mirror of https://gitee.com/openkylin/linux.git
1191 lines
40 KiB
C
1191 lines
40 KiB
C
/*
|
|
* Copyright 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fb.h>
|
|
|
|
#include "vega10_processpptables.h"
|
|
#include "ppatomfwctrl.h"
|
|
#include "atomfirmware.h"
|
|
#include "pp_debug.h"
|
|
#include "cgs_common.h"
|
|
#include "vega10_pptable.h"
|
|
|
|
static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable,
|
|
enum phm_platform_caps cap)
|
|
{
|
|
if (enable)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
|
|
else
|
|
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
|
|
}
|
|
|
|
static const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int index = GetIndexIntoMasterDataTable(powerplayinfo);
|
|
|
|
u16 size;
|
|
u8 frev, crev;
|
|
const void *table_address = hwmgr->soft_pp_table;
|
|
|
|
if (!table_address) {
|
|
table_address = (ATOM_Vega10_POWERPLAYTABLE *)
|
|
cgs_atom_get_data_table(hwmgr->device, index,
|
|
&size, &frev, &crev);
|
|
|
|
hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/
|
|
}
|
|
|
|
return table_address;
|
|
}
|
|
|
|
static int check_powerplay_tables(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
const ATOM_Vega10_State_Array *state_arrays;
|
|
|
|
state_arrays = (ATOM_Vega10_State_Array *)(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usStateArrayOffset));
|
|
|
|
PP_ASSERT_WITH_CODE((powerplay_table->sHeader.format_revision >=
|
|
ATOM_Vega10_TABLE_REVISION_VEGA10),
|
|
"Unsupported PPTable format!", return -1);
|
|
PP_ASSERT_WITH_CODE(powerplay_table->usStateArrayOffset,
|
|
"State table is not set!", return -1);
|
|
PP_ASSERT_WITH_CODE(powerplay_table->sHeader.structuresize > 0,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
PP_ASSERT_WITH_CODE(state_arrays->ucNumEntries > 0,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
|
|
{
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_POWERPLAY),
|
|
PHM_PlatformCaps_PowerPlaySupport);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
|
|
PHM_PlatformCaps_BiosPowerSourceControl);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_HARDWAREDC),
|
|
PHM_PlatformCaps_AutomaticDCTransition);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_CAP_BACO),
|
|
PHM_PlatformCaps_BACO);
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
0 != (powerplay_caps & ATOM_VEGA10_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
|
|
PHM_PlatformCaps_CombinePCCWithThermalSignal);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_thermal_controller(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
const ATOM_Vega10_Thermal_Controller *thermal_controller;
|
|
const Vega10_PPTable_Generic_SubTable_Header *header;
|
|
const ATOM_Vega10_Fan_Table *fan_table_v1;
|
|
const ATOM_Vega10_Fan_Table_V2 *fan_table_v2;
|
|
|
|
thermal_controller = (ATOM_Vega10_Thermal_Controller *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usThermalControllerOffset));
|
|
|
|
PP_ASSERT_WITH_CODE((powerplay_table->usThermalControllerOffset != 0),
|
|
"Thermal controller table not set!", return -EINVAL);
|
|
|
|
hwmgr->thermal_controller.ucType = thermal_controller->ucType;
|
|
hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
|
|
hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
|
|
|
|
hwmgr->thermal_controller.fanInfo.bNoFan =
|
|
(0 != (thermal_controller->ucFanParameters &
|
|
ATOM_VEGA10_PP_FANPARAMETERS_NOFAN));
|
|
|
|
hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
|
|
thermal_controller->ucFanParameters &
|
|
ATOM_VEGA10_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
|
|
|
|
hwmgr->thermal_controller.fanInfo.ulMinRPM =
|
|
thermal_controller->ucFanMinRPM * 100UL;
|
|
hwmgr->thermal_controller.fanInfo.ulMaxRPM =
|
|
thermal_controller->ucFanMaxRPM * 100UL;
|
|
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
|
|
= 100000;
|
|
|
|
set_hw_cap(
|
|
hwmgr,
|
|
ATOM_VEGA10_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
|
|
PHM_PlatformCaps_ThermalController);
|
|
|
|
if (!powerplay_table->usFanTableOffset)
|
|
return 0;
|
|
|
|
header = (const Vega10_PPTable_Generic_SubTable_Header *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usFanTableOffset));
|
|
|
|
if (header->ucRevId == 10) {
|
|
fan_table_v1 = (ATOM_Vega10_Fan_Table *)header;
|
|
|
|
PP_ASSERT_WITH_CODE((fan_table_v1->ucRevId >= 8),
|
|
"Invalid Input Fan Table!", return -EINVAL);
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
|
|
le16_to_cpu(fan_table_v1->usFanOutputSensitivity);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
|
|
le16_to_cpu(fan_table_v1->usFanRPMMax);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit =
|
|
le16_to_cpu(fan_table_v1->usThrottlingRPM);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit =
|
|
le16_to_cpu(fan_table_v1->usFanAcousticLimit);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMax =
|
|
le16_to_cpu(fan_table_v1->usTargetTemperature);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin =
|
|
le16_to_cpu(fan_table_v1->usMinimumPWMLimit);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulTargetGfxClk =
|
|
le16_to_cpu(fan_table_v1->usTargetGfxClk);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge =
|
|
le16_to_cpu(fan_table_v1->usFanGainEdge);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot =
|
|
le16_to_cpu(fan_table_v1->usFanGainHotspot);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid =
