x0
#define AT803X_SFC_SQE_TEST BIT(2)
#define AT803X_SFC_POLARITY_REVERSAL BIT(1)
#define AT803X_SFC_DISABLE_JABBER BIT(0)
#define AT803X_SPECIFIC_STATUS 0x11
#define AT803X_SS_SPEED_MASK (3 << 14)
#define AT803X_SS_SPEED_1000 (2 << 14)
#define AT803X_SS_SPEED_100 (1 << 14)
#define AT803X_SS_SPEED_10 (0 << 14)
#define AT803X_SS_DUPLEX BIT(13)
#define AT803X_SS_SPEED_DUPLEX_RESOLVED BIT(11)
#define AT803X_SS_MDIX BIT(6)
#define AT803X_INTR_ENABLE 0x12
#define AT803X_INTR_ENABLE_AUTONEG_ERR BIT(15)
#define AT803X_INTR_ENABLE_SPEED_CHANGED BIT(14)
#define AT803X_INTR_ENABLE_DUPLEX_CHANGED BIT(13)
#define AT803X_INTR_ENABLE_PAGE_RECEIVED BIT(12)
#define AT803X_INTR_ENABLE_LINK_FAIL BIT(11)
#define AT803X_INTR_ENABLE_LINK_SUCCESS BIT(10)
#define AT803X_INTR_ENABLE_WIRESPEED_DOWNGRADE BIT(5)
#define AT803X_INTR_ENABLE_POLARITY_CHANGED BIT(1)
#define AT803X_INTR_ENABLE_WOL BIT(0)
#define AT803X_INTR_STATUS 0x13
#define AT803X_SMART_SPEED 0x14
#define AT803X_SMART_SPEED_ENABLE BIT(5)
#define AT803X_SMART_SPEED_RETRY_LIMIT_MASK GENMASK(4, 2)
#define AT803X_SMART_SPEED_BYPASS_TIMER BIT(1)
#define AT803X_CDT 0x16
#define AT803X_CDT_MDI_PAIR_MASK GENMASK(9, 8)
#define AT803X_CDT_ENABLE_TEST BIT(0)
#define AT803X_CDT_STATUS 0x1c
#define AT803X_CDT_STATUS_STAT_NORMAL 0
#define AT803X_CDT_STATUS_STAT_SHORT 1
#define AT803X_CDT_STATUS_STAT_OPEN 2
#define AT803X_CDT_STATUS_STAT_FAIL 3
#define AT803X_CDT_STATUS_STAT_MASK GENMASK(9, 8)
#define AT803X_CDT_STATUS_DELTA_TIME_MASK GENMASK(7, 0)
#define AT803X_LED_CONTROL 0x18
#define AT803X_DEVICE_ADDR 0x03
#define AT803X_LOC_MAC_ADDR_0_15_OFFSET 0x804C
#define AT803X_LOC_MAC_ADDR_16_31_OFFSET 0x804B
#define AT803X_LOC_MAC_ADDR_32_47_OFFSET 0x804A
#define AT803X_REG_CHIP_CONFIG 0x1f
#define AT803X_BT_BX_REG_SEL 0x8000
#define AT803X_DEBUG_ADDR 0x1D
#define AT803X_DEBUG_DATA 0x1E
#define AT803X_MODE_CFG_MASK 0x0F
#define AT803X_MODE_CFG_SGMII 0x01
#define AT803X_PSSR 0x11 /*PHY-Specific Status Register*/
#define AT803X_PSSR_MR_AN_COMPLETE 0x0200
#define AT803X_DEBUG_REG_0 0x00
#define AT803X_DEBUG_RX_CLK_DLY_EN BIT(15)
#define AT803X_DEBUG_REG_5 0x05
#define AT803X_DEBUG_TX_CLK_DLY_EN BIT(8)
#define AT803X_DEBUG_REG_1F 0x1F
#define AT803X_DEBUG_PLL_ON BIT(2)
#define AT803X_DEBUG_RGMII_1V8 BIT(3)
/* AT803x supports either the XTAL input pad, an internal PLL or the
* DSP as clock reference for the clock output pad. The XTAL reference
* is only used for 25 MHz output, all other frequencies need the PLL.
* The DSP as a clock reference is used in synchronous ethernet
* applications.
*
* By default the PLL is only enabled if there is a link. Otherwise
* the PHY will go into low power state and disabled the PLL. You can
* set the PLL_ON bit (see debug register 0x1f) to keep the PLL always
* enabled.
