mirror of https://gitee.com/openkylin/linux.git
2331 lines
64 KiB
C
2331 lines
64 KiB
C
/*******************************************************************************
|
|
*
|
|
* Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
|
|
* Copyright(c) 2013 - 2016 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in
|
|
* the file called "COPYING".
|
|
*
|
|
* Contact Information:
|
|
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
******************************************************************************/
|
|
|
|
#include <linux/prefetch.h>
|
|
#include <net/busy_poll.h>
|
|
|
|
#include "i40evf.h"
|
|
#include "i40e_trace.h"
|
|
#include "i40e_prototype.h"
|
|
|
|
static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
|
|
u32 td_tag)
|
|
{
|
|
return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
|
|
((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
|
|
((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
|
|
((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
|
((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
|
|
}
|
|
|
|
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
|
|
|
|
/**
|
|
* i40e_unmap_and_free_tx_resource - Release a Tx buffer
|
|
* @ring: the ring that owns the buffer
|
|
* @tx_buffer: the buffer to free
|
|
**/
|
|
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
|
|
struct i40e_tx_buffer *tx_buffer)
|
|
{
|
|
if (tx_buffer->skb) {
|
|
if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
|
|
kfree(tx_buffer->raw_buf);
|
|
else
|
|
dev_kfree_skb_any(tx_buffer->skb);
|
|
if (dma_unmap_len(tx_buffer, len))
|
|
dma_unmap_single(ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
} else if (dma_unmap_len(tx_buffer, len)) {
|
|
dma_unmap_page(ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
tx_buffer->next_to_watch = NULL;
|
|
tx_buffer->skb = NULL;
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
/* tx_buffer must be completely set up in the transmit path */
|
|
}
|
|
|
|
/**
|
|
* i40evf_clean_tx_ring - Free any empty Tx buffers
|
|
* @tx_ring: ring to be cleaned
|
|
**/
|
|
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
|
|
{
|
|
unsigned long bi_size;
|
|
u16 i;
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!tx_ring->tx_bi)
|
|
return;
|
|
|
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++)
|
|
i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
|
|
|
|
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
memset(tx_ring->tx_bi, 0, bi_size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
if (!tx_ring->netdev)
|
|
return;
|
|
|
|
/* cleanup Tx queue statistics */
|
|
netdev_tx_reset_queue(txring_txq(tx_ring));
|
|
}
|
|
|
|
/**
|
|
* i40evf_free_tx_resources - Free Tx resources per queue
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
|
|
{
|
|
i40evf_clean_tx_ring(tx_ring);
|
|
kfree(tx_ring->tx_bi);
|
|
tx_ring->tx_bi = NULL;
|
|
|
|
if (tx_ring->desc) {
|
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
|
tx_ring->desc, tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40evf_get_tx_pending - how many Tx descriptors not processed
|
|
* @tx_ring: the ring of descriptors
|
|
* @in_sw: is tx_pending being checked in SW or HW
|
|
*
|
|
* Since there is no access to the ring head register
|
|
* in XL710, we need to use our local copies
|
|
**/
|
|
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
|
|
{
|
|
u32 head, tail;
|
|
|
|
head = ring->next_to_clean;
|
|
tail = readl(ring->tail);
|
|
|
|
if (head != tail)
|
|
return (head < tail) ?
|
|
tail - head : (tail + ring->count - head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define WB_STRIDE 4
|
|
|
|
/**
|
|
* i40e_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @vsi: the VSI we care about
|
|
* @tx_ring: Tx ring to clean
|
|
* @napi_budget: Used to determine if we are in netpoll
|
|
*
|
|
* Returns true if there's any budget left (e.g. the clean is finished)
|
|
**/
|
|
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
|
|
struct i40e_ring *tx_ring, int napi_budget)
|
|
{
|
|
u16 i = tx_ring->next_to_clean;
|
|
struct i40e_tx_buffer *tx_buf;
|
|
struct i40e_tx_desc *tx_desc;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
unsigned int budget = vsi->work_limit;
|
|
|
|
tx_buf = &tx_ring->tx_bi[i];
|
|
tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
do {
|
|
struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
read_barrier_depends();
|
|
|
|
i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
|
|
/* if the descriptor isn't done, no work yet to do */
|
|
if (!(eop_desc->cmd_type_offset_bsz &
|
|
cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buf->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buf->bytecount;
|
|
total_packets += tx_buf->gso_segs;
|
|
|
|
/* free the skb */
|
|
napi_consume_skb(tx_buf->skb, napi_budget);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear tx_buffer data */
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
i40e_trace(clean_tx_irq_unmap,
|
|
tx_ring, tx_desc, tx_buf);
|
|
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_bi;
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buf, len)) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
}
|
|
}
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_bi;
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
prefetch(tx_desc);
|
|
|
|
/* update budget accounting */
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&tx_ring->syncp);
|
|
tx_ring->stats.bytes += total_bytes;
|
|
tx_ring->stats.packets += total_packets;
|
|
u64_stats_update_end(&tx_ring->syncp);
|
|
tx_ring->q_vector->tx.total_bytes += total_bytes;
|
|
tx_ring->q_vector->tx.total_packets += total_packets;
|
|
|
|
if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
|
|
/* check to see if there are < 4 descriptors
|
|
* waiting to be written back, then kick the hardware to force
|
|
* them to be written back in case we stay in NAPI.
|
|
* In this mode on X722 we do not enable Interrupt.
|
|
*/
|
|
unsigned int j = i40evf_get_tx_pending(tx_ring, false);
|
|
|
|
if (budget &&
|
|
((j / WB_STRIDE) == 0) && (j > 0) &&
|
|
!test_bit(__I40E_DOWN, &vsi->state) &&
|
|
(I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
|
|
tx_ring->arm_wb = true;
|
|
}
|
|
|
|
/* notify netdev of completed buffers */
|
|
netdev_tx_completed_queue(txring_txq(tx_ring),
|
|
total_packets, total_bytes);
|
|
|
|
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
|
|
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
|
(I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
tx_ring->queue_index) &&
|
|
!test_bit(__I40E_DOWN, &vsi->state)) {
|
|
netif_wake_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
}
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
/**
|
|
* i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: the vector on which to enable writeback
|
|
*
|
|
**/
|
|
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
|
|
struct i40e_q_vector *q_vector)
|
|
{
|
|
u16 flags = q_vector->tx.ring[0].flags;
|
|
u32 val;
|
|
|
|
if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
|
|
return;
|
|
|
|
if (q_vector->arm_wb_state)
|
|
return;
|
|
|
|
val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
|
|
I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
|
|
|
|
wr32(&vsi->back->hw,
|
|
I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
|
|
vsi->base_vector - 1), val);
|
|
q_vector->arm_wb_state = true;
|
|
}
|
|
|
|
/**
|
|
* i40evf_force_wb - Issue SW Interrupt so HW does a wb
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: the vector on which to force writeback
|
|
*
|
|
**/
|
|
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
|
|
{
|
|
u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
|
|
I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
|
|
I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
|
|
I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
|
|
/* allow 00 to be written to the index */;
|
|
|
|
wr32(&vsi->back->hw,
|
|
I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
|
|
val);
|
|
}
|
|
|
|
/**
|
|
* i40e_set_new_dynamic_itr - Find new ITR level
|
|
* @rc: structure containing ring performance data
|
|
*
|
|
* Returns true if ITR changed, false if not
|
|
*
|
|
* Stores a new ITR value based on packets and byte counts during
|
|
* the last interrupt. The advantage of per interrupt computation
|
|
* is faster updates and more accurate ITR for the current traffic
|
|
* pattern. Constants in this function were computed based on
|
|
* theoretical maximum wire speed and thresholds were set based on
|
|
* testing data as well as attempting to minimize response time
|
|
* while increasing bulk throughput.