|
|
le16_to_cpu(fan_table_v1->usFanGainLiquid);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc =
|
|
le16_to_cpu(fan_table_v1->usFanGainVrVddc);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd =
|
|
le16_to_cpu(fan_table_v1->usFanGainVrMvdd);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx =
|
|
le16_to_cpu(fan_table_v1->usFanGainPlx);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm =
|
|
le16_to_cpu(fan_table_v1->usFanGainHbm);
|
|
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM =
|
|
fan_table_v1->ucEnableZeroRPM;
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStopTemperature =
|
|
le16_to_cpu(fan_table_v1->usFanStopTemperature);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStartTemperature =
|
|
le16_to_cpu(fan_table_v1->usFanStartTemperature);
|
|
} else if (header->ucRevId > 10) {
|
|
fan_table_v2 = (ATOM_Vega10_Fan_Table_V2 *)header;
|
|
|
|
hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
|
|
fan_table_v2->ucFanParameters & ATOM_VEGA10_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
|
|
hwmgr->thermal_controller.fanInfo.ulMinRPM = fan_table_v2->ucFanMinRPM * 100UL;
|
|
hwmgr->thermal_controller.fanInfo.ulMaxRPM = fan_table_v2->ucFanMaxRPM * 100UL;
|
|
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_MicrocodeFanControl);
|
|
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
|
|
le16_to_cpu(fan_table_v2->usFanOutputSensitivity);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
|
|
fan_table_v2->ucFanMaxRPM * 100UL;
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit =
|
|
le16_to_cpu(fan_table_v2->usThrottlingRPM);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit =
|
|
le16_to_cpu(fan_table_v2->usFanAcousticLimitRpm);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usTMax =
|
|
le16_to_cpu(fan_table_v2->usTargetTemperature);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin =
|
|
le16_to_cpu(fan_table_v2->usMinimumPWMLimit);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ulTargetGfxClk =
|
|
le16_to_cpu(fan_table_v2->usTargetGfxClk);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge =
|
|
le16_to_cpu(fan_table_v2->usFanGainEdge);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot =
|
|
le16_to_cpu(fan_table_v2->usFanGainHotspot);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid =
|
|
le16_to_cpu(fan_table_v2->usFanGainLiquid);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc =
|
|
le16_to_cpu(fan_table_v2->usFanGainVrVddc);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd =
|
|
le16_to_cpu(fan_table_v2->usFanGainVrMvdd);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx =
|
|
le16_to_cpu(fan_table_v2->usFanGainPlx);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm =
|
|
le16_to_cpu(fan_table_v2->usFanGainHbm);
|
|
|
|
hwmgr->thermal_controller.advanceFanControlParameters.ucEnableZeroRPM =
|
|
fan_table_v2->ucEnableZeroRPM;
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStopTemperature =
|
|
le16_to_cpu(fan_table_v2->usFanStopTemperature);
|
|
hwmgr->thermal_controller.advanceFanControlParameters.usZeroRPMStartTemperature =
|
|
le16_to_cpu(fan_table_v2->usFanStartTemperature);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int init_over_drive_limits(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
hwmgr->platform_descriptor.overdriveLimit.engineClock =
|
|
le32_to_cpu(powerplay_table->ulMaxODEngineClock);
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
|
|
le32_to_cpu(powerplay_table->ulMaxODMemoryClock);
|
|
|
|
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
|
|
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
|
|
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
|
|
|
|
if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 &&
|
|
hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_ACOverdriveSupport);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_mm_clock_voltage_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_mm_clock_voltage_dependency_table **vega10_mm_table,
|
|
const ATOM_Vega10_MM_Dependency_Table *mm_dependency_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
const ATOM_Vega10_MM_Dependency_Record *mm_dependency_record;
|
|
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
|
|
|
|
PP_ASSERT_WITH_CODE((mm_dependency_table->ucNumEntries != 0),
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record) *
|
|
mm_dependency_table->ucNumEntries;
|
|
mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!mm_table)
|
|
return -ENOMEM;
|
|
|
|
mm_table->count = mm_dependency_table->ucNumEntries;
|
|
|
|
for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
|
|
mm_dependency_record = &mm_dependency_table->entries[i];
|
|
mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
|
|
mm_table->entries[i].samclock =
|
|
le32_to_cpu(mm_dependency_record->ulPSPClk);
|
|
mm_table->entries[i].eclk = le32_to_cpu(mm_dependency_record->ulEClk);
|
|
mm_table->entries[i].vclk = le32_to_cpu(mm_dependency_record->ulVClk);
|
|
mm_table->entries[i].dclk = le32_to_cpu(mm_dependency_record->ulDClk);
|
|
}
|
|
|
|
*vega10_mm_table = mm_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t* sda)
|
|
{
|
|
switch(line){
|
|
case Vega10_I2CLineID_DDC1:
|
|
*scl = Vega10_I2C_DDC1CLK;
|
|
*sda = Vega10_I2C_DDC1DATA;
|
|
break;
|
|
case Vega10_I2CLineID_DDC2:
|
|
*scl = Vega10_I2C_DDC2CLK;
|
|
*sda = Vega10_I2C_DDC2DATA;
