mirror of https://gitee.com/openkylin/linux.git
600 lines
14 KiB
C
600 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2017 - Cambridge Greys Ltd
|
|
* Copyright (C) 2011 - 2014 Cisco Systems Inc
|
|
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
* Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
|
|
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
|
|
*/
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/slab.h>
|
|
#include <as-layout.h>
|
|
#include <kern_util.h>
|
|
#include <os.h>
|
|
#include <irq_user.h>
|
|
|
|
|
|
extern void free_irqs(void);
|
|
|
|
/* When epoll triggers we do not know why it did so
|
|
* we can also have different IRQs for read and write.
|
|
* This is why we keep a small irq_fd array for each fd -
|
|
* one entry per IRQ type
|
|
*/
|
|
|
|
struct irq_entry {
|
|
struct irq_entry *next;
|
|
int fd;
|
|
struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
|
|
};
|
|
|
|
static struct irq_entry *active_fds;
|
|
|
|
static DEFINE_SPINLOCK(irq_lock);
|
|
|
|
static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
|
|
{
|
|
/*
|
|
* irq->active guards against reentry
|
|
* irq->pending accumulates pending requests
|
|
* if pending is raised the irq_handler is re-run
|
|
* until pending is cleared
|
|
*/
|
|
if (irq->active) {
|
|
irq->active = false;
|
|
do {
|
|
irq->pending = false;
|
|
do_IRQ(irq->irq, regs);
|
|
} while (irq->pending && (!irq->purge));
|
|
if (!irq->purge)
|
|
irq->active = true;
|
|
} else {
|
|
irq->pending = true;
|
|
}
|
|
}
|
|
|
|
void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
|
|
{
|
|
struct irq_entry *irq_entry;
|
|
struct irq_fd *irq;
|
|
|
|
int n, i, j;
|
|
|
|
while (1) {
|
|
/* This is now lockless - epoll keeps back-referencesto the irqs
|
|
* which have trigger it so there is no need to walk the irq
|
|
* list and lock it every time. We avoid locking by turning off
|
|
* IO for a specific fd by executing os_del_epoll_fd(fd) before
|
|
* we do any changes to the actual data structures
|
|
*/
|
|
n = os_waiting_for_events_epoll();
|
|
|
|
if (n <= 0) {
|
|
if (n == -EINTR)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < n ; i++) {
|
|
/* Epoll back reference is the entry with 3 irq_fd
|
|
* leaves - one for each irq type.
|
|
*/
|
|
irq_entry = (struct irq_entry *)
|
|
os_epoll_get_data_pointer(i);
|
|
for (j = 0; j < MAX_IRQ_TYPE ; j++) {
|
|
irq = irq_entry->irq_array[j];
|
|
if (irq == NULL)
|
|
continue;
|
|
if (os_epoll_triggered(i, irq->events) > 0)
|
|
irq_io_loop(irq, regs);
|
|
if (irq->purge) {
|
|
irq_entry->irq_array[j] = NULL;
|
|
kfree(irq);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
free_irqs();
|
|
}
|
|
|
|
static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
|
|
{
|
|
int i;
|
|
int events = 0;
|
|
struct irq_fd *irq;
|
|
|
|
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
|
|
irq = irq_entry->irq_array[i];
|
|
if (irq != NULL)
|
|
events = irq->events | events;
|
|
}
|
|
if (events > 0) {
|
|
/* os_add_epoll will call os_mod_epoll if this already exists */
|
|
return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
|
|
}
|
|
/* No events - delete */
|
|
return os_del_epoll_fd(irq_entry->fd);
|
|
}
|
|
|
|
|
|
|
|
static int activate_fd(int irq, int fd, int type, void *dev_id)
|
|
{
|
|
struct irq_fd *new_fd;
|
|
struct irq_entry *irq_entry;
|
|
int i, err, events;
|
|
unsigned long flags;
|
|
|
|
err = os_set_fd_async(fd);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
|
|
/* Check if we have an entry for this fd */
|
|
|
|
err = -EBUSY;
|
|
for (irq_entry = active_fds;
|
|
irq_entry != NULL; irq_entry = irq_entry->next) {
|
|
if (irq_entry->fd == fd)
|
|
break;
|
|
}
|
|
|
|
if (irq_entry == NULL) {
|
|
/* This needs to be atomic as it may be called from an
|
|
* IRQ context.