|
|
**/
|
|
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
|
|
{
|
|
enum i40e_latency_range new_latency_range = rc->latency_range;
|
|
struct i40e_q_vector *qv = rc->ring->q_vector;
|
|
u32 new_itr = rc->itr;
|
|
int bytes_per_int;
|
|
int usecs;
|
|
|
|
if (rc->total_packets == 0 || !rc->itr)
|
|
return false;
|
|
|
|
/* simple throttlerate management
|
|
* 0-10MB/s lowest (50000 ints/s)
|
|
* 10-20MB/s low (20000 ints/s)
|
|
* 20-1249MB/s bulk (18000 ints/s)
|
|
* > 40000 Rx packets per second (8000 ints/s)
|
|
*
|
|
* The math works out because the divisor is in 10^(-6) which
|
|
* turns the bytes/us input value into MB/s values, but
|
|
* make sure to use usecs, as the register values written
|
|
* are in 2 usec increments in the ITR registers, and make sure
|
|
* to use the smoothed values that the countdown timer gives us.
|
|
*/
|
|
usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
|
|
bytes_per_int = rc->total_bytes / usecs;
|
|
|
|
switch (new_latency_range) {
|
|
case I40E_LOWEST_LATENCY:
|
|
if (bytes_per_int > 10)
|
|
new_latency_range = I40E_LOW_LATENCY;
|
|
break;
|
|
case I40E_LOW_LATENCY:
|
|
if (bytes_per_int > 20)
|
|
new_latency_range = I40E_BULK_LATENCY;
|
|
else if (bytes_per_int <= 10)
|
|
new_latency_range = I40E_LOWEST_LATENCY;
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
case I40E_ULTRA_LATENCY:
|
|
default:
|
|
if (bytes_per_int <= 20)
|
|
new_latency_range = I40E_LOW_LATENCY;
|
|
break;
|
|
}
|
|
|
|
/* this is to adjust RX more aggressively when streaming small
|
|
* packets. The value of 40000 was picked as it is just beyond
|
|
* what the hardware can receive per second if in low latency
|
|
* mode.
|
|
*/
|
|
#define RX_ULTRA_PACKET_RATE 40000
|
|
|
|
if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
|
|
(&qv->rx == rc))
|
|
new_latency_range = I40E_ULTRA_LATENCY;
|
|
|
|
rc->latency_range = new_latency_range;
|
|
|
|
switch (new_latency_range) {
|
|
case I40E_LOWEST_LATENCY:
|
|
new_itr = I40E_ITR_50K;
|
|
break;
|
|
case I40E_LOW_LATENCY:
|
|
new_itr = I40E_ITR_20K;
|
|
break;
|
|
case I40E_BULK_LATENCY:
|
|
new_itr = I40E_ITR_18K;
|
|
break;
|
|
case I40E_ULTRA_LATENCY:
|
|
new_itr = I40E_ITR_8K;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rc->total_bytes = 0;
|
|
rc->total_packets = 0;
|
|
|
|
if (new_itr != rc->itr) {
|
|
rc->itr = new_itr;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* i40evf_setup_tx_descriptors - Allocate the Tx descriptors
|
|
* @tx_ring: the tx ring to set up
|
|
*
|
|
* Return 0 on success, negative on error
|
|
**/
|
|
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
|
|
{
|
|
struct device *dev = tx_ring->dev;
|
|
int bi_size;
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(tx_ring->tx_bi);
|
|
bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
if (!tx_ring->tx_bi)
|
|
goto err;
|
|
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
|
&tx_ring->dma, GFP_KERNEL);
|
|
if (!tx_ring->desc) {
|
|
dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
|
|
tx_ring->size);
|
|
goto err;
|
|
}
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
return 0;
|
|
|
|
err:
|
|
kfree(tx_ring->tx_bi);
|
|
tx_ring->tx_bi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* i40evf_clean_rx_ring - Free Rx buffers
|
|
* @rx_ring: ring to be cleaned
|
|
**/
|
|
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
|
|
{
|
|
unsigned long bi_size;
|
|
u16 i;
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!rx_ring->rx_bi)
|
|
return;
|
|
|
|
if (rx_ring->skb) {
|
|
dev_kfree_skb(rx_ring->skb);
|
|
rx_ring->skb = NULL;
|
|
}
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
|
|
|
|
if (!rx_bi->page)
|
|
continue;
|
|
|
|
/* Invalidate cache lines that may have been written to by
|
|
* device so that we avoid corrupting memory.
|
|
*/
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_bi->dma,
|
|
rx_bi->page_offset,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* free resources associated with mapping */
|
|
dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
|
|
i40e_rx_pg_size(rx_ring),
|
|
DMA_FROM_DEVICE,
|
|
I40E_RX_DMA_ATTR);
|
|
|
|
__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
|
|
|
|
rx_bi->page = NULL;
|
|
rx_bi->page_offset = 0;
|
|
}
|
|
|
|
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
memset(rx_ring->rx_bi, 0, bi_size);
|
|
|
|
/* Zero out the descriptor ring */
|
|
memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
|
rx_ring->next_to_alloc = 0;
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
}
|
|
|
|
/**
|
|
* i40evf_free_rx_resources - Free Rx resources
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
|
|
{
|
|
i40evf_clean_rx_ring(rx_ring);
|
|
kfree(rx_ring->rx_bi);
|
|
rx_ring->rx_bi = NULL;
|
|
|
|
if (rx_ring->desc) {
|
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
|
rx_ring->desc, rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40evf_setup_rx_descriptors - Allocate Rx descriptors
|
|
* @rx_ring: Rx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
int bi_size;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(rx_ring->rx_bi);
|
|
bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
if (!rx_ring->rx_bi)
|
|
goto err;
|
|
|
|
u64_stats_init(&rx_ring->syncp);
|
|
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
|
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
|
&rx_ring->dma, GFP_KERNEL);
|
|
|
|
if (!rx_ring->desc) {
|
|
dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
|
|
rx_ring->size);
|
|
goto err;
|
|
}
|
|
|
|
rx_ring->next_to_alloc = 0;
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
return 0;
|
|
err:
|
|
kfree(rx_ring->rx_bi);
|
|
rx_ring->rx_bi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* i40e_release_rx_desc - Store the new tail and head values
|
|
* @rx_ring: ring to bump
|
|
* @val: new head index
|
|
**/
|
|
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
|
|
{
|
|
rx_ring->next_to_use = val;
|
|
|
|
/* update next to alloc since we have filled the ring */
|
|
rx_ring->next_to_alloc = val;
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(val, rx_ring->tail);
|
|
}
|
|
|
|
/**
|
|
* i40e_rx_offset - Return expected offset into page to access data
|
|
* @rx_ring: Ring we are requesting offset of
|
|
*
|
|
* Returns the offset value for ring into the data buffer.
|
|
*/
|
|
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
|
|
{
|
|
return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_alloc_mapped_page - recycle or make a new page
|
|
* @rx_ring: ring to use
|
|
* @bi: rx_buffer struct to modify
|
|
*
|
|
* Returns true if the page was successfully allocated or
|
|
* reused.