|
|
break;
|
|
case Vega10_I2CLineID_DDC3:
|
|
*scl = Vega10_I2C_DDC3CLK;
|
|
*sda = Vega10_I2C_DDC3DATA;
|
|
break;
|
|
case Vega10_I2CLineID_DDC4:
|
|
*scl = Vega10_I2C_DDC4CLK;
|
|
*sda = Vega10_I2C_DDC4DATA;
|
|
break;
|
|
case Vega10_I2CLineID_DDC5:
|
|
*scl = Vega10_I2C_DDC5CLK;
|
|
*sda = Vega10_I2C_DDC5DATA;
|
|
break;
|
|
case Vega10_I2CLineID_DDC6:
|
|
*scl = Vega10_I2C_DDC6CLK;
|
|
*sda = Vega10_I2C_DDC6DATA;
|
|
break;
|
|
case Vega10_I2CLineID_SCLSDA:
|
|
*scl = Vega10_I2C_SCL;
|
|
*sda = Vega10_I2C_SDA;
|
|
break;
|
|
case Vega10_I2CLineID_DDCVGA:
|
|
*scl = Vega10_I2C_DDCVGACLK;
|
|
*sda = Vega10_I2C_DDCVGADATA;
|
|
break;
|
|
default:
|
|
*scl = 0;
|
|
*sda = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int get_tdp_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
struct phm_tdp_table **info_tdp_table,
|
|
const Vega10_PPTable_Generic_SubTable_Header *table)
|
|
{
|
|
uint32_t table_size;
|
|
struct phm_tdp_table *tdp_table;
|
|
uint8_t scl;
|
|
uint8_t sda;
|
|
const ATOM_Vega10_PowerTune_Table *power_tune_table;
|
|
const ATOM_Vega10_PowerTune_Table_V2 *power_tune_table_v2;
|
|
|
|
table_size = sizeof(uint32_t) + sizeof(struct phm_tdp_table);
|
|
|
|
tdp_table = kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!tdp_table)
|
|
return -ENOMEM;
|
|
|
|
if (table->ucRevId == 5) {
|
|
power_tune_table = (ATOM_Vega10_PowerTune_Table *)table;
|
|
tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(power_tune_table->usSocketPowerLimit);
|
|
tdp_table->usTDC = le16_to_cpu(power_tune_table->usTdcLimit);
|
|
tdp_table->usEDCLimit = le16_to_cpu(power_tune_table->usEdcLimit);
|
|
tdp_table->usSoftwareShutdownTemp =
|
|
le16_to_cpu(power_tune_table->usSoftwareShutdownTemp);
|
|
tdp_table->usTemperatureLimitTedge =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitTedge);
|
|
tdp_table->usTemperatureLimitHotspot =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitHotSpot);
|
|
tdp_table->usTemperatureLimitLiquid1 =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitLiquid1);
|
|
tdp_table->usTemperatureLimitLiquid2 =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitLiquid2);
|
|
tdp_table->usTemperatureLimitHBM =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitHBM);
|
|
tdp_table->usTemperatureLimitVrVddc =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitVrSoc);
|
|
tdp_table->usTemperatureLimitVrMvdd =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitVrMem);
|
|
tdp_table->usTemperatureLimitPlx =
|
|
le16_to_cpu(power_tune_table->usTemperatureLimitPlx);
|
|
tdp_table->ucLiquid1_I2C_address = power_tune_table->ucLiquid1_I2C_address;
|
|
tdp_table->ucLiquid2_I2C_address = power_tune_table->ucLiquid2_I2C_address;
|
|
tdp_table->ucLiquid_I2C_Line = power_tune_table->ucLiquid_I2C_LineSCL;
|
|
tdp_table->ucLiquid_I2C_LineSDA = power_tune_table->ucLiquid_I2C_LineSDA;
|
|
tdp_table->ucVr_I2C_address = power_tune_table->ucVr_I2C_address;
|
|
tdp_table->ucVr_I2C_Line = power_tune_table->ucVr_I2C_LineSCL;
|
|
tdp_table->ucVr_I2C_LineSDA = power_tune_table->ucVr_I2C_LineSDA;
|
|
tdp_table->ucPlx_I2C_address = power_tune_table->ucPlx_I2C_address;
|
|
tdp_table->ucPlx_I2C_Line = power_tune_table->ucPlx_I2C_LineSCL;
|
|
tdp_table->ucPlx_I2C_LineSDA = power_tune_table->ucPlx_I2C_LineSDA;
|
|
hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(power_tune_table->usLoadLineResistance);
|
|
} else {
|
|
power_tune_table_v2 = (ATOM_Vega10_PowerTune_Table_V2 *)table;
|
|
tdp_table->usMaximumPowerDeliveryLimit = le16_to_cpu(power_tune_table_v2->usSocketPowerLimit);
|
|
tdp_table->usTDC = le16_to_cpu(power_tune_table_v2->usTdcLimit);
|
|
tdp_table->usEDCLimit = le16_to_cpu(power_tune_table_v2->usEdcLimit);
|
|
tdp_table->usSoftwareShutdownTemp =
|
|
le16_to_cpu(power_tune_table_v2->usSoftwareShutdownTemp);
|
|
tdp_table->usTemperatureLimitTedge =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitTedge);
|
|
tdp_table->usTemperatureLimitHotspot =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitHotSpot);
|
|
tdp_table->usTemperatureLimitLiquid1 =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitLiquid1);
|
|
tdp_table->usTemperatureLimitLiquid2 =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitLiquid2);
|
|
tdp_table->usTemperatureLimitHBM =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitHBM);
|
|
tdp_table->usTemperatureLimitVrVddc =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitVrSoc);
|
|
tdp_table->usTemperatureLimitVrMvdd =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitVrMem);
|
|
tdp_table->usTemperatureLimitPlx =
|
|
le16_to_cpu(power_tune_table_v2->usTemperatureLimitPlx);
|
|
tdp_table->ucLiquid1_I2C_address = power_tune_table_v2->ucLiquid1_I2C_address;
|
|
tdp_table->ucLiquid2_I2C_address = power_tune_table_v2->ucLiquid2_I2C_address;
|
|
|
|
get_scl_sda_value(power_tune_table_v2->ucLiquid_I2C_Line, &scl, &sda);
|
|
|
|
tdp_table->ucLiquid_I2C_Line = scl;
|
|
tdp_table->ucLiquid_I2C_LineSDA = sda;
|
|
|
|
tdp_table->ucVr_I2C_address = power_tune_table_v2->ucVr_I2C_address;
|
|
|
|
get_scl_sda_value(power_tune_table_v2->ucVr_I2C_Line, &scl, &sda);
|
|
|
|
tdp_table->ucVr_I2C_Line = scl;
|
|
tdp_table->ucVr_I2C_LineSDA = sda;
|
|
tdp_table->ucPlx_I2C_address = power_tune_table_v2->ucPlx_I2C_address;
|
|
|
|
get_scl_sda_value(power_tune_table_v2->ucPlx_I2C_Line, &scl, &sda);
|
|
|
|
tdp_table->ucPlx_I2C_Line = scl;