*/
#define AT803X_MMD7_CLK25M 0x8016
#define AT803X_CLK_OUT_MASK GENMASK(4, 2)
#define AT803X_CLK_OUT_25MHZ_XTAL 0
#define AT803X_CLK_OUT_25MHZ_DSP 1
#define AT803X_CLK_OUT_50MHZ_PLL 2
#define AT803X_CLK_OUT_50MHZ_DSP 3
#define AT803X_CLK_OUT_62_5MHZ_PLL 4
#define AT803X_CLK_OUT_62_5MHZ_DSP 5
#define AT803X_CLK_OUT_125MHZ_PLL 6
#define AT803X_CLK_OUT_125MHZ_DSP 7
/* The AR8035 has another mask which is compatible with the AR8031/AR8033 mask
* but doesn't support choosing between XTAL/PLL and DSP.
*/
#define AT8035_CLK_OUT_MASK GENMASK(4, 3)
#define AT803X_CLK_OUT_STRENGTH_MASK GENMASK(8, 7)
#define AT803X_CLK_OUT_STRENGTH_FULL 0
#define AT803X_CLK_OUT_STRENGTH_HALF 1
#define AT803X_CLK_OUT_STRENGTH_QUARTER 2
#define AT803X_DEFAULT_DOWNSHIFT 5
#define AT803X_MIN_DOWNSHIFT 2
#define AT803X_MAX_DOWNSHIFT 9
#define AT803X_MMD3_SMARTEEE_CTL1 0x805b
#define AT803X_MMD3_SMARTEEE_CTL2 0x805c
#define AT803X_MMD3_SMARTEEE_CTL3 0x805d
#define AT803X_MMD3_SMARTEEE_CTL3_LPI_EN BIT(8)
#define ATH9331_PHY_ID 0x004dd041
#define ATH8030_PHY_ID 0x004dd076
#define ATH8031_PHY_ID 0x004dd074
#define ATH8032_PHY_ID 0x004dd023
#define ATH8035_PHY_ID 0x004dd072
#define AT8030_PHY_ID_MASK 0xffffffef
MODULE_DESCRIPTION("Qualcomm Atheros AR803x PHY driver");
MODULE_AUTHOR("Matus Ujhelyi");
MODULE_LICENSE("GPL");
struct at803x_priv {
int flags;
#define AT803X_KEEP_PLL_ENABLED BIT(0) /* don't turn off internal PLL */
#define AT803X_DISABLE_SMARTEEE BIT(1)
u16 clk_25m_reg;
u16 clk_25m_mask;
u8 smarteee_lpi_tw_1g;
u8 smarteee_lpi_tw_100m;
struct regulator_dev *vddio_rdev;
struct regulator_dev *vddh_rdev;
struct regulator *vddio;
};
struct at803x_context {
u16 bmcr;
u16 advertise;
u16 control1000;
u16 int_enable;
u16 smart_speed;
u16 led_control;
};
static int at803x_debug_reg_read(struct phy_device *phydev, u16 reg)
{
int ret;
ret = phy_write(phydev, AT803X_DEBUG_ADDR, reg);
if (ret < 0)
return ret;
return phy_read(phydev, AT803X_DEBUG_DATA);
}
static int at803x_debug_reg_mask(struct phy_device *phydev, u16 reg,
u16 clear, u16 set)
{
u16 val;
int ret;
ret = at803x_debug_reg_read(phydev, reg);
if (ret < 0)
return ret;
val = ret & 0xffff;
val &= ~clear;
val |= set;
return phy_write(phydev, AT803X_DEBUG_DATA, val);
}
static int at803x_enable_rx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_0, 0,
AT803X_DEBUG_RX_CLK_DLY_EN);
}
static int at803x_enable_tx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_5, 0,
AT803X_DEBUG_TX_CLK_DLY_EN);
}
static int at803x_disable_rx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_0,
AT803X_DEBUG_RX_CLK_DLY_EN, 0);
}
static int at803x_disable_tx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_5,
AT803X_DEBUG_TX_CLK_DLY_EN, 0);
}
/* save relevant PHY registers to private copy */
static void at803x_context_save(struct phy_device *phydev,
struct at803x_context *context)
{
context->bmcr = phy_read(phydev, MII_BMCR);
context->advertise = phy_read(phydev, MII_ADVERTISE);
context->control1000 = phy_read(phydev, MII_CTRL1000);
context->int_enable = phy_read(phydev, AT803X_INTR_ENABLE);
context->smart_speed = phy_read(phydev, AT803X_SMART_SPEED);
context->led_control = phy_read(phydev, AT803X_LED_CONTROL);
}
/* restore relevant PHY registers from private copy */
static void at803x_context_restore(struct phy_device *phydev,
const struct at803x_context *context)