|
|
**/
|
|
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *bi)
|
|
{
|
|
struct page *page = bi->page;
|
|
dma_addr_t dma;
|
|
|
|
/* since we are recycling buffers we should seldom need to alloc */
|
|
if (likely(page)) {
|
|
rx_ring->rx_stats.page_reuse_count++;
|
|
return true;
|
|
}
|
|
|
|
/* alloc new page for storage */
|
|
page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
|
|
if (unlikely(!page)) {
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
return false;
|
|
}
|
|
|
|
/* map page for use */
|
|
dma = dma_map_page_attrs(rx_ring->dev, page, 0,
|
|
i40e_rx_pg_size(rx_ring),
|
|
DMA_FROM_DEVICE,
|
|
I40E_RX_DMA_ATTR);
|
|
|
|
/* if mapping failed free memory back to system since
|
|
* there isn't much point in holding memory we can't use
|
|
*/
|
|
if (dma_mapping_error(rx_ring->dev, dma)) {
|
|
__free_pages(page, i40e_rx_pg_order(rx_ring));
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
return false;
|
|
}
|
|
|
|
bi->dma = dma;
|
|
bi->page = page;
|
|
bi->page_offset = i40e_rx_offset(rx_ring);
|
|
|
|
/* initialize pagecnt_bias to 1 representing we fully own page */
|
|
bi->pagecnt_bias = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_receive_skb - Send a completed packet up the stack
|
|
* @rx_ring: rx ring in play
|
|
* @skb: packet to send up
|
|
* @vlan_tag: vlan tag for packet
|
|
**/
|
|
static void i40e_receive_skb(struct i40e_ring *rx_ring,
|
|
struct sk_buff *skb, u16 vlan_tag)
|
|
{
|
|
struct i40e_q_vector *q_vector = rx_ring->q_vector;
|
|
|
|
if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
|
|
(vlan_tag & VLAN_VID_MASK))
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
|
|
napi_gro_receive(&q_vector->napi, skb);
|
|
}
|
|
|
|
/**
|
|
* i40evf_alloc_rx_buffers - Replace used receive buffers
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
*
|
|
* Returns false if all allocations were successful, true if any fail
|
|
**/
|
|
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
u16 ntu = rx_ring->next_to_use;
|
|
union i40e_rx_desc *rx_desc;
|
|
struct i40e_rx_buffer *bi;
|
|
|
|
/* do nothing if no valid netdev defined */
|
|
if (!rx_ring->netdev || !cleaned_count)
|
|
return false;
|
|
|
|
rx_desc = I40E_RX_DESC(rx_ring, ntu);
|
|
bi = &rx_ring->rx_bi[ntu];
|
|
|
|
do {
|
|
if (!i40e_alloc_mapped_page(rx_ring, bi))
|
|
goto no_buffers;
|
|
|
|
/* sync the buffer for use by the device */
|
|
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
|
|
bi->page_offset,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
|
* because each write-back erases this info.
|
|
*/
|
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
|
|
|
|
rx_desc++;
|
|
bi++;
|
|
ntu++;
|
|
if (unlikely(ntu == rx_ring->count)) {
|
|
rx_desc = I40E_RX_DESC(rx_ring, 0);
|
|
bi = rx_ring->rx_bi;
|
|
ntu = 0;
|
|
}
|
|
|
|
/* clear the status bits for the next_to_use descriptor */
|
|
rx_desc->wb.qword1.status_error_len = 0;
|
|
|
|
cleaned_count--;
|
|
} while (cleaned_count);
|
|
|
|
if (rx_ring->next_to_use != ntu)
|
|
i40e_release_rx_desc(rx_ring, ntu);
|
|
|
|
return false;
|
|
|
|
no_buffers:
|
|
if (rx_ring->next_to_use != ntu)
|
|
i40e_release_rx_desc(rx_ring, ntu);
|
|
|
|
/* make sure to come back via polling to try again after
|
|
* allocation failure
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
|
|
* @vsi: the VSI we care about
|
|
* @skb: skb currently being received and modified
|
|
* @rx_desc: the receive descriptor
|
|
**/
|
|
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
|
|
struct sk_buff *skb,
|
|
union i40e_rx_desc *rx_desc)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded;
|
|
u32 rx_error, rx_status;
|
|
bool ipv4, ipv6;
|
|
u8 ptype;
|
|
u64 qword;
|
|
|
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
|
|
rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
|
|
I40E_RXD_QW1_ERROR_SHIFT;
|
|
rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
|
|
I40E_RXD_QW1_STATUS_SHIFT;
|
|
decoded = decode_rx_desc_ptype(ptype);
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
skb_checksum_none_assert(skb);
|
|
|
|
/* Rx csum enabled and ip headers found? */
|
|
if (!(vsi->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* did the hardware decode the packet and checksum? */
|
|
if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
|
|
return;
|
|
|
|
/* both known and outer_ip must be set for the below code to work */
|
|
if (!(decoded.known && decoded.outer_ip))
|
|
return;
|
|
|
|
ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
|
|
ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
|
|
|
|
if (ipv4 &&
|
|
(rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
|
|
BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
|
|
goto checksum_fail;
|
|
|
|
/* likely incorrect csum if alternate IP extension headers found */
|
|
if (ipv6 &&
|
|
rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
|
|
/* don't increment checksum err here, non-fatal err */
|
|
return;
|
|
|
|
/* there was some L4 error, count error and punt packet to the stack */
|
|
if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
|
|
goto checksum_fail;
|
|
|
|
/* handle packets that were not able to be checksummed due
|
|
* to arrival speed, in this case the stack can compute
|
|
* the csum.
|
|
*/
|
|
if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
|
|
return;
|
|
|
|
/* Only report checksum unnecessary for TCP, UDP, or SCTP */
|
|
switch (decoded.inner_prot) {
|
|
case I40E_RX_PTYPE_INNER_PROT_TCP:
|
|
case I40E_RX_PTYPE_INNER_PROT_UDP:
|
|
case I40E_RX_PTYPE_INNER_PROT_SCTP:
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
/* fall though */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return;
|
|
|
|
checksum_fail:
|
|
vsi->back->hw_csum_rx_error++;
|
|
}
|
|
|
|
/**
|
|
* i40e_ptype_to_htype - get a hash type
|
|
* @ptype: the ptype value from the descriptor
|
|
*
|
|
* Returns a hash type to be used by skb_set_hash
|
|
**/
|
|
static inline int i40e_ptype_to_htype(u8 ptype)
|
|
{
|
|
struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
|
|
|
|
if (!decoded.known)
|
|
return PKT_HASH_TYPE_NONE;
|
|
|
|
if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
|
|
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
|
|
return PKT_HASH_TYPE_L4;
|
|
else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
|
|
decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
|
|
return PKT_HASH_TYPE_L3;
|
|
else
|
|
return PKT_HASH_TYPE_L2;
|
|
}
|
|
|
|
/**
|
|
* i40e_rx_hash - set the hash value in the skb
|
|
* @ring: descriptor ring
|
|
* @rx_desc: specific descriptor
|
|
**/
|
|
static inline void i40e_rx_hash(struct i40e_ring *ring,
|
|
union i40e_rx_desc *rx_desc,
|
|
struct sk_buff *skb,
|
|
u8 rx_ptype)
|
|
{
|
|
u32 hash;
|
|
const __le64 rss_mask =
|
|
cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
|
|
I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
|
|
|
|
if (ring->netdev->features & NETIF_F_RXHASH)
|
|
return;
|
|
|
|
if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
|
|
hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
|
|
skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being populated
|
|
* @rx_ptype: the packet type decoded by hardware
|
|
*
|
|
* This function checks the ring, descriptor, and packet information in
|
|
* order to populate the hash, checksum, VLAN, protocol, and
|
|
* other fields within the skb.
|
|
**/
|
|
static inline
|
|
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
|
|
union i40e_rx_desc *rx_desc, struct sk_buff *skb,
|
|
u8 rx_ptype)
|
|
{
|
|
i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
|
|
|
|
i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
|
|
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
|
|
/* modifies the skb - consumes the enet header */
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
}
|
|
|
|
/**
|
|
* i40e_cleanup_headers - Correct empty headers
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @skb: pointer to current skb being fixed
|
|
*
|
|
* Also address the case where we are pulling data in on pages only
|
|
* and as such no data is present in the skb header.
|
|
*
|
|
* In addition if skb is not at least 60 bytes we need to pad it so that
|
|
* it is large enough to qualify as a valid Ethernet frame.
|
|
*
|
|
* Returns true if an error was encountered and skb was freed.