|
|
tdp_table->ucPlx_I2C_LineSDA = sda;
|
|
|
|
hwmgr->platform_descriptor.LoadLineSlope =
|
|
le16_to_cpu(power_tune_table_v2->usLoadLineResistance);
|
|
}
|
|
|
|
*info_tdp_table = tdp_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_socclk_voltage_dependency_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_clk_dep_table,
|
|
const ATOM_Vega10_SOCCLK_Dependency_Table *clk_dep_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
phm_ppt_v1_clock_voltage_dependency_table *clk_table;
|
|
|
|
PP_ASSERT_WITH_CODE(clk_dep_table->ucNumEntries,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_clock_voltage_dependency_record) *
|
|
clk_dep_table->ucNumEntries;
|
|
|
|
clk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!clk_table)
|
|
return -ENOMEM;
|
|
|
|
clk_table->count = (uint32_t)clk_dep_table->ucNumEntries;
|
|
|
|
for (i = 0; i < clk_dep_table->ucNumEntries; i++) {
|
|
clk_table->entries[i].vddInd =
|
|
clk_dep_table->entries[i].ucVddInd;
|
|
clk_table->entries[i].clk =
|
|
le32_to_cpu(clk_dep_table->entries[i].ulClk);
|
|
}
|
|
|
|
*pp_vega10_clk_dep_table = clk_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_mclk_voltage_dependency_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_clock_voltage_dependency_table **pp_vega10_mclk_dep_table,
|
|
const ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
|
|
|
|
PP_ASSERT_WITH_CODE(mclk_dep_table->ucNumEntries,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_clock_voltage_dependency_record) *
|
|
mclk_dep_table->ucNumEntries;
|
|
|
|
mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!mclk_table)
|
|
return -ENOMEM;
|
|
|
|
mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
|
|
|
|
for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
|
|
mclk_table->entries[i].vddInd =
|
|
mclk_dep_table->entries[i].ucVddInd;
|
|
mclk_table->entries[i].vddciInd =
|
|
mclk_dep_table->entries[i].ucVddciInd;
|
|
mclk_table->entries[i].mvddInd =
|
|
mclk_dep_table->entries[i].ucVddMemInd;
|
|
mclk_table->entries[i].clk =
|
|
le32_to_cpu(mclk_dep_table->entries[i].ulMemClk);
|
|
}
|
|
|
|
*pp_vega10_mclk_dep_table = mclk_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_gfxclk_voltage_dependency_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table
|
|
**pp_vega10_clk_dep_table,
|
|
const ATOM_Vega10_GFXCLK_Dependency_Table *clk_dep_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table
|
|
*clk_table;
|
|
|
|
PP_ASSERT_WITH_CODE((clk_dep_table->ucNumEntries != 0),
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_clock_voltage_dependency_record) *
|
|
clk_dep_table->ucNumEntries;
|
|
|
|
clk_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!clk_table)
|
|
return -ENOMEM;
|
|
|
|
clk_table->count = clk_dep_table->ucNumEntries;
|
|
|
|
for (i = 0; i < clk_table->count; i++) {
|
|
clk_table->entries[i].vddInd =
|
|
clk_dep_table->entries[i].ucVddInd;
|
|
clk_table->entries[i].clk =
|
|
le32_to_cpu(clk_dep_table->entries[i].ulClk);
|
|
clk_table->entries[i].cks_enable =
|
|
(((clk_dep_table->entries[i].usCKSVOffsetandDisable & 0x80)
|
|
>> 15) == 0) ? 1 : 0;
|
|
clk_table->entries[i].cks_voffset =
|
|
(clk_dep_table->entries[i].usCKSVOffsetandDisable & 0x7F);
|
|
clk_table->entries[i].sclk_offset =
|
|
clk_dep_table->entries[i].usAVFSOffset;
|
|
}
|
|
|
|
*pp_vega10_clk_dep_table = clk_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_dcefclk_voltage_dependency_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_clock_voltage_dependency_table
|
|
**pp_vega10_clk_dep_table,
|
|
const ATOM_Vega10_DCEFCLK_Dependency_Table *clk_dep_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
struct phm_ppt_v1_clock_voltage_dependency_table
|
|
*clk_table;
|
|
|
|
PP_ASSERT_WITH_CODE((clk_dep_table->ucNumEntries != 0),
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_clock_voltage_dependency_record) *
|
|
clk_dep_table->ucNumEntries;
|
|
|
|
clk_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!clk_table)
|
|
return -ENOMEM;
|
|
|
|
clk_table->count = clk_dep_table->ucNumEntries;
|
|
|
|
for (i = 0; i < clk_table->count; i++) {
|
|
clk_table->entries[i].vddInd =
|
|
clk_dep_table->entries[i].ucVddInd;
|
|
clk_table->entries[i].clk =
|
|
le32_to_cpu(clk_dep_table->entries[i].ulClk);
|
|
}
|
|
|
|
*pp_vega10_clk_dep_table = clk_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_pcie_table(struct pp_hwmgr *hwmgr,
|
|
struct phm_ppt_v1_pcie_table **vega10_pcie_table,
|
|
const Vega10_PPTable_Generic_SubTable_Header *table)
|
|
{
|
|
uint32_t table_size, i, pcie_count;
|
|
struct phm_ppt_v1_pcie_table *pcie_table;
|
|
struct phm_ppt_v2_information *table_info =
|
|
(struct phm_ppt_v2_information *)(hwmgr->pptable);
|
|
const ATOM_Vega10_PCIE_Table *atom_pcie_table =
|
|
(ATOM_Vega10_PCIE_Table *)table;
|
|
|
|
PP_ASSERT_WITH_CODE(atom_pcie_table->ucNumEntries,
|
|
"Invalid PowerPlay Table!",
|
|
return 0);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(struct phm_ppt_v1_pcie_record) *
|
|
atom_pcie_table->ucNumEntries;
|
|
|
|
pcie_table = (struct phm_ppt_v1_pcie_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!pcie_table)
|
|
return -ENOMEM;
|
|
|
|
pcie_count = table_info->vdd_dep_on_sclk->count;
|
|
if (atom_pcie_table->ucNumEntries <= pcie_count)
|
|
pcie_count = atom_pcie_table->ucNumEntries;
|
|
else
|
|
pr_info("Number of Pcie Entries exceed the number of"
|
|
" GFXCLK Dpm Levels!"