|
|
*/
|
|
irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
|
|
if (irq_entry == NULL) {
|
|
printk(KERN_ERR
|
|
"Failed to allocate new IRQ entry\n");
|
|
goto out_unlock;
|
|
}
|
|
irq_entry->fd = fd;
|
|
for (i = 0; i < MAX_IRQ_TYPE; i++)
|
|
irq_entry->irq_array[i] = NULL;
|
|
irq_entry->next = active_fds;
|
|
active_fds = irq_entry;
|
|
}
|
|
|
|
/* Check if we are trying to re-register an interrupt for a
|
|
* particular fd
|
|
*/
|
|
|
|
if (irq_entry->irq_array[type] != NULL) {
|
|
printk(KERN_ERR
|
|
"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
|
|
irq, fd, type, dev_id
|
|
);
|
|
goto out_unlock;
|
|
} else {
|
|
/* New entry for this fd */
|
|
|
|
err = -ENOMEM;
|
|
new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
|
|
if (new_fd == NULL)
|
|
goto out_unlock;
|
|
|
|
events = os_event_mask(type);
|
|
|
|
*new_fd = ((struct irq_fd) {
|
|
.id = dev_id,
|
|
.irq = irq,
|
|
.type = type,
|
|
.events = events,
|
|
.active = true,
|
|
.pending = false,
|
|
.purge = false
|
|
});
|
|
/* Turn off any IO on this fd - allows us to
|
|
* avoid locking the IRQ loop
|
|
*/
|
|
os_del_epoll_fd(irq_entry->fd);
|
|
irq_entry->irq_array[type] = new_fd;
|
|
}
|
|
|
|
/* Turn back IO on with the correct (new) IO event mask */
|
|
assign_epoll_events_to_irq(irq_entry);
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
maybe_sigio_broken(fd, (type != IRQ_NONE));
|
|
|
|
return 0;
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Walk the IRQ list and dispose of any unused entries.
|
|
* Should be done under irq_lock.
|
|
*/
|
|
|
|
static void garbage_collect_irq_entries(void)
|
|
{
|
|
int i;
|
|
bool reap;
|
|
struct irq_entry *walk;
|
|
struct irq_entry *previous = NULL;
|
|
struct irq_entry *to_free;
|
|
|
|
if (active_fds == NULL)
|
|
return;
|
|
walk = active_fds;
|
|
while (walk != NULL) {
|
|
reap = true;
|
|
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
|
|
if (walk->irq_array[i] != NULL) {
|
|
reap = false;
|
|
break;
|
|
}
|
|
}
|
|
if (reap) {
|
|
if (previous == NULL)
|
|
active_fds = walk->next;
|
|
else
|
|
previous->next = walk->next;
|
|
to_free = walk;
|
|
} else {
|
|
to_free = NULL;
|
|
}
|
|
walk = walk->next;
|
|
kfree(to_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk the IRQ list and get the descriptor for our FD
|
|
*/
|
|
|
|
static struct irq_entry *get_irq_entry_by_fd(int fd)
|
|
{
|
|
struct irq_entry *walk = active_fds;
|
|
|
|
while (walk != NULL) {
|
|
if (walk->fd == fd)
|
|
return walk;
|
|
walk = walk->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Walk the IRQ list and dispose of an entry for a specific
|
|
* device, fd and number. Note - if sharing an IRQ for read
|
|
* and writefor the same FD it will be disposed in either case.
|
|
* If this behaviour is undesirable use different IRQ ids.