|
|
**/
|
|
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
|
|
{
|
|
/* if eth_skb_pad returns an error the skb was freed */
|
|
if (eth_skb_pad(skb))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* i40e_reuse_rx_page - page flip buffer and store it back on the ring
|
|
* @rx_ring: rx descriptor ring to store buffers on
|
|
* @old_buff: donor buffer to have page reused
|
|
*
|
|
* Synchronizes page for reuse by the adapter
|
|
**/
|
|
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *old_buff)
|
|
{
|
|
struct i40e_rx_buffer *new_buff;
|
|
u16 nta = rx_ring->next_to_alloc;
|
|
|
|
new_buff = &rx_ring->rx_bi[nta];
|
|
|
|
/* update, and store next to alloc */
|
|
nta++;
|
|
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
|
|
|
|
/* transfer page from old buffer to new buffer */
|
|
new_buff->dma = old_buff->dma;
|
|
new_buff->page = old_buff->page;
|
|
new_buff->page_offset = old_buff->page_offset;
|
|
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
|
|
}
|
|
|
|
/**
|
|
* i40e_page_is_reusable - check if any reuse is possible
|
|
* @page: page struct to check
|
|
*
|
|
* A page is not reusable if it was allocated under low memory
|
|
* conditions, or it's not in the same NUMA node as this CPU.
|
|
*/
|
|
static inline bool i40e_page_is_reusable(struct page *page)
|
|
{
|
|
return (page_to_nid(page) == numa_mem_id()) &&
|
|
!page_is_pfmemalloc(page);
|
|
}
|
|
|
|
/**
|
|
* i40e_can_reuse_rx_page - Determine if this page can be reused by
|
|
* the adapter for another receive
|
|
*
|
|
* @rx_buffer: buffer containing the page
|
|
*
|
|
* If page is reusable, rx_buffer->page_offset is adjusted to point to
|
|
* an unused region in the page.
|
|
*
|
|
* For small pages, @truesize will be a constant value, half the size
|
|
* of the memory at page. We'll attempt to alternate between high and
|
|
* low halves of the page, with one half ready for use by the hardware
|
|
* and the other half being consumed by the stack. We use the page
|
|
* ref count to determine whether the stack has finished consuming the
|
|
* portion of this page that was passed up with a previous packet. If
|
|
* the page ref count is >1, we'll assume the "other" half page is
|
|
* still busy, and this page cannot be reused.
|
|
*
|
|
* For larger pages, @truesize will be the actual space used by the
|
|
* received packet (adjusted upward to an even multiple of the cache
|
|
* line size). This will advance through the page by the amount
|
|
* actually consumed by the received packets while there is still
|
|
* space for a buffer. Each region of larger pages will be used at
|
|
* most once, after which the page will not be reused.
|
|
*
|
|
* In either case, if the page is reusable its refcount is increased.
|
|
**/
|
|
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
|
|
{
|
|
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
|
|
struct page *page = rx_buffer->page;
|
|
|
|
/* Is any reuse possible? */
|
|
if (unlikely(!i40e_page_is_reusable(page)))
|
|
return false;
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
/* if we are only owner of page we can reuse it */
|
|
if (unlikely((page_count(page) - pagecnt_bias) > 1))
|
|
return false;
|
|
#else
|
|
#define I40E_LAST_OFFSET \
|
|
(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
|
|
if (rx_buffer->page_offset > I40E_LAST_OFFSET)
|
|
return false;
|
|
#endif
|
|
|
|
/* If we have drained the page fragment pool we need to update
|
|
* the pagecnt_bias and page count so that we fully restock the
|
|
* number of references the driver holds.
|
|
*/
|
|
if (unlikely(!pagecnt_bias)) {
|
|
page_ref_add(page, USHRT_MAX);
|
|
rx_buffer->pagecnt_bias = USHRT_MAX;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @rx_buffer: buffer containing page to add
|
|
* @skb: sk_buff to place the data into
|
|
* @size: packet length from rx_desc
|
|
*
|
|
* This function will add the data contained in rx_buffer->page to the skb.
|
|
* It will just attach the page as a frag to the skb.
|
|
*
|
|
* The function will then update the page offset.
|
|
**/
|
|
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *rx_buffer,
|
|
struct sk_buff *skb,
|
|
unsigned int size)
|
|
{
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
|
|
#else
|
|
unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
|
|
#endif
|
|
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
|
|
rx_buffer->page_offset, size, truesize);
|
|
|
|
/* page is being used so we must update the page offset */
|
|
#if (PAGE_SIZE < 8192)
|
|
rx_buffer->page_offset ^= truesize;
|
|
#else
|
|
rx_buffer->page_offset += truesize;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @size: size of buffer to add to skb
|
|
*
|
|
* This function will pull an Rx buffer from the ring and synchronize it
|
|
* for use by the CPU.
|
|
*/
|
|
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
|
|
const unsigned int size)
|
|
{
|
|
struct i40e_rx_buffer *rx_buffer;
|
|
|
|
rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
|
|
prefetchw(rx_buffer->page);
|
|
|
|
/* we are reusing so sync this buffer for CPU use */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_buffer->dma,
|
|
rx_buffer->page_offset,
|
|
size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* We have pulled a buffer for use, so decrement pagecnt_bias */
|
|
rx_buffer->pagecnt_bias--;
|
|
|
|
return rx_buffer;
|
|
}
|
|
|
|
/**
|
|
* i40e_construct_skb - Allocate skb and populate it
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @rx_buffer: rx buffer to pull data from
|
|
* @size: size of buffer to add to skb
|
|
*
|
|
* This function allocates an skb. It then populates it with the page
|
|
* data from the current receive descriptor, taking care to set up the
|
|
* skb correctly.
|
|
*/
|
|
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *rx_buffer,
|
|
unsigned int size)
|
|
{
|
|
void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
|
|
#else
|
|
unsigned int truesize = SKB_DATA_ALIGN(size);
|
|
#endif
|
|
unsigned int headlen;
|
|
struct sk_buff *skb;
|
|
|
|
/* prefetch first cache line of first page */
|
|
prefetch(va);
|
|
#if L1_CACHE_BYTES < 128
|
|
prefetch(va + L1_CACHE_BYTES);
|
|
#endif
|
|
|
|
/* allocate a skb to store the frags */
|
|
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
|
|
I40E_RX_HDR_SIZE,
|
|
GFP_ATOMIC | __GFP_NOWARN);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* Determine available headroom for copy */
|
|
headlen = size;
|
|
if (headlen > I40E_RX_HDR_SIZE)
|
|
headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
|
|
|
|
/* align pull length to size of long to optimize memcpy performance */
|
|
memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
|
|
|
|
/* update all of the pointers */
|
|
size -= headlen;
|
|
if (size) {
|
|
skb_add_rx_frag(skb, 0, rx_buffer->page,
|
|
rx_buffer->page_offset + headlen,
|
|
size, truesize);
|
|
|
|
/* buffer is used by skb, update page_offset */
|
|
#if (PAGE_SIZE < 8192)
|
|
rx_buffer->page_offset ^= truesize;
|
|
#else
|
|
rx_buffer->page_offset += truesize;
|
|
#endif
|
|
} else {
|
|
/* buffer is unused, reset bias back to rx_buffer */
|
|
rx_buffer->pagecnt_bias++;
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* i40e_build_skb - Build skb around an existing buffer
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @rx_buffer: Rx buffer to pull data from
|
|
* @size: size of buffer to add to skb
|
|
*
|
|
* This function builds an skb around an existing Rx buffer, taking care
|
|
* to set up the skb correctly and avoid any memcpy overhead.