|
|
" Disregarding the excess entries...\n");
|
|
|
|
pcie_table->count = pcie_count;
|
|
|
|
for (i = 0; i < pcie_count; i++) {
|
|
pcie_table->entries[i].gen_speed =
|
|
atom_pcie_table->entries[i].ucPCIEGenSpeed;
|
|
pcie_table->entries[i].lane_width =
|
|
atom_pcie_table->entries[i].ucPCIELaneWidth;
|
|
pcie_table->entries[i].pcie_sclk =
|
|
atom_pcie_table->entries[i].ulLCLK;
|
|
}
|
|
|
|
*vega10_pcie_table = pcie_table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_hard_limits(
|
|
struct pp_hwmgr *hwmgr,
|
|
struct phm_clock_and_voltage_limits *limits,
|
|
const ATOM_Vega10_Hard_Limit_Table *limit_table)
|
|
{
|
|
PP_ASSERT_WITH_CODE(limit_table->ucNumEntries,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
/* currently we always take entries[0] parameters */
|
|
limits->sclk = le32_to_cpu(limit_table->entries[0].ulSOCCLKLimit);
|
|
limits->mclk = le32_to_cpu(limit_table->entries[0].ulMCLKLimit);
|
|
limits->gfxclk = le32_to_cpu(limit_table->entries[0].ulGFXCLKLimit);
|
|
limits->vddc = le16_to_cpu(limit_table->entries[0].usVddcLimit);
|
|
limits->vddci = le16_to_cpu(limit_table->entries[0].usVddciLimit);
|
|
limits->vddmem = le16_to_cpu(limit_table->entries[0].usVddMemLimit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_valid_clk(
|
|
struct pp_hwmgr *hwmgr,
|
|
struct phm_clock_array **clk_table,
|
|
const phm_ppt_v1_clock_voltage_dependency_table *clk_volt_pp_table)
|
|
{
|
|
uint32_t table_size, i;
|
|
struct phm_clock_array *table;
|
|
|
|
PP_ASSERT_WITH_CODE(clk_volt_pp_table->count,
|
|
"Invalid PowerPlay Table!", return -1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(uint32_t) * clk_volt_pp_table->count;
|
|
|
|
table = kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
table->count = (uint32_t)clk_volt_pp_table->count;
|
|
|
|
for (i = 0; i < table->count; i++)
|
|
table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
|
|
|
|
*clk_table = table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_powerplay_extended_tables(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
int result = 0;
|
|
struct phm_ppt_v2_information *pp_table_info =
|
|
(struct phm_ppt_v2_information *)(hwmgr->pptable);
|
|
|
|
const ATOM_Vega10_MM_Dependency_Table *mm_dependency_table =
|
|
(const ATOM_Vega10_MM_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
|
|
const Vega10_PPTable_Generic_SubTable_Header *power_tune_table =
|
|
(const Vega10_PPTable_Generic_SubTable_Header *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
|
|
const ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
|
|
(const ATOM_Vega10_SOCCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
|
|
const ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
|
|
(const ATOM_Vega10_GFXCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
|
|
const ATOM_Vega10_DCEFCLK_Dependency_Table *dcefclk_dep_table =
|
|
(const ATOM_Vega10_DCEFCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usDcefclkDependencyTableOffset));
|
|
const ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
|
|
(const ATOM_Vega10_MCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
|
|
const ATOM_Vega10_Hard_Limit_Table *hard_limits =
|
|
(const ATOM_Vega10_Hard_Limit_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usHardLimitTableOffset));
|
|
const Vega10_PPTable_Generic_SubTable_Header *pcie_table =
|
|
(const Vega10_PPTable_Generic_SubTable_Header *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usPCIETableOffset));
|
|
const ATOM_Vega10_PIXCLK_Dependency_Table *pixclk_dep_table =
|
|
(const ATOM_Vega10_PIXCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usPixclkDependencyTableOffset));
|
|
const ATOM_Vega10_PHYCLK_Dependency_Table *phyclk_dep_table =
|
|
(const ATOM_Vega10_PHYCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usPhyClkDependencyTableOffset));
|
|
const ATOM_Vega10_DISPCLK_Dependency_Table *dispclk_dep_table =
|
|
(const ATOM_Vega10_DISPCLK_Dependency_Table *)
|
|
(((unsigned long) powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usDispClkDependencyTableOffset));
|
|
|
|
pp_table_info->vdd_dep_on_socclk = NULL;
|
|
pp_table_info->vdd_dep_on_sclk = NULL;
|
|
pp_table_info->vdd_dep_on_mclk = NULL;
|
|
pp_table_info->vdd_dep_on_dcefclk = NULL;
|
|
pp_table_info->mm_dep_table = NULL;
|
|
pp_table_info->tdp_table = NULL;
|
|
pp_table_info->vdd_dep_on_pixclk = NULL;
|
|
pp_table_info->vdd_dep_on_phyclk = NULL;
|
|
pp_table_info->vdd_dep_on_dispclk = NULL;
|
|
|
|
if (powerplay_table->usMMDependencyTableOffset)
|
|
result = get_mm_clock_voltage_table(hwmgr,
|
|
&pp_table_info->mm_dep_table,
|
|