{
phy_write(phydev, MII_BMCR, context->bmcr);
phy_write(phydev, MII_ADVERTISE, context->advertise);
phy_write(phydev, MII_CTRL1000, context->control1000);
phy_write(phydev, AT803X_INTR_ENABLE, context->int_enable);
phy_write(phydev, AT803X_SMART_SPEED, context->smart_speed);
phy_write(phydev, AT803X_LED_CONTROL, context->led_control);
}
static int at803x_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
struct net_device *ndev = phydev->attached_dev;
const u8 *mac;
int ret;
u32 value;
unsigned int i, offsets[] = {
AT803X_LOC_MAC_ADDR_32_47_OFFSET,
AT803X_LOC_MAC_ADDR_16_31_OFFSET,
AT803X_LOC_MAC_ADDR_0_15_OFFSET,
};
if (!ndev)
return -ENODEV;
if (wol->wolopts & WAKE_MAGIC) {
mac = (const u8 *) ndev->dev_addr;
if (!is_valid_ether_addr(mac))
return -EINVAL;
for (i = 0; i < 3; i++)
phy_write_mmd(phydev, AT803X_DEVICE_ADDR, offsets[i],
mac[(i * 2) + 1] | (mac[(i * 2)] << 8));
value = phy_read(phydev, AT803X_INTR_ENABLE);
value |= AT803X_INTR_ENABLE_WOL;
ret = phy_write(phydev, AT803X_INTR_ENABLE, value);
if (ret)
return ret;
value = phy_read(phydev, AT803X_INTR_STATUS);
} else {
value = phy_read(phydev, AT803X_INTR_ENABLE);
value &= (~AT803X_INTR_ENABLE_WOL);
ret = phy_write(phydev, AT803X_INTR_ENABLE, value);
if (ret)
return ret;
value = phy_read(phydev, AT803X_INTR_STATUS);
}
return ret;
}
static void at803x_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
u32 value;
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
value = phy_read(phydev, AT803X_INTR_ENABLE);
if (value & AT803X_INTR_ENABLE_WOL)
wol->wolopts |= WAKE_MAGIC;
}
static int at803x_suspend(struct phy_device *phydev)
{
int value;
int wol_enabled;
value = phy_read(phydev, AT803X_INTR_ENABLE);
wol_enabled = value & AT803X_INTR_ENABLE_WOL;
if (wol_enabled)
value = BMCR_ISOLATE;
else
value = BMCR_PDOWN;
phy_modify(phydev, MII_BMCR, 0, value);
return 0;
}
static int at803x_resume(struct phy_device *phydev)
{
return phy_modify(phydev, MII_BMCR, BMCR_PDOWN | BMCR_ISOLATE, 0);
}
static int at803x_rgmii_reg_set_voltage_sel(struct regulator_dev *rdev,
unsigned int selector)
{
struct phy_device *phydev = rdev_get_drvdata(rdev);
if (selector)
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
0, AT803X_DEBUG_RGMII_1V8);
else
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
AT803X_DEBUG_RGMII_1V8, 0);
}
static int at803x_rgmii_reg_get_voltage_sel(struct regulator_dev *rdev)
{
struct phy_device *phydev = rdev_get_drvdata(rdev);
int val;
val = at803x_debug_reg_read(phydev, AT803X_DEBUG_REG_1F);
if (val < 0)
return val;
return (val & AT803X_DEBUG_RGMII_1V8) ? 1 : 0;
}
static const struct regulator_ops vddio_regulator_ops = {
.list_voltage = regulator_list_voltage_table,
.set_voltage_sel = at803x_rgmii_reg_set_voltage_sel,
.get_voltage_sel = at803x_rgmii_reg_get_voltage_sel,
};
static const unsigned int vddio_voltage_table[] = {
1500000,
1800000,
};
static const struct regulator_desc vddio_desc = {
.name = "vddio",
.of_match = of_match_ptr("vddio-regulator"),
.n_voltages = ARRAY_SIZE(vddio_voltage_table),
.volt_table = vddio_voltage_table,
.ops = &vddio_regulator_ops,
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
};
static const struct regulator_ops vddh_regulator_ops = {
};
static const struct regulator_desc vddh_desc = {
.name = "vddh",
.of_match = of_match_ptr("vddh-regulator"),