|
|
*/
|
|
|
|
#define IGNORE_IRQ 1
|
|
#define IGNORE_DEV (1<<1)
|
|
|
|
static void do_free_by_irq_and_dev(
|
|
struct irq_entry *irq_entry,
|
|
unsigned int irq,
|
|
void *dev,
|
|
int flags
|
|
)
|
|
{
|
|
int i;
|
|
struct irq_fd *to_free;
|
|
|
|
for (i = 0; i < MAX_IRQ_TYPE ; i++) {
|
|
if (irq_entry->irq_array[i] != NULL) {
|
|
if (
|
|
((flags & IGNORE_IRQ) ||
|
|
(irq_entry->irq_array[i]->irq == irq)) &&
|
|
((flags & IGNORE_DEV) ||
|
|
(irq_entry->irq_array[i]->id == dev))
|
|
) {
|
|
/* Turn off any IO on this fd - allows us to
|
|
* avoid locking the IRQ loop
|
|
*/
|
|
os_del_epoll_fd(irq_entry->fd);
|
|
to_free = irq_entry->irq_array[i];
|
|
irq_entry->irq_array[i] = NULL;
|
|
assign_epoll_events_to_irq(irq_entry);
|
|
if (to_free->active)
|
|
to_free->purge = true;
|
|
else
|
|
kfree(to_free);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void free_irq_by_fd(int fd)
|
|
{
|
|
struct irq_entry *to_free;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
to_free = get_irq_entry_by_fd(fd);
|
|
if (to_free != NULL) {
|
|
do_free_by_irq_and_dev(
|
|
to_free,
|
|
-1,
|
|
NULL,
|
|
IGNORE_IRQ | IGNORE_DEV
|
|
);
|
|
}
|
|
garbage_collect_irq_entries();
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(free_irq_by_fd);
|
|
|
|
static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
|
|
{
|
|
struct irq_entry *to_free;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
to_free = active_fds;
|
|
while (to_free != NULL) {
|
|
do_free_by_irq_and_dev(
|
|
to_free,
|
|
irq,
|
|
dev,
|
|
0
|
|
);
|
|
to_free = to_free->next;
|
|
}
|
|
garbage_collect_irq_entries();
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
}
|
|
|
|
|
|
void deactivate_fd(int fd, int irqnum)
|
|
{
|
|
struct irq_entry *to_free;
|
|
unsigned long flags;
|
|
|
|
os_del_epoll_fd(fd);
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
to_free = get_irq_entry_by_fd(fd);
|
|
if (to_free != NULL) {
|
|
do_free_by_irq_and_dev(
|
|
to_free,
|
|
irqnum,
|
|
NULL,
|
|
IGNORE_DEV
|
|
);
|
|
}
|
|
garbage_collect_irq_entries();
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
ignore_sigio_fd(fd);
|
|
}
|
|
EXPORT_SYMBOL(deactivate_fd);
|
|
|
|
/*
|
|
* Called just before shutdown in order to provide a clean exec
|
|
* environment in case the system is rebooting. No locking because
|
|
* that would cause a pointless shutdown hang if something hadn't
|
|
* released the lock.
|
|
*/
|
|
int deactivate_all_fds(void)
|
|
{
|
|
struct irq_entry *to_free;
|
|
|
|
/* Stop IO. The IRQ loop has no lock so this is our
|
|
* only way of making sure we are safe to dispose
|
|
* of all IRQ handlers
|
|
*/
|
|
os_set_ioignore();
|
|
to_free = active_fds;
|
|
while (to_free != NULL) {
|
|
do_free_by_irq_and_dev(
|
|
to_free,
|
|
-1,
|
|
NULL,
|
|
IGNORE_IRQ | IGNORE_DEV
|
|
);
|
|
to_free = to_free->next;
|
|
}
|
|
/* don't garbage collect - we can no longer call kfree() here */
|
|
os_close_epoll_fd();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* do_IRQ handles all normal device IRQs (the special
|
|
* SMP cross-CPU interrupts have their own specific
|
|
* handlers).
|
|
*/
|
|
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
|
|
irq_enter();
|
|
generic_handle_irq(irq);
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
return 1;
|
|
}
|
|
|
|
void um_free_irq(unsigned int irq, void *dev)
|
|
{
|
|
free_irq_by_irq_and_dev(irq, dev);
|
|
free_irq(irq, dev);
|
|
}
|
|
EXPORT_SYMBOL(um_free_irq);
|
|
|
|
int um_request_irq(unsigned int irq, int fd, int type,
|
|
irq_handler_t handler,
|
|
unsigned long irqflags, const char * devname,
|
|
void *dev_id)
|
|
{
|
|
int err;
|
|
|
|
if (fd != -1) {
|
|
err = activate_fd(irq, fd, type, dev_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return request_irq(irq, handler, irqflags, devname, dev_id);
|
|
}
|
|
|
|
EXPORT_SYMBOL(um_request_irq);
|
|
|
|
/*
|
|
* irq_chip must define at least enable/disable and ack when
|
|
* the edge handler is used.
|
|
*/
|
|
static void dummy(struct irq_data *d)
|
|
{
|
|
}
|
|
|
|
/* This is used for everything else than the timer. */
|
|
static struct irq_chip normal_irq_type = {
|
|
.name = "SIGIO",
|
|
.irq_disable = dummy,
|
|
.irq_enable = dummy,
|
|
.irq_ack = dummy,
|
|
.irq_mask = dummy,
|
|
.irq_unmask = dummy,
|
|
};
|
|
|
|
static struct irq_chip SIGVTALRM_irq_type = {
|
|
.name = "SIGVTALRM",
|
|
.irq_disable = dummy,
|
|
.irq_enable = dummy,
|
|
.irq_ack = dummy,
|
|
.irq_mask = dummy,
|
|
.irq_unmask = dummy,
|
|
};
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
int i;
|
|
|
|
irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
|
|
|
|
|
|
for (i = 1; i <= LAST_IRQ; i++)
|
|
irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
|
|
/* Initialize EPOLL Loop */
|
|
os_setup_epoll();
|
|
}
|
|
|
|
/*
|
|
* IRQ stack entry and exit:
|
|
*
|
|
* Unlike i386, UML doesn't receive IRQs on the normal kernel stack
|
|
* and switch over to the IRQ stack after some preparation. We use
|
|
* sigaltstack to receive signals on a separate stack from the start.