mm_dependency_table);
|
|
|
|
if (!result && powerplay_table->usPowerTuneTableOffset)
|
|
result = get_tdp_table(hwmgr,
|
|
&pp_table_info->tdp_table,
|
|
power_tune_table);
|
|
|
|
if (!result && powerplay_table->usSocclkDependencyTableOffset)
|
|
result = get_socclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_socclk,
|
|
socclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usGfxclkDependencyTableOffset)
|
|
result = get_gfxclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_sclk,
|
|
gfxclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usPixclkDependencyTableOffset)
|
|
result = get_dcefclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_pixclk,
|
|
(const ATOM_Vega10_DCEFCLK_Dependency_Table*)
|
|
pixclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usPhyClkDependencyTableOffset)
|
|
result = get_dcefclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_phyclk,
|
|
(const ATOM_Vega10_DCEFCLK_Dependency_Table *)
|
|
phyclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usDispClkDependencyTableOffset)
|
|
result = get_dcefclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_dispclk,
|
|
(const ATOM_Vega10_DCEFCLK_Dependency_Table *)
|
|
dispclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usDcefclkDependencyTableOffset)
|
|
result = get_dcefclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_dcefclk,
|
|
dcefclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usMclkDependencyTableOffset)
|
|
result = get_mclk_voltage_dependency_table(hwmgr,
|
|
&pp_table_info->vdd_dep_on_mclk,
|
|
mclk_dep_table);
|
|
|
|
if (!result && powerplay_table->usPCIETableOffset)
|
|
result = get_pcie_table(hwmgr,
|
|
&pp_table_info->pcie_table,
|
|
pcie_table);
|
|
|
|
if (!result && powerplay_table->usHardLimitTableOffset)
|
|
result = get_hard_limits(hwmgr,
|
|
&pp_table_info->max_clock_voltage_on_dc,
|
|
hard_limits);
|
|
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
|
|
pp_table_info->max_clock_voltage_on_dc.sclk;
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
|
|
pp_table_info->max_clock_voltage_on_dc.mclk;
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
|
|
pp_table_info->max_clock_voltage_on_dc.vddc;
|
|
hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
|
|
pp_table_info->max_clock_voltage_on_dc.vddci;
|
|
|
|
if (!result &&
|
|
pp_table_info->vdd_dep_on_socclk &&
|
|
pp_table_info->vdd_dep_on_socclk->count)
|
|
result = get_valid_clk(hwmgr,
|
|
&pp_table_info->valid_socclk_values,
|
|
pp_table_info->vdd_dep_on_socclk);
|
|
|
|
if (!result &&
|
|
pp_table_info->vdd_dep_on_sclk &&
|
|
pp_table_info->vdd_dep_on_sclk->count)
|
|
result = get_valid_clk(hwmgr,
|
|
&pp_table_info->valid_sclk_values,
|
|
pp_table_info->vdd_dep_on_sclk);
|
|
|
|
if (!result &&
|
|
pp_table_info->vdd_dep_on_dcefclk &&
|
|
pp_table_info->vdd_dep_on_dcefclk->count)
|
|
result = get_valid_clk(hwmgr,
|
|
&pp_table_info->valid_dcefclk_values,
|
|
pp_table_info->vdd_dep_on_dcefclk);
|
|
|
|
if (!result &&
|
|
pp_table_info->vdd_dep_on_mclk &&
|
|
pp_table_info->vdd_dep_on_mclk->count)
|
|
result = get_valid_clk(hwmgr,
|
|
&pp_table_info->valid_mclk_values,
|
|
pp_table_info->vdd_dep_on_mclk);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int get_vddc_lookup_table(
|
|
struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table **lookup_table,
|
|
const ATOM_Vega10_Voltage_Lookup_Table *vddc_lookup_pp_tables,
|
|
uint32_t max_levels)
|
|
{
|
|
uint32_t table_size, i;
|
|
phm_ppt_v1_voltage_lookup_table *table;
|
|
|
|
PP_ASSERT_WITH_CODE((vddc_lookup_pp_tables->ucNumEntries != 0),
|
|
"Invalid SOC_VDDD Lookup Table!", return 1);
|
|
|
|
table_size = sizeof(uint32_t) +
|
|
sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
|
|
|
|
table = (phm_ppt_v1_voltage_lookup_table *)
|
|
kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (NULL == table)
|
|
return -ENOMEM;
|
|
|
|
table->count = vddc_lookup_pp_tables->ucNumEntries;
|
|
|
|
for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++)
|
|
table->entries[i].us_vdd =
|
|
le16_to_cpu(vddc_lookup_pp_tables->entries[i].usVdd);
|
|
|
|
*lookup_table = table;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_dpm_2_parameters(
|
|
struct pp_hwmgr *hwmgr,
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table)
|
|
{
|
|
int result = 0;
|
|
struct phm_ppt_v2_information *pp_table_info =
|
|
(struct phm_ppt_v2_information *)(hwmgr->pptable);
|
|
uint32_t disable_power_control = 0;
|
|
|
|
pp_table_info->us_ulv_voltage_offset =
|
|
le16_to_cpu(powerplay_table->usUlvVoltageOffset);
|
|
|
|
pp_table_info->us_ulv_smnclk_did =
|
|