.n_voltages = 1,
.fixed_uV = 2500000,
.ops = &vddh_regulator_ops,
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
};
static int at8031_register_regulators(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
struct device *dev = &phydev->mdio.dev;
struct regulator_config config = { };
config.dev = dev;
config.driver_data = phydev;
priv->vddio_rdev = devm_regulator_register(dev, &vddio_desc, &config);
if (IS_ERR(priv->vddio_rdev)) {
phydev_err(phydev, "failed to register VDDIO regulator\n");
return PTR_ERR(priv->vddio_rdev);
}
priv->vddh_rdev = devm_regulator_register(dev, &vddh_desc, &config);
if (IS_ERR(priv->vddh_rdev)) {
phydev_err(phydev, "failed to register VDDH regulator\n");
return PTR_ERR(priv->vddh_rdev);
}
return 0;
}
static bool at803x_match_phy_id(struct phy_device *phydev, u32 phy_id)
{
return (phydev->phy_id & phydev->drv->phy_id_mask)
== (phy_id & phydev->drv->phy_id_mask);
}
static int at803x_parse_dt(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
struct at803x_priv *priv = phydev->priv;
u32 freq, strength, tw;
unsigned int sel;
int ret;
if (!IS_ENABLED(CONFIG_OF_MDIO))
return 0;
if (of_property_read_bool(node, "qca,disable-smarteee"))
priv->flags |= AT803X_DISABLE_SMARTEEE;
if (!of_property_read_u32(node, "qca,smarteee-tw-us-1g", &tw)) {
if (!tw || tw > 255) {
phydev_err(phydev, "invalid qca,smarteee-tw-us-1g\n");
return -EINVAL;
}
priv->smarteee_lpi_tw_1g = tw;
}
if (!of_property_read_u32(node, "qca,smarteee-tw-us-100m", &tw)) {
if (!tw || tw > 255) {
phydev_err(phydev, "invalid qca,smarteee-tw-us-100m\n");
return -EINVAL;
}
priv->smarteee_lpi_tw_100m = tw;
}
ret = of_property_read_u32(node, "qca,clk-out-frequency", &freq);
if (!ret) {
switch (freq) {
case 25000000:
sel = AT803X_CLK_OUT_25MHZ_XTAL;
break;
case 50000000:
sel = AT803X_CLK_OUT_50MHZ_PLL;
break;
case 62500000:
sel = AT803X_CLK_OUT_62_5MHZ_PLL;
break;
case 125000000:
sel = AT803X_CLK_OUT_125MHZ_PLL;
break;
default:
phydev_err(phydev, "invalid qca,clk-out-frequency\n");
return -EINVAL;
}
priv->clk_25m_reg |= FIELD_PREP(AT803X_CLK_OUT_MASK, sel);
priv->clk_25m_mask |= AT803X_CLK_OUT_MASK;
/* Fixup for the AR8030/AR8035. This chip has another mask and
* doesn't support the DSP reference. Eg. the lowest bit of the
* mask. The upper two bits select the same frequencies. Mask
* the lowest bit here.
*
* Warning:
* There was no datasheet for the AR8030 available so this is
* just a guess. But the AR8035 is listed as pin compatible
* to the AR8030 so there might be a good chance it works on
* the AR8030 too.
*/
if (at803x_match_phy_id(phydev, ATH8030_PHY_ID) ||
at803x_match_phy_id(phydev, ATH8035_PHY_ID)) {
priv->clk_25m_reg &= AT8035_CLK_OUT_MASK;
priv->clk_25m_mask &= AT8035_CLK_OUT_MASK;
}
}
ret = of_property_read_u32(node, "qca,clk-out-strength", &strength);
if (!ret) {
priv->clk_25m_mask |= AT803X_CLK_OUT_STRENGTH_MASK;
switch (strength) {
case AR803X_STRENGTH_FULL:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_FULL;
break;
case AR803X_STRENGTH_HALF:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_HALF;
break;
case AR803X_STRENGTH_QUARTER:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_QUARTER;
break;
default:
phydev_err(phydev, "invalid qca,clk-out-strength\n");
return -EINVAL;
}
}
/* Only supported on AR8031/AR8033, the AR8030/AR8035 use strapping
* options.