|
|
*/
|
|
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *rx_buffer,
|
|
unsigned int size)
|
|
{
|
|
void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
|
|
#else
|
|
unsigned int truesize = SKB_DATA_ALIGN(size);
|
|
#endif
|
|
struct sk_buff *skb;
|
|
|
|
/* prefetch first cache line of first page */
|
|
prefetch(va);
|
|
#if L1_CACHE_BYTES < 128
|
|
prefetch(va + L1_CACHE_BYTES);
|
|
#endif
|
|
/* build an skb around the page buffer */
|
|
skb = build_skb(va - I40E_SKB_PAD, truesize);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* update pointers within the skb to store the data */
|
|
skb_reserve(skb, I40E_SKB_PAD);
|
|
__skb_put(skb, size);
|
|
|
|
/* buffer is used by skb, update page_offset */
|
|
#if (PAGE_SIZE < 8192)
|
|
rx_buffer->page_offset ^= truesize;
|
|
#else
|
|
rx_buffer->page_offset += truesize;
|
|
#endif
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* i40e_put_rx_buffer - Clean up used buffer and either recycle or free
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @rx_buffer: rx buffer to pull data from
|
|
*
|
|
* This function will clean up the contents of the rx_buffer. It will
|
|
* either recycle the bufer or unmap it and free the associated resources.
|
|
*/
|
|
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
|
|
struct i40e_rx_buffer *rx_buffer)
|
|
{
|
|
if (i40e_can_reuse_rx_page(rx_buffer)) {
|
|
/* hand second half of page back to the ring */
|
|
i40e_reuse_rx_page(rx_ring, rx_buffer);
|
|
rx_ring->rx_stats.page_reuse_count++;
|
|
} else {
|
|
/* we are not reusing the buffer so unmap it */
|
|
dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
|
|
i40e_rx_pg_size(rx_ring),
|
|
DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
|
|
__page_frag_cache_drain(rx_buffer->page,
|
|
rx_buffer->pagecnt_bias);
|
|
}
|
|
|
|
/* clear contents of buffer_info */
|
|
rx_buffer->page = NULL;
|
|
}
|
|
|
|
/**
|
|
* i40e_is_non_eop - process handling of non-EOP buffers
|
|
* @rx_ring: Rx ring being processed
|
|
* @rx_desc: Rx descriptor for current buffer
|
|
* @skb: Current socket buffer containing buffer in progress
|
|
*
|
|
* This function updates next to clean. If the buffer is an EOP buffer
|
|
* this function exits returning false, otherwise it will place the
|
|
* sk_buff in the next buffer to be chained and return true indicating
|
|
* that this is in fact a non-EOP buffer.
|
|
**/
|
|
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
|
|
union i40e_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
u32 ntc = rx_ring->next_to_clean + 1;
|
|
|
|
/* fetch, update, and store next to clean */
|
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
|
rx_ring->next_to_clean = ntc;
|
|
|
|
prefetch(I40E_RX_DESC(rx_ring, ntc));
|
|
|
|
/* if we are the last buffer then there is nothing else to do */
|
|
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
|
|
if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
|
|
return false;
|
|
|
|
rx_ring->rx_stats.non_eop_descs++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @budget: Total limit on number of packets to process
|
|
*
|
|
* This function provides a "bounce buffer" approach to Rx interrupt
|
|
* processing. The advantage to this is that on systems that have
|
|
* expensive overhead for IOMMU access this provides a means of avoiding
|
|
* it by maintaining the mapping of the page to the system.
|
|
*
|
|
* Returns amount of work completed
|
|
**/
|
|
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
struct sk_buff *skb = rx_ring->skb;
|
|
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
|
|
bool failure = false;
|
|
|
|
while (likely(total_rx_packets < budget)) {
|
|
struct i40e_rx_buffer *rx_buffer;
|
|
union i40e_rx_desc *rx_desc;
|
|
unsigned int size;
|
|
u16 vlan_tag;
|
|
u8 rx_ptype;
|
|
u64 qword;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
|
|
failure = failure ||
|
|
i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
|
|
/* status_error_len will always be zero for unused descriptors
|
|
* because it's cleared in cleanup, and overlaps with hdr_addr
|
|
* which is always zero because packet split isn't used, if the
|
|
* hardware wrote DD then the length will be non-zero
|
|
*/
|
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we have
|
|
* verified the descriptor has been written back.
|
|
*/
|
|
dma_rmb();
|
|
|
|
size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
if (!size)
|
|
break;
|
|
|
|
i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
|
|
rx_buffer = i40e_get_rx_buffer(rx_ring, size);
|
|
|
|
/* retrieve a buffer from the ring */
|
|
if (skb)
|
|
i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
|
|
else if (ring_uses_build_skb(rx_ring))
|
|
skb = i40e_build_skb(rx_ring, rx_buffer, size);
|
|
else
|
|
skb = i40e_construct_skb(rx_ring, rx_buffer, size);
|
|
|
|
/* exit if we failed to retrieve a buffer */
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_buff_failed++;
|
|
rx_buffer->pagecnt_bias++;
|
|
break;
|
|
}
|
|
|
|
i40e_put_rx_buffer(rx_ring, rx_buffer);
|
|
cleaned_count++;
|
|
|
|
if (i40e_is_non_eop(rx_ring, rx_desc, skb))
|
|
continue;
|
|
|
|
/* ERR_MASK will only have valid bits if EOP set, and
|
|
* what we are doing here is actually checking
|
|
* I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
|
|
* the error field
|
|
*/
|
|
if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
|
|
dev_kfree_skb_any(skb);
|
|
skb = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (i40e_cleanup_headers(rx_ring, skb)) {
|
|
skb = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
|
|
qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
|
|
I40E_RXD_QW1_PTYPE_SHIFT;
|
|
|
|
/* populate checksum, VLAN, and protocol */
|
|
i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
|
|
|
|
|
|
vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
|
|
le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
|
|
|
|
i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
|
|
i40e_receive_skb(rx_ring, skb, vlan_tag);
|
|
skb = NULL;
|
|
|
|
/* update budget accounting */
|
|
total_rx_packets++;
|
|
}
|
|
|
|
rx_ring->skb = skb;
|
|
|
|
u64_stats_update_begin(&rx_ring->syncp);
|
|
rx_ring->stats.packets += total_rx_packets;
|
|
rx_ring->stats.bytes += total_rx_bytes;
|
|
u64_stats_update_end(&rx_ring->syncp);
|
|
rx_ring->q_vector->rx.total_packets += total_rx_packets;
|
|
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
|
|
|
|
/* guarantee a trip back through this routine if there was a failure */
|
|
return failure ? budget : total_rx_packets;
|
|
}
|
|
|
|
static u32 i40e_buildreg_itr(const int type, const u16 itr)
|
|
{
|
|
u32 val;
|
|
|
|
val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
|
|
/* Don't clear PBA because that can cause lost interrupts that
|
|
* came in while we were cleaning/polling
|
|
*/
|
|
(type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
|
|
(itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* a small macro to shorten up some long lines */
|
|
#define INTREG I40E_VFINT_DYN_CTLN1
|
|
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
|
|
{
|
|
struct i40evf_adapter *adapter = vsi->back;
|
|
|
|
return adapter->rx_rings[idx].rx_itr_setting;
|
|
}
|
|
|
|
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
|
|
{
|
|
struct i40evf_adapter *adapter = vsi->back;
|
|
|
|
return adapter->tx_rings[idx].tx_itr_setting;
|
|
}
|
|
|
|
/**
|
|
* i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
|
|
* @vsi: the VSI we care about
|
|
* @q_vector: q_vector for which itr is being updated and interrupt enabled
|
|
*
|
|
**/
|
|
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
|
|
struct i40e_q_vector *q_vector)
|
|
{
|
|
struct i40e_hw *hw = &vsi->back->hw;
|
|
bool rx = false, tx = false;
|
|
u32 rxval, txval;
|
|
int vector;
|
|
int idx = q_vector->v_idx;
|
|
int rx_itr_setting, tx_itr_setting;
|
|
|
|
vector = (q_vector->v_idx + vsi->base_vector);
|
|
|
|
/* avoid dynamic calculation if in countdown mode OR if
|
|
* all dynamic is disabled
|
|
*/
|
|
rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
|
|
|
|
rx_itr_setting = get_rx_itr(vsi, idx);
|
|
tx_itr_setting = get_tx_itr(vsi, idx);
|
|
|
|
if (q_vector->itr_countdown > 0 ||
|
|
(!ITR_IS_DYNAMIC(rx_itr_setting) &&
|
|
!ITR_IS_DYNAMIC(tx_itr_setting))) {
|
|
goto enable_int;
|
|
}
|
|
|
|
if (ITR_IS_DYNAMIC(rx_itr_setting)) {
|
|
rx = i40e_set_new_dynamic_itr(&q_vector->rx);
|
|
rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
|
|
}
|
|
|
|
if (ITR_IS_DYNAMIC(tx_itr_setting)) {
|
|
tx = i40e_set_new_dynamic_itr(&q_vector->tx);
|
|
txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
|
|
}
|
|
|
|
if (rx || tx) {
|
|
/* get the higher of the two ITR adjustments and
|
|
* use the same value for both ITR registers
|
|
* when in adaptive mode (Rx and/or Tx)
|
|
*/
|
|
u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
|
|
|
|
q_vector->tx.itr = q_vector->rx.itr = itr;
|
|
txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
|
|
tx = true;
|
|
rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
|
|
rx = true;
|
|
}
|
|
|
|
/* only need to enable the interrupt once, but need
|
|
* to possibly update both ITR values
|
|
*/
|
|
if (rx) {
|
|
/* set the INTENA_MSK_MASK so that this first write
|
|
* won't actually enable the interrupt, instead just
|
|
* updating the ITR (it's bit 31 PF and VF)
|
|
*/
|
|
rxval |= BIT(31);
|
|
/* don't check _DOWN because interrupt isn't being enabled */
|
|
wr32(hw, INTREG(vector - 1), rxval);
|
|
}
|
|
|
|
enable_int:
|
|
if (!test_bit(__I40E_DOWN, &vsi->state))
|
|
wr32(hw, INTREG(vector - 1), txval);
|
|
|
|
if (q_vector->itr_countdown)
|
|
q_vector->itr_countdown--;
|
|
else
|
|
q_vector->itr_countdown = ITR_COUNTDOWN_START;
|
|
}
|
|
|
|
/**
|
|
* i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
|
|
* @napi: napi struct with our devices info in it
|
|
* @budget: amount of work driver is allowed to do this pass, in packets
|
|
*
|
|
* This function will clean all queues associated with a q_vector.