le16_to_cpu(powerplay_table->usUlvSmnclkDid);
|
|
pp_table_info->us_ulv_mp1clk_did =
|
|
le16_to_cpu(powerplay_table->usUlvMp1clkDid);
|
|
pp_table_info->us_ulv_gfxclk_bypass =
|
|
le16_to_cpu(powerplay_table->usUlvGfxclkBypass);
|
|
pp_table_info->us_gfxclk_slew_rate =
|
|
le16_to_cpu(powerplay_table->usGfxclkSlewRate);
|
|
pp_table_info->uc_gfx_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucGfxVoltageMode);
|
|
pp_table_info->uc_soc_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucSocVoltageMode);
|
|
pp_table_info->uc_uclk_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucUclkVoltageMode);
|
|
pp_table_info->uc_uvd_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucUvdVoltageMode);
|
|
pp_table_info->uc_vce_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucVceVoltageMode);
|
|
pp_table_info->uc_mp0_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucMp0VoltageMode);
|
|
pp_table_info->uc_dcef_dpm_voltage_mode =
|
|
le16_to_cpu(powerplay_table->ucDcefVoltageMode);
|
|
|
|
pp_table_info->ppm_parameter_table = NULL;
|
|
pp_table_info->vddc_lookup_table = NULL;
|
|
pp_table_info->vddmem_lookup_table = NULL;
|
|
pp_table_info->vddci_lookup_table = NULL;
|
|
|
|
/* TDP limits */
|
|
hwmgr->platform_descriptor.TDPODLimit =
|
|
le16_to_cpu(powerplay_table->usPowerControlLimit);
|
|
hwmgr->platform_descriptor.TDPAdjustment = 0;
|
|
hwmgr->platform_descriptor.VidAdjustment = 0;
|
|
hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
|
|
hwmgr->platform_descriptor.VidMinLimit = 0;
|
|
hwmgr->platform_descriptor.VidMaxLimit = 1500000;
|
|
hwmgr->platform_descriptor.VidStep = 6250;
|
|
|
|
disable_power_control = 0;
|
|
if (!disable_power_control) {
|
|
/* enable TDP overdrive (PowerControl) feature as well if supported */
|
|
if (hwmgr->platform_descriptor.TDPODLimit)
|
|
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
|
|
PHM_PlatformCaps_PowerControl);
|
|
}
|
|
|
|
if (powerplay_table->usVddcLookupTableOffset) {
|
|
const ATOM_Vega10_Voltage_Lookup_Table *vddc_table =
|
|
(ATOM_Vega10_Voltage_Lookup_Table *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
|
|
result = get_vddc_lookup_table(hwmgr,
|
|
&pp_table_info->vddc_lookup_table, vddc_table, 8);
|
|
}
|
|
|
|
if (powerplay_table->usVddmemLookupTableOffset) {
|
|
const ATOM_Vega10_Voltage_Lookup_Table *vdd_mem_table =
|
|
(ATOM_Vega10_Voltage_Lookup_Table *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usVddmemLookupTableOffset));
|
|
result = get_vddc_lookup_table(hwmgr,
|
|
&pp_table_info->vddmem_lookup_table, vdd_mem_table, 4);
|
|
}
|
|
|
|
if (powerplay_table->usVddciLookupTableOffset) {
|
|
const ATOM_Vega10_Voltage_Lookup_Table *vddci_table =
|
|
(ATOM_Vega10_Voltage_Lookup_Table *)
|
|
(((unsigned long)powerplay_table) +
|
|
le16_to_cpu(powerplay_table->usVddciLookupTableOffset));
|
|
result = get_vddc_lookup_table(hwmgr,
|
|
&pp_table_info->vddci_lookup_table, vddci_table, 4);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int vega10_pp_tables_initialize(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
const ATOM_Vega10_POWERPLAYTABLE *powerplay_table;
|
|
|
|
hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v2_information), GFP_KERNEL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
|
|
"Failed to allocate hwmgr->pptable!", return -ENOMEM);
|
|
|
|
powerplay_table = get_powerplay_table(hwmgr);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != powerplay_table),
|
|
"Missing PowerPlay Table!", return -1);
|
|
|
|
result = check_powerplay_tables(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"check_powerplay_tables failed", return result);
|
|
|
|
result = set_platform_caps(hwmgr,
|
|
le32_to_cpu(powerplay_table->ulPlatformCaps));
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"set_platform_caps failed", return result);
|
|
|
|
result = init_thermal_controller(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_thermal_controller failed", return result);
|
|
|
|
result = init_over_drive_limits(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_over_drive_limits failed", return result);
|
|
|
|
result = init_powerplay_extended_tables(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_powerplay_extended_tables failed", return result);
|
|
|
|
result = init_dpm_2_parameters(hwmgr, powerplay_table);
|
|
|
|
PP_ASSERT_WITH_CODE((result == 0),
|
|
"init_dpm_2_parameters failed", return result);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int vega10_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result = 0;
|
|
struct phm_ppt_v2_information *pp_table_info =
|
|