*/
if (at803x_match_phy_id(phydev, ATH8031_PHY_ID)) {
if (of_property_read_bool(node, "qca,keep-pll-enabled"))
priv->flags |= AT803X_KEEP_PLL_ENABLED;
ret = at8031_register_regulators(phydev);
if (ret < 0)
return ret;
priv->vddio = devm_regulator_get_optional(&phydev->mdio.dev,
"vddio");
if (IS_ERR(priv->vddio)) {
phydev_err(phydev, "failed to get VDDIO regulator\n");
return PTR_ERR(priv->vddio);
}
ret = regulator_enable(priv->vddio);
if (ret < 0)
return ret;
}
return 0;
}
static int at803x_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct at803x_priv *priv;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
return at803x_parse_dt(phydev);
}
static void at803x_remove(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
if (priv->vddio)
regulator_disable(priv->vddio);
}
static int at803x_smarteee_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
u16 mask = 0, val = 0;
int ret;
if (priv->flags & AT803X_DISABLE_SMARTEEE)
return phy_modify_mmd(phydev, MDIO_MMD_PCS,
AT803X_MMD3_SMARTEEE_CTL3,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN, 0);
if (priv->smarteee_lpi_tw_1g) {
mask |= 0xff00;
val |= priv->smarteee_lpi_tw_1g << 8;
}
if (priv->smarteee_lpi_tw_100m) {
mask |= 0x00ff;
val |= priv->smarteee_lpi_tw_100m;
}
if (!mask)
return 0;
ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL1,
mask, val);
if (ret)
return ret;
return phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL3,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN);
}
static int at803x_clk_out_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
if (!priv->clk_25m_mask)
return 0;
return phy_modify_mmd(phydev, MDIO_MMD_AN, AT803X_MMD7_CLK25M,
priv->clk_25m_mask, priv->clk_25m_reg);
}
static int at8031_pll_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
/* The default after hardware reset is PLL OFF. After a soft reset, the
* values are retained.
*/
if (priv->flags & AT803X_KEEP_PLL_ENABLED)
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
0, AT803X_DEBUG_PLL_ON);
else
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
AT803X_DEBUG_PLL_ON, 0);
}
static int at803x_config_init(struct phy_device *phydev)
{
int ret;
/* The RX and TX delay default is:
* after HW reset: RX delay enabled and TX delay disabled
* after SW reset: RX delay enabled, while TX delay retains the
* value before reset.
*/
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
ret = at803x_enable_rx_delay(phydev);
else
ret = at803x_disable_rx_delay(phydev);
if (ret < 0)
return ret;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
ret = at803x_enable_tx_delay(phydev);
else
ret = at803x_disable_tx_delay(phydev);
if (ret < 0)
return ret;
ret = at803x_smarteee_config(phydev);
if (ret < 0)
return ret;
ret = at803x_clk_out_config(phydev);
if (ret < 0)
return ret;
if (at803x_match_phy_id(phydev, ATH8031_PHY_ID)) {
ret = at8031_pll_config(phydev);
if (ret < 0)
return ret;
}
/* Ar803x extended next page bit is enabled by default. Cisco
* multigig switches read this bit and attempt to negotiate 10Gbps
* rates even if the next page bit is disabled. This is incorrect
* behaviour but we still need to accommodate it. XNP is only needed
* for 10Gbps support, so disable XNP.
*/
return phy_modify(phydev, MII_ADVERTISE, MDIO_AN_CTRL1_XNP, 0);
}
static int at803x_ack_interrupt(struct phy_device *phydev)
{
int err;
err = phy_read(phydev, AT803X_INTR_STATUS);
return (err < 0) ? err : 0;
}
static int at803x_config_intr(struct phy_device *phydev)
{
int err;
int value;
value = phy_read(phydev, AT803X_INTR_ENABLE);
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
/* Clear any pending interrupts */
err = at803x_ack_interrupt(phydev);
if (err)
return err;
value |= AT803X_INTR_ENABLE_AUTONEG_ERR;
value |= AT803X_INTR_ENABLE_SPEED_CHANGED;
value |= AT803X_INTR_ENABLE_DUPLEX_CHANGED;
value |= AT803X_INTR_ENABLE_LINK_FAIL;
value |= AT803X_INTR_ENABLE_LINK_SUCCESS;
err = phy_write(phydev, AT803X_INTR_ENABLE, value);
} else {
err = phy_write(phydev, AT803X_INTR_ENABLE, 0);
if (err)
return err;
/* Clear any pending interrupts */
err = at803x_ack_interrupt(phydev);
}
return err;
}
static irqreturn_t at803x_handle_interrupt(struct phy_device *phydev)
{
int irq_status, int_enabled;
irq_status = phy_read(phydev, AT803X_INTR_STATUS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* Read the current enabled interrupts */
int_enabled = phy_read(phydev, AT803X_INTR_ENABLE);
if (int_enabled < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* See if this was one of our enabled interrupts */
if (!(irq_status & int_enabled))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static void at803x_link_change_notify(struct phy_device *phydev)
{
/*
* Conduct a hardware reset for AT8030 every time a link loss is
* signalled. This is necessary to circumvent a hardware bug that
* occurs when the cable is unplugged while TX packets are pending
* in the FIFO. In such cases, the FIFO enters an error mode it
* cannot recover from by software.