|
|
*
|
|
* Returns the amount of work done
|
|
**/
|
|
int i40evf_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct i40e_q_vector *q_vector =
|
|
container_of(napi, struct i40e_q_vector, napi);
|
|
struct i40e_vsi *vsi = q_vector->vsi;
|
|
struct i40e_ring *ring;
|
|
bool clean_complete = true;
|
|
bool arm_wb = false;
|
|
int budget_per_ring;
|
|
int work_done = 0;
|
|
|
|
if (test_bit(__I40E_DOWN, &vsi->state)) {
|
|
napi_complete(napi);
|
|
return 0;
|
|
}
|
|
|
|
/* Since the actual Tx work is minimal, we can give the Tx a larger
|
|
* budget and be more aggressive about cleaning up the Tx descriptors.
|
|
*/
|
|
i40e_for_each_ring(ring, q_vector->tx) {
|
|
if (!i40e_clean_tx_irq(vsi, ring, budget)) {
|
|
clean_complete = false;
|
|
continue;
|
|
}
|
|
arm_wb |= ring->arm_wb;
|
|
ring->arm_wb = false;
|
|
}
|
|
|
|
/* Handle case where we are called by netpoll with a budget of 0 */
|
|
if (budget <= 0)
|
|
goto tx_only;
|
|
|
|
/* We attempt to distribute budget to each Rx queue fairly, but don't
|
|
* allow the budget to go below 1 because that would exit polling early.
|
|
*/
|
|
budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
|
|
|
|
i40e_for_each_ring(ring, q_vector->rx) {
|
|
int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
|
|
|
|
work_done += cleaned;
|
|
/* if we clean as many as budgeted, we must not be done */
|
|
if (cleaned >= budget_per_ring)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* If work not completed, return budget and polling will return */
|
|
if (!clean_complete) {
|
|
const cpumask_t *aff_mask = &q_vector->affinity_mask;
|
|
int cpu_id = smp_processor_id();
|
|
|
|
/* It is possible that the interrupt affinity has changed but,
|
|
* if the cpu is pegged at 100%, polling will never exit while
|
|
* traffic continues and the interrupt will be stuck on this
|
|
* cpu. We check to make sure affinity is correct before we
|
|
* continue to poll, otherwise we must stop polling so the
|
|
* interrupt can move to the correct cpu.
|
|
*/
|
|
if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
|
|
tx_only:
|
|
if (arm_wb) {
|
|
q_vector->tx.ring[0].tx_stats.tx_force_wb++;
|
|
i40e_enable_wb_on_itr(vsi, q_vector);
|
|
}
|
|
return budget;
|
|
}
|
|
}
|
|
|
|
if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
|
|
q_vector->arm_wb_state = false;
|
|
|
|
/* Work is done so exit the polling mode and re-enable the interrupt */
|
|
napi_complete_done(napi, work_done);
|
|
|
|
/* If we're prematurely stopping polling to fix the interrupt
|
|
* affinity we want to make sure polling starts back up so we
|
|
* issue a call to i40evf_force_wb which triggers a SW interrupt.
|
|
*/
|
|
if (!clean_complete)
|
|
i40evf_force_wb(vsi, q_vector);
|
|
else
|
|
i40e_update_enable_itr(vsi, q_vector);
|
|
|
|
return min(work_done, budget - 1);
|
|
}
|
|
|
|
/**
|
|
* i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
|
|
* @skb: send buffer
|
|
* @tx_ring: ring to send buffer on
|
|
* @flags: the tx flags to be set
|
|
*
|
|
* Checks the skb and set up correspondingly several generic transmit flags
|
|
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
|
|
*
|
|
* Returns error code indicate the frame should be dropped upon error and the
|
|
* otherwise returns 0 to indicate the flags has been set properly.
|
|
**/
|
|
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
|
|
struct i40e_ring *tx_ring,
|
|
u32 *flags)
|
|
{
|
|
__be16 protocol = skb->protocol;
|
|
u32 tx_flags = 0;
|
|
|
|
if (protocol == htons(ETH_P_8021Q) &&
|
|
!(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
|
|
/* When HW VLAN acceleration is turned off by the user the
|
|
* stack sets the protocol to 8021q so that the driver
|
|
* can take any steps required to support the SW only
|
|
* VLAN handling. In our case the driver doesn't need
|
|
* to take any further steps so just set the protocol
|
|
* to the encapsulated ethertype.