(struct phm_ppt_v2_information *)(hwmgr->pptable);
|
|
|
|
kfree(pp_table_info->vdd_dep_on_sclk);
|
|
pp_table_info->vdd_dep_on_sclk = NULL;
|
|
|
|
kfree(pp_table_info->vdd_dep_on_mclk);
|
|
pp_table_info->vdd_dep_on_mclk = NULL;
|
|
|
|
kfree(pp_table_info->valid_mclk_values);
|
|
pp_table_info->valid_mclk_values = NULL;
|
|
|
|
kfree(pp_table_info->valid_sclk_values);
|
|
pp_table_info->valid_sclk_values = NULL;
|
|
|
|
kfree(pp_table_info->vddc_lookup_table);
|
|
pp_table_info->vddc_lookup_table = NULL;
|
|
|
|
kfree(pp_table_info->vddmem_lookup_table);
|
|
pp_table_info->vddmem_lookup_table = NULL;
|
|
|
|
kfree(pp_table_info->vddci_lookup_table);
|
|
pp_table_info->vddci_lookup_table = NULL;
|
|
|
|
kfree(pp_table_info->ppm_parameter_table);
|
|
pp_table_info->ppm_parameter_table = NULL;
|
|
|
|
kfree(pp_table_info->mm_dep_table);
|
|
pp_table_info->mm_dep_table = NULL;
|
|
|
|
kfree(pp_table_info->cac_dtp_table);
|
|
pp_table_info->cac_dtp_table = NULL;
|
|
|
|
kfree(hwmgr->dyn_state.cac_dtp_table);
|
|
hwmgr->dyn_state.cac_dtp_table = NULL;
|
|
|
|
kfree(pp_table_info->tdp_table);
|
|
pp_table_info->tdp_table = NULL;
|
|
|
|
kfree(hwmgr->pptable);
|
|
hwmgr->pptable = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
const struct pp_table_func vega10_pptable_funcs = {
|
|
.pptable_init = vega10_pp_tables_initialize,
|
|
.pptable_fini = vega10_pp_tables_uninitialize,
|
|
};
|
|
|
|
int vega10_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
|
|
{
|
|
const ATOM_Vega10_State_Array *state_arrays;
|
|
const ATOM_Vega10_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != pp_table),
|
|
"Missing PowerPlay Table!", return -1);
|
|
PP_ASSERT_WITH_CODE((pp_table->sHeader.format_revision >=
|
|
ATOM_Vega10_TABLE_REVISION_VEGA10),
|
|
"Incorrect PowerPlay table revision!", return -1);
|
|
|
|
state_arrays = (ATOM_Vega10_State_Array *)(((unsigned long)pp_table) +
|
|
le16_to_cpu(pp_table->usStateArrayOffset));
|
|
|
|
return (uint32_t)(state_arrays->ucNumEntries);
|
|
}
|
|
|
|
static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
|
|
uint16_t classification, uint16_t classification2)
|
|
{
|
|
uint32_t result = 0;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
|
|
result |= PP_StateClassificationFlag_Boot;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
|
|
result |= PP_StateClassificationFlag_Thermal;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
|
|
result |= PP_StateClassificationFlag_LimitedPowerSource;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
|
|
result |= PP_StateClassificationFlag_Rest;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
|
|
result |= PP_StateClassificationFlag_Forced;
|
|
|
|
if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
|
|
result |= PP_StateClassificationFlag_ACPI;
|
|
|
|
if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
|
|
result |= PP_StateClassificationFlag_LimitedPowerSource_2;
|
|
|
|
return result;
|
|
}
|
|
|
|
int vega10_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
|
|
uint32_t entry_index, struct pp_power_state *power_state,
|
|
int (*call_back_func)(struct pp_hwmgr *, void *,
|
|
struct pp_power_state *, void *, uint32_t))
|
|
{
|
|
int result = 0;
|
|
const ATOM_Vega10_State_Array *state_arrays;
|
|
const ATOM_Vega10_State *state_entry;
|
|
const ATOM_Vega10_POWERPLAYTABLE *pp_table =
|
|
get_powerplay_table(hwmgr);
|
|
|
|
PP_ASSERT_WITH_CODE(pp_table, "Missing PowerPlay Table!",
|
|
return -1;);
|
|
power_state->classification.bios_index = entry_index;
|
|
|
|
if (pp_table->sHeader.format_revision >=
|
|
ATOM_Vega10_TABLE_REVISION_VEGA10) {
|
|
state_arrays = (ATOM_Vega10_State_Array *)
|
|
(((unsigned long)pp_table) +
|
|
le16_to_cpu(pp_table->usStateArrayOffset));
|
|
|
|
PP_ASSERT_WITH_CODE(pp_table->usStateArrayOffset > 0,
|
|
"Invalid PowerPlay Table State Array Offset.",
|
|
return -1);
|
|
PP_ASSERT_WITH_CODE(state_arrays->ucNumEntries > 0,
|
|
"Invalid PowerPlay Table State Array.",
|
|
return -1);
|
|
PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
|
|
"Invalid PowerPlay Table State Array Entry.",
|
|
return -1);
|
|
|
|
state_entry = &(state_arrays->states[entry_index]);
|
|
|
|
result = call_back_func(hwmgr, (void *)state_entry, power_state,
|
|
(void *)pp_table,
|
|
make_classification_flags(hwmgr,
|
|
le16_to_cpu(state_entry->usClassification),
|
|
le16_to_cpu(state_entry->usClassification2)));
|
|
}
|
|
|
|
if (!result && (power_state->classification.flags &
|
|
PP_StateClassificationFlag_Boot))
|
|
result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
|
|
|
|
return result;
|
|
}
|