*/
if (phydev->state == PHY_NOLINK && phydev->mdio.reset_gpio) {
struct at803x_context context;
at803x_context_save(phydev, &context);
phy_device_reset(phydev, 1);
msleep(1);
phy_device_reset(phydev, 0);
msleep(1);
at803x_context_restore(phydev, &context);
phydev_dbg(phydev, "%s(): phy was reset\n", __func__);
}
}
static int at803x_aneg_done(struct phy_device *phydev)
{
int ccr;
int aneg_done = genphy_aneg_done(phydev);
if (aneg_done != BMSR_ANEGCOMPLETE)
return aneg_done;
/*
* in SGMII mode, if copper side autoneg is successful,
* also check SGMII side autoneg result
*/
ccr = phy_read(phydev, AT803X_REG_CHIP_CONFIG);
if ((ccr & AT803X_MODE_CFG_MASK) != AT803X_MODE_CFG_SGMII)
return aneg_done;
/* switch to SGMII/fiber page */
phy_write(phydev, AT803X_REG_CHIP_CONFIG, ccr & ~AT803X_BT_BX_REG_SEL);
/* check if the SGMII link is OK. */
if (!(phy_read(phydev, AT803X_PSSR) & AT803X_PSSR_MR_AN_COMPLETE)) {
phydev_warn(phydev, "803x_aneg_done: SGMII link is not ok\n");
aneg_done = 0;
}
/* switch back to copper page */
phy_write(phydev, AT803X_REG_CHIP_CONFIG, ccr | AT803X_BT_BX_REG_SEL);
return aneg_done;
}
static int at803x_read_status(struct phy_device *phydev)
{
int ss, err, old_link = phydev->link;
/* Update the link, but return if there was an error */
err = genphy_update_link(phydev);
if (err)
return err;
/* why bother the PHY if nothing can have changed */
if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
return 0;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
err = genphy_read_lpa(phydev);
if (err < 0)
return err;
/* Read the AT8035 PHY-Specific Status register, which indicates the
* speed and duplex that the PHY is actually using, irrespective of
* whether we are in autoneg mode or not.
*/
ss = phy_read(phydev, AT803X_SPECIFIC_STATUS);
if (ss < 0)
return ss;
if (ss & AT803X_SS_SPEED_DUPLEX_RESOLVED) {
int sfc;
sfc = phy_read(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL);
if (sfc < 0)
return sfc;
switch (ss & AT803X_SS_SPEED_MASK) {
case AT803X_SS_SPEED_10:
phydev->speed = SPEED_10;
break;
case AT803X_SS_SPEED_100:
phydev->speed = SPEED_100;
break;
case AT803X_SS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
}
if (ss & AT803X_SS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if (ss & AT803X_SS_MDIX)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
switch (FIELD_GET(AT803X_SFC_MDI_CROSSOVER_MODE_M, sfc)) {
case AT803X_SFC_MANUAL_MDI:
phydev->mdix_ctrl = ETH_TP_MDI;
break;
case AT803X_SFC_MANUAL_MDIX:
phydev->mdix_ctrl = ETH_TP_MDI_X;
break;
case AT803X_SFC_AUTOMATIC_CROSSOVER:
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
break;
}
}
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete)
phy_resolve_aneg_pause(phydev);
return 0;
}
static int at803x_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = AT803X_SFC_MANUAL_MDI;
break;
case ETH_TP_MDI_X:
val = AT803X_SFC_MANUAL_MDIX;
break;
case ETH_TP_MDI_AUTO:
val = AT803X_SFC_AUTOMATIC_CROSSOVER;
break;
default:
return 0;
}
return phy_modify_changed(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL,
AT803X_SFC_MDI_CROSSOVER_MODE_M,
FIELD_PREP(AT803X_SFC_MDI_CROSSOVER_MODE_M, val));
}
static int at803x_config_aneg(struct phy_device *phydev)
{
int ret;
ret = at803x_config_mdix(phydev, phydev->mdix_ctrl);
if (ret < 0)
return ret;
/* Changes of the midx bits are disruptive to the normal operation;
* therefore any changes to these registers must be followed by a
* software reset to take effect.