|
|
*/
|
|
skb->protocol = vlan_get_protocol(skb);
|
|
goto out;
|
|
}
|
|
|
|
/* if we have a HW VLAN tag being added, default to the HW one */
|
|
if (skb_vlan_tag_present(skb)) {
|
|
tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
tx_flags |= I40E_TX_FLAGS_HW_VLAN;
|
|
/* else if it is a SW VLAN, check the next protocol and store the tag */
|
|
} else if (protocol == htons(ETH_P_8021Q)) {
|
|
struct vlan_hdr *vhdr, _vhdr;
|
|
|
|
vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
|
|
if (!vhdr)
|
|
return -EINVAL;
|
|
|
|
protocol = vhdr->h_vlan_encapsulated_proto;
|
|
tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
tx_flags |= I40E_TX_FLAGS_SW_VLAN;
|
|
}
|
|
|
|
out:
|
|
*flags = tx_flags;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40e_tso - set up the tso context descriptor
|
|
* @first: pointer to first Tx buffer for xmit
|
|
* @hdr_len: ptr to the size of the packet header
|
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
|
*
|
|
* Returns 0 if no TSO can happen, 1 if tso is going, or error
|
|
**/
|
|
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
|
|
u64 *cd_type_cmd_tso_mss)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
u64 cd_cmd, cd_tso_len, cd_mss;
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
u32 paylen, l4_offset;
|
|
u16 gso_segs, gso_size;
|
|
int err;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
err = skb_cow_head(skb, 0);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_transport_header(skb);
|
|
|
|
/* initialize outer IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
|
|
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
|
|
SKB_GSO_GRE_CSUM |
|
|
SKB_GSO_IPXIP4 |
|
|
SKB_GSO_IPXIP6 |
|
|
SKB_GSO_UDP_TUNNEL |
|
|
SKB_GSO_UDP_TUNNEL_CSUM)) {
|
|
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
|
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
|
|
l4.udp->len = 0;
|
|
|
|
/* determine offset of outer transport header */
|
|
l4_offset = l4.hdr - skb->data;
|
|
|
|
/* remove payload length from outer checksum */
|
|
paylen = skb->len - l4_offset;
|
|
csum_replace_by_diff(&l4.udp->check,
|
|
(__force __wsum)htonl(paylen));
|
|
}
|
|
|
|
/* reset pointers to inner headers */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
|
|
/* initialize inner IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
}
|
|
|
|
/* determine offset of inner transport header */
|
|
l4_offset = l4.hdr - skb->data;
|
|
|
|
/* remove payload length from inner checksum */
|
|
paylen = skb->len - l4_offset;
|
|
csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
|
|
|
|
/* compute length of segmentation header */
|
|
*hdr_len = (l4.tcp->doff * 4) + l4_offset;
|
|
|
|
/* pull values out of skb_shinfo */
|
|
gso_size = skb_shinfo(skb)->gso_size;
|
|
gso_segs = skb_shinfo(skb)->gso_segs;
|
|
|
|
/* update GSO size and bytecount with header size */
|
|
first->gso_segs = gso_segs;
|
|
first->bytecount += (first->gso_segs - 1) * *hdr_len;
|
|
|
|
/* find the field values */
|
|
cd_cmd = I40E_TX_CTX_DESC_TSO;
|
|
cd_tso_len = skb->len - *hdr_len;
|
|
cd_mss = gso_size;
|
|
*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
|
|
(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
|
(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* i40e_tx_enable_csum - Enable Tx checksum offloads
|
|
* @skb: send buffer
|
|
* @tx_flags: pointer to Tx flags currently set
|
|
* @td_cmd: Tx descriptor command bits to set
|
|
* @td_offset: Tx descriptor header offsets to set
|
|
* @tx_ring: Tx descriptor ring
|
|
* @cd_tunneling: ptr to context desc bits
|
|
**/
|
|
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
|
|
u32 *td_cmd, u32 *td_offset,
|
|
struct i40e_ring *tx_ring,
|
|
u32 *cd_tunneling)
|
|
{
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
unsigned char *exthdr;
|
|
u32 offset, cmd = 0;
|
|
__be16 frag_off;
|
|
u8 l4_proto = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_transport_header(skb);
|
|
|
|
/* compute outer L2 header size */
|
|
offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
if (skb->encapsulation) {
|
|
u32 tunnel = 0;
|
|
/* define outer network header type */
|
|
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
|
|
I40E_TX_CTX_EXT_IP_IPV4 :
|
|
I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
|
|
|
l4_proto = ip.v4->protocol;
|
|
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
|
|
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
if (l4.hdr != exthdr)
|
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
|
&l4_proto, &frag_off);
|
|
}
|
|
|
|
/* define outer transport */
|
|
switch (l4_proto) {
|
|
case IPPROTO_UDP:
|
|
tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
|
|
*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
|
|
break;
|
|
case IPPROTO_GRE:
|
|
tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
|
|
*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
|
|
break;
|
|
case IPPROTO_IPIP:
|
|
case IPPROTO_IPV6:
|
|
*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
|
|
l4.hdr = skb_inner_network_header(skb);
|
|
break;
|
|
default:
|
|
if (*tx_flags & I40E_TX_FLAGS_TSO)
|
|
return -1;
|
|
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
/* compute outer L3 header size */
|
|
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
|
|
I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
|
|
|
|
/* switch IP header pointer from outer to inner header */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
|
|
/* compute tunnel header size */
|
|
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
|
|
I40E_TXD_CTX_QW0_NATLEN_SHIFT;
|
|
|
|
/* indicate if we need to offload outer UDP header */
|
|
if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
|
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
|
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
|
|
tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
|
|
|
|
/* record tunnel offload values */
|
|
*cd_tunneling |= tunnel;
|
|
|
|
/* switch L4 header pointer from outer to inner */
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
l4_proto = 0;
|
|
|
|
/* reset type as we transition from outer to inner headers */
|
|
*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
|
|
if (ip.v4->version == 4)
|
|
*tx_flags |= I40E_TX_FLAGS_IPV4;
|
|
if (ip.v6->version == 6)
|
|
*tx_flags |= I40E_TX_FLAGS_IPV6;
|
|
}
|
|
|
|
/* Enable IP checksum offloads */
|
|
if (*tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
l4_proto = ip.v4->protocol;
|
|
/* the stack computes the IP header already, the only time we
|
|
* need the hardware to recompute it is in the case of TSO.
|
|
*/
|
|
cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
|
|
I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
|
|
I40E_TX_DESC_CMD_IIPT_IPV4;
|
|
} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
|
|
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
if (l4.hdr != exthdr)
|
|
ipv6_skip_exthdr(skb, exthdr - skb->data,
|
|
&l4_proto, &frag_off);
|
|
}
|
|
|
|
/* compute inner L3 header size */
|
|
offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (l4_proto) {
|
|
case IPPROTO_TCP:
|
|
/* enable checksum offloads */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
/* enable SCTP checksum offload */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
offset |= (sizeof(struct sctphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* enable UDP checksum offload */
|
|
cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
offset |= (sizeof(struct udphdr) >> 2) <<
|
|
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
default:
|
|
if (*tx_flags & I40E_TX_FLAGS_TSO)
|
|
return -1;
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
*td_cmd |= cmd;
|
|
*td_offset |= offset;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* i40e_create_tx_ctx Build the Tx context descriptor
|
|
* @tx_ring: ring to create the descriptor on
|
|
* @cd_type_cmd_tso_mss: Quad Word 1
|
|
* @cd_tunneling: Quad Word 0 - bits 0-31
|
|
* @cd_l2tag2: Quad Word 0 - bits 32-63
|
|
**/
|
|
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
|
|
const u64 cd_type_cmd_tso_mss,
|
|
const u32 cd_tunneling, const u32 cd_l2tag2)
|
|
{
|
|
struct i40e_tx_context_desc *context_desc;
|
|
int i = tx_ring->next_to_use;
|
|
|
|
if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
|
|
!cd_tunneling && !cd_l2tag2)
|
|
return;
|
|
|
|
/* grab the next descriptor */
|
|
context_desc = I40E_TX_CTXTDESC(tx_ring, i);
|
|
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
/* cpu_to_le32 and assign to struct fields */
|
|
context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
|
|
context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
|
|
context_desc->rsvd = cpu_to_le16(0);
|
|
context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
|
|
}
|
|
|
|
/**
|
|
* __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
|
|
* @skb: send buffer
|
|
*
|
|
* Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
|
|
* and so we need to figure out the cases where we need to linearize the skb.
|
|
*
|
|
* For TSO we need to count the TSO header and segment payload separately.
|
|
* As such we need to check cases where we have 7 fragments or more as we
|
|
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
|
|
* the segment payload in the first descriptor, and another 7 for the
|
|
* fragments.
|
|
**/
|
|
bool __i40evf_chk_linearize(struct sk_buff *skb)
|
|
{
|
|
const struct skb_frag_struct *frag, *stale;
|
|
int nr_frags, sum;
|
|
|
|
/* no need to check if number of frags is less than 7 */
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
|
|
return false;
|
|
|
|
/* We need to walk through the list and validate that each group
|
|
* of 6 fragments totals at least gso_size.