|
|
* These two functions make sure the rest of the kernel won't be too
|
|
* upset by being on a different stack. The IRQ stack has a
|
|
* thread_info structure at the bottom so that current et al continue
|
|
* to work.
|
|
*
|
|
* to_irq_stack copies the current task's thread_info to the IRQ stack
|
|
* thread_info and sets the tasks's stack to point to the IRQ stack.
|
|
*
|
|
* from_irq_stack copies the thread_info struct back (flags may have
|
|
* been modified) and resets the task's stack pointer.
|
|
*
|
|
* Tricky bits -
|
|
*
|
|
* What happens when two signals race each other? UML doesn't block
|
|
* signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
|
|
* could arrive while a previous one is still setting up the
|
|
* thread_info.
|
|
*
|
|
* There are three cases -
|
|
* The first interrupt on the stack - sets up the thread_info and
|
|
* handles the interrupt
|
|
* A nested interrupt interrupting the copying of the thread_info -
|
|
* can't handle the interrupt, as the stack is in an unknown state
|
|
* A nested interrupt not interrupting the copying of the
|
|
* thread_info - doesn't do any setup, just handles the interrupt
|
|
*
|
|
* The first job is to figure out whether we interrupted stack setup.
|
|
* This is done by xchging the signal mask with thread_info->pending.
|
|
* If the value that comes back is zero, then there is no setup in
|
|
* progress, and the interrupt can be handled. If the value is
|
|
* non-zero, then there is stack setup in progress. In order to have
|
|
* the interrupt handled, we leave our signal in the mask, and it will
|
|
* be handled by the upper handler after it has set up the stack.
|
|
*
|
|
* Next is to figure out whether we are the outer handler or a nested
|
|
* one. As part of setting up the stack, thread_info->real_thread is
|
|
* set to non-NULL (and is reset to NULL on exit). This is the
|
|
* nesting indicator. If it is non-NULL, then the stack is already
|
|
* set up and the handler can run.
|
|
*/
|
|
|
|
static unsigned long pending_mask;
|
|
|
|
unsigned long to_irq_stack(unsigned long *mask_out)
|
|
{
|
|
struct thread_info *ti;
|
|
unsigned long mask, old;
|
|
int nested;
|
|
|
|
mask = xchg(&pending_mask, *mask_out);
|
|
if (mask != 0) {
|
|
/*
|
|
* If any interrupts come in at this point, we want to
|
|
* make sure that their bits aren't lost by our
|
|
* putting our bit in. So, this loop accumulates bits
|
|
* until xchg returns the same value that we put in.
|
|
* When that happens, there were no new interrupts,
|
|
* and pending_mask contains a bit for each interrupt
|
|
* that came in.
|
|
*/
|
|
old = *mask_out;
|
|
do {
|
|
old |= mask;
|
|
mask = xchg(&pending_mask, old);
|
|
} while (mask != old);
|
|
return 1;
|
|
}
|
|
|
|
ti = current_thread_info();
|
|
nested = (ti->real_thread != NULL);
|
|
if (!nested) {
|
|
struct task_struct *task;
|
|
struct thread_info *tti;
|
|
|
|
task = cpu_tasks[ti->cpu].task;
|
|
tti = task_thread_info(task);
|
|
|
|
*ti = *tti;
|
|
ti->real_thread = tti;
|
|
task->stack = ti;
|
|
}
|
|
|
|
mask = xchg(&pending_mask, 0);
|
|
*mask_out |= mask | nested;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long from_irq_stack(int nested)
|
|
{
|
|
struct thread_info *ti, *to;
|
|
unsigned long mask;
|
|
|
|
ti = current_thread_info();
|
|
|
|
pending_mask = 1;
|
|
|
|
to = ti->real_thread;
|
|
current->stack = to;
|
|
ti->real_thread = NULL;
|
|
*to = *ti;
|
|
|
|
mask = xchg(&pending_mask, 0);
|
|
return mask & ~1;
|
|
}
|
|
|