*/
if (ret == 1) {
ret = genphy_soft_reset(phydev);
if (ret < 0)
return ret;
}
return genphy_config_aneg(phydev);
}
static int at803x_get_downshift(struct phy_device *phydev, u8 *d)
{
int val;
val = phy_read(phydev, AT803X_SMART_SPEED);
if (val < 0)
return val;
if (val & AT803X_SMART_SPEED_ENABLE)
*d = FIELD_GET(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, val) + 2;
else
*d = DOWNSHIFT_DEV_DISABLE;
return 0;
}
static int at803x_set_downshift(struct phy_device *phydev, u8 cnt)
{
u16 mask, set;
int ret;
switch (cnt) {
case DOWNSHIFT_DEV_DEFAULT_COUNT:
cnt = AT803X_DEFAULT_DOWNSHIFT;
fallthrough;
case AT803X_MIN_DOWNSHIFT ... AT803X_MAX_DOWNSHIFT:
set = AT803X_SMART_SPEED_ENABLE |
AT803X_SMART_SPEED_BYPASS_TIMER |
FIELD_PREP(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, cnt - 2);
mask = AT803X_SMART_SPEED_RETRY_LIMIT_MASK;
break;
case DOWNSHIFT_DEV_DISABLE:
set = 0;
mask = AT803X_SMART_SPEED_ENABLE |
AT803X_SMART_SPEED_BYPASS_TIMER;
break;
default:
return -EINVAL;
}
ret = phy_modify_changed(phydev, AT803X_SMART_SPEED, mask, set);
/* After changing the smart speed settings, we need to perform a
* software reset, use phy_init_hw() to make sure we set the
* reapply any values which might got lost during software reset.
*/
if (ret == 1)
ret = phy_init_hw(phydev);
return ret;
}
static int at803x_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return at803x_get_downshift(phydev, data);
default:
return -EOPNOTSUPP;
}
}
static int at803x_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return at803x_set_downshift(phydev, *(const u8 *)data);
default:
return -EOPNOTSUPP;
}
}
static int at803x_cable_test_result_trans(u16 status)
{
switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) {
case AT803X_CDT_STATUS_STAT_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case AT803X_CDT_STATUS_STAT_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case AT803X_CDT_STATUS_STAT_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case AT803X_CDT_STATUS_STAT_FAIL:
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static bool at803x_cdt_test_failed(u16 status)
{
return FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status) ==
AT803X_CDT_STATUS_STAT_FAIL;
}
static bool at803x_cdt_fault_length_valid(u16 status)
{
switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) {
case AT803X_CDT_STATUS_STAT_OPEN:
case AT803X_CDT_STATUS_STAT_SHORT:
return true;
}
return false;
}
static int at803x_cdt_fault_length(u16 status)
{
int dt;
/* According to the datasheet the distance to the fault is
* DELTA_TIME * 0.824 meters.
*
* The author suspect the correct formula is:
*
* fault_distance = DELTA_TIME * (c * VF) / 125MHz / 2
*
* where c is the speed of light, VF is the velocity factor of
* the twisted pair cable, 125MHz the counter frequency and
* we need to divide by 2 because the hardware will measure the
* round trip time to the fault and back to the PHY.
*
* With a VF of 0.69 we get the factor 0.824 mentioned in the
* datasheet.
*/
dt = FIELD_GET(AT803X_CDT_STATUS_DELTA_TIME_MASK, status);
return (dt * 824) / 10;
}
static int at803x_cdt_start(struct phy_device *phydev, int pair)
{
u16 cdt;
cdt = FIELD_PREP(AT803X_CDT_MDI_PAIR_MASK, pair) |
AT803X_CDT_ENABLE_TEST;
return phy_write(phydev, AT803X_CDT, cdt);
}
static int at803x_cdt_wait_for_completion(struct phy_device *phydev)
{
int val, ret;
/* One test run takes about 25ms */
ret = phy_read_poll_timeout(phydev, AT803X_CDT, val,
!(val & AT803X_CDT_ENABLE_TEST),
30000, 100000, true);
return ret < 0 ? ret : 0;
}
static int at803x_cable_test_one_pair(struct phy_device *phydev, int pair)
{
static const int ethtool_pair[] = {
ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
ETHTOOL_A_CABLE_PAIR_C,
ETHTOOL_A_CABLE_PAIR_D,
};
int ret, val;
ret = at803x_cdt_start(phydev, pair);
if (ret)
return ret;
ret = at803x_cdt_wait_for_completion(phydev);
if (ret)
return ret;
val = phy_read(phydev, AT803X_CDT_STATUS);
if (val < 0)
return val;
if (at803x_cdt_test_failed(val))
return 0;
ethnl_cable_test_result(phydev, ethtool_pair[pair],
at803x_cable_test_result_trans(val));
if (at803x_cdt_fault_length_valid(val))
ethnl_cable_test_fault_length(phydev, ethtool_pair[pair],
at803x_cdt_fault_length(val));
return 1;
}
static int at803x_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
unsigned long pair_mask;
int retries = 20;
int pair, ret;
if (phydev->phy_id == ATH9331_PHY_ID ||
phydev->phy_id == ATH8032_PHY_ID)
pair_mask = 0x3;
else
pair_mask = 0xf;
*finished = false;
/* According to the datasheet the CDT can be performed when
* there is no link partner or when the link partner is
* auto-negotiating. Starting the test will restart the AN
* automatically. It seems that doing this repeatedly we will
* get a slot where our link partner won't disturb our
* measurement.