|
|
*/
|
|
nr_frags -= I40E_MAX_BUFFER_TXD - 2;
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
|
|
/* Initialize size to the negative value of gso_size minus 1. We
|
|
* use this as the worst case scenerio in which the frag ahead
|
|
* of us only provides one byte which is why we are limited to 6
|
|
* descriptors for a single transmit as the header and previous
|
|
* fragment are already consuming 2 descriptors.
|
|
*/
|
|
sum = 1 - skb_shinfo(skb)->gso_size;
|
|
|
|
/* Add size of frags 0 through 4 to create our initial sum */
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* Walk through fragments adding latest fragment, testing it, and
|
|
* then removing stale fragments from the sum.
|
|
*/
|
|
stale = &skb_shinfo(skb)->frags[0];
|
|
for (;;) {
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* if sum is negative we failed to make sufficient progress */
|
|
if (sum < 0)
|
|
return true;
|
|
|
|
if (!nr_frags--)
|
|
break;
|
|
|
|
sum -= skb_frag_size(stale++);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
|
|
* @tx_ring: the ring to be checked
|
|
* @size: the size buffer we want to assure is available
|
|
*
|
|
* Returns -EBUSY if a stop is needed, else 0
|
|
**/
|
|
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
|
|
{
|
|
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
/* Memory barrier before checking head and tail */
|
|
smp_mb();
|
|
|
|
/* Check again in a case another CPU has just made room available. */
|
|
if (likely(I40E_DESC_UNUSED(tx_ring) < size))
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
|
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i40evf_tx_map - Build the Tx descriptor
|
|
* @tx_ring: ring to send buffer on
|
|
* @skb: send buffer
|
|
* @first: first buffer info buffer to use
|
|
* @tx_flags: collected send information
|
|
* @hdr_len: size of the packet header
|
|
* @td_cmd: the command field in the descriptor
|
|
* @td_offset: offset for checksum or crc
|
|
**/
|
|
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
struct i40e_tx_buffer *first, u32 tx_flags,
|
|
const u8 hdr_len, u32 td_cmd, u32 td_offset)
|
|
{
|
|
unsigned int data_len = skb->data_len;
|
|
unsigned int size = skb_headlen(skb);
|
|
struct skb_frag_struct *frag;
|
|
struct i40e_tx_buffer *tx_bi;
|
|
struct i40e_tx_desc *tx_desc;
|
|
u16 i = tx_ring->next_to_use;
|
|
u32 td_tag = 0;
|
|
dma_addr_t dma;
|
|
|
|
if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
|
|
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
|
|
td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
|
|
I40E_TX_FLAGS_VLAN_SHIFT;
|
|
}
|
|
|
|
first->tx_flags = tx_flags;
|
|
|
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
|
|
|
tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
tx_bi = first;
|
|
|
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
|
unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
|
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_bi, len, size);
|
|
dma_unmap_addr_set(tx_bi, dma, dma);
|
|
|
|
/* align size to end of page */
|
|
max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
|
|
while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
|
|
tx_desc->cmd_type_offset_bsz =
|
|
build_ctob(td_cmd, td_offset,
|
|
max_data, td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
dma += max_data;
|
|
size -= max_data;
|
|
|
|
max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
|
|
size, td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
size = skb_frag_size(frag);
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
|
DMA_TO_DEVICE);
|
|
|
|
tx_bi = &tx_ring->tx_bi[i];
|
|
}
|
|
|
|
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
|
/* write last descriptor with RS and EOP bits */
|
|
td_cmd |= I40E_TXD_CMD;
|
|
tx_desc->cmd_type_offset_bsz =
|
|
build_ctob(td_cmd, td_offset, size, td_tag);
|
|
|
|
/* Force memory writes to complete before letting h/w know there
|
|
* are new descriptors to fetch.
|
|
*
|
|
* We also use this memory barrier to make certain all of the
|
|
* status bits have been updated before next_to_watch is written.
|
|
*/
|
|
wmb();
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
/* notify HW of packet */
|
|
if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
|
|
writel(i, tx_ring->tail);
|
|
|
|
/* we need this if more than one processor can write to our tail
|
|
* at a time, it synchronizes IO on IA64/Altix systems
|
|
*/
|
|
mmiowb();
|
|
}
|
|
|
|
return;
|
|
|
|
dma_error:
|
|
dev_info(tx_ring->dev, "TX DMA map failed\n");
|
|
|
|
/* clear dma mappings for failed tx_bi map */
|
|
for (;;) {
|
|
tx_bi = &tx_ring->tx_bi[i];
|
|
i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
|
|
if (tx_bi == first)
|
|
break;
|
|
if (i == 0)
|
|
i = tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
/**
|
|
* i40e_xmit_frame_ring - Sends buffer on Tx ring
|
|
* @skb: send buffer
|
|
* @tx_ring: ring to send buffer on
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
**/
|
|
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
|
|
struct i40e_ring *tx_ring)
|
|
{
|
|
u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
|
|
u32 cd_tunneling = 0, cd_l2tag2 = 0;
|
|
struct i40e_tx_buffer *first;
|
|
u32 td_offset = 0;
|
|
u32 tx_flags = 0;
|
|
__be16 protocol;
|
|
u32 td_cmd = 0;
|
|
u8 hdr_len = 0;
|
|
int tso, count;
|
|
|
|
/* prefetch the data, we'll need it later */
|
|
prefetch(skb->data);
|
|
|
|
i40e_trace(xmit_frame_ring, skb, tx_ring);
|
|
|
|
count = i40e_xmit_descriptor_count(skb);
|
|
if (i40e_chk_linearize(skb, count)) {
|
|
if (__skb_linearize(skb)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
count = i40e_txd_use_count(skb->len);
|
|
tx_ring->tx_stats.tx_linearize++;
|
|
}
|
|
|
|
/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
|
|
* + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
|
|
* + 4 desc gap to avoid the cache line where head is,
|
|
* + 1 desc for context descriptor,
|
|
* otherwise try next time
|
|
*/
|
|
if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
|
|
tx_ring->tx_stats.tx_busy++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_bi[tx_ring->next_to_use];
|
|
first->skb = skb;
|
|
first->bytecount = skb->len;
|
|
first->gso_segs = 1;
|
|
|
|
/* prepare the xmit flags */
|
|
if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
|
|
goto out_drop;
|
|
|
|
/* obtain protocol of skb */
|
|
protocol = vlan_get_protocol(skb);
|
|
|
|
/* setup IPv4/IPv6 offloads */
|
|
if (protocol == htons(ETH_P_IP))
|
|
tx_flags |= I40E_TX_FLAGS_IPV4;
|
|
else if (protocol == htons(ETH_P_IPV6))
|
|
tx_flags |= I40E_TX_FLAGS_IPV6;
|
|
|
|
tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
|
|
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
else if (tso)
|
|
tx_flags |= I40E_TX_FLAGS_TSO;
|
|
|
|
/* Always offload the checksum, since it's in the data descriptor */
|
|
tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
|
|
tx_ring, &cd_tunneling);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* always enable CRC insertion offload */
|
|
td_cmd |= I40E_TX_DESC_CMD_ICRC;
|
|
|
|
i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
|
|
cd_tunneling, cd_l2tag2);
|
|
|
|
i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
|
|
td_cmd, td_offset);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
out_drop:
|
|
i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
|
|
dev_kfree_skb_any(first->skb);
|
|
first->skb = NULL;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
|
|
* @skb: send buffer
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
**/
|
|
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct i40evf_adapter *adapter = netdev_priv(netdev);
|
|
struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
|
|
|
|
/* hardware can't handle really short frames, hardware padding works
|
|
* beyond this point
|
|
*/
|
|
if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
|
|
if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
|
|
return NETDEV_TX_OK;
|
|
skb->len = I40E_MIN_TX_LEN;
|
|
skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
|
|
}
|
|
|
|
return i40e_xmit_frame_ring(skb, tx_ring);
|
|
}
|