*/
while (pair_mask && retries--) {
for_each_set_bit(pair, &pair_mask, 4) {
ret = at803x_cable_test_one_pair(phydev, pair);
if (ret < 0)
return ret;
if (ret)
clear_bit(pair, &pair_mask);
}
if (pair_mask)
msleep(250);
}
*finished = true;
return 0;
}
static int at803x_cable_test_start(struct phy_device *phydev)
{
/* Enable auto-negotiation, but advertise no capabilities, no link
* will be established. A restart of the auto-negotiation is not
* required, because the cable test will automatically break the link.
*/
phy_write(phydev, MII_BMCR, BMCR_ANENABLE);
phy_write(phydev, MII_ADVERTISE, ADVERTISE_CSMA);
if (phydev->phy_id != ATH9331_PHY_ID &&
phydev->phy_id != ATH8032_PHY_ID)
phy_write(phydev, MII_CTRL1000, 0);
/* we do all the (time consuming) work later */
return 0;
}
static struct phy_driver at803x_driver[] = {
{
/* Qualcomm Atheros AR8035 */
PHY_ID_MATCH_EXACT(ATH8035_PHY_ID),
.name = "Qualcomm Atheros AR8035",
.flags = PHY_POLL_CABLE_TEST,
.probe = at803x_probe,
.remove = at803x_remove,
.config_aneg = at803x_config_aneg,
.config_init = at803x_config_init,
.soft_reset = genphy_soft_reset,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_GBIT_FEATURES */
.read_status = at803x_read_status,
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.get_tunable = at803x_get_tunable,
.set_tunable = at803x_set_tunable,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at803x_cable_test_get_status,
}, {
/* Qualcomm Atheros AR8030 */
.phy_id = ATH8030_PHY_ID,
.name = "Qualcomm Atheros AR8030",
.phy_id_mask = AT8030_PHY_ID_MASK,
.probe = at803x_probe,
.remove = at803x_remove,
.config_init = at803x_config_init,
.link_change_notify = at803x_link_change_notify,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
}, {
/* Qualcomm Atheros AR8031/AR8033 */
PHY_ID_MATCH_EXACT(ATH8031_PHY_ID),
.name = "Qualcomm Atheros AR8031/AR8033",
.flags = PHY_POLL_CABLE_TEST,
.probe = at803x_probe,
.remove = at803x_remove,
.config_init = at803x_config_init,
.config_aneg = at803x_config_aneg,
.soft_reset = genphy_soft_reset,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_GBIT_FEATURES */
.read_status = at803x_read_status,
.aneg_done = at803x_aneg_done,
.config_intr = &at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.get_tunable = at803x_get_tunable,
.set_tunable = at803x_set_tunable,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at803x_cable_test_get_status,
}, {
/* Qualcomm Atheros AR8032 */
PHY_ID_MATCH_EXACT(ATH8032_PHY_ID),
.name = "Qualcomm Atheros AR8032",
.probe = at803x_probe,
.remove = at803x_remove,
.flags = PHY_POLL_CABLE_TEST,
.config_init = at803x_config_init,
.link_change_notify = at803x_link_change_notify,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at803x_cable_test_get_status,
}, {
/* ATHEROS AR9331 */
PHY_ID_MATCH_EXACT(ATH9331_PHY_ID),
.name = "Qualcomm Atheros AR9331 built-in PHY",
.suspend = at803x_suspend,
.resume = at803x_resume,
.flags = PHY_POLL_CABLE_TEST,
/* PHY_BASIC_FEATURES */
.config_intr = &at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at803x_cable_test_get_status,
.read_status = at803x_read_status,
.soft_reset = genphy_soft_reset,
.config_aneg = at803x_config_aneg,
} };
module_phy_driver(at803x_driver);
static struct mdio_device_id __maybe_unused atheros_tbl[] = {
{ ATH8030_PHY_ID, AT8030_PHY_ID_MASK },
{ PHY_ID_MATCH_EXACT(ATH8031_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH8032_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH8035_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH9331_PHY_ID) },
{ }
};
MODULE_DEVICE_TABLE(mdio, atheros_tbl);