mirror of https://gitee.com/openkylin/linux.git
736 lines
18 KiB
C
736 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/process.c
|
|
*
|
|
* Original Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/user.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/notifier.h>
|
|
#include <trace/events/power.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/prctl.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/arch_gicv3.h>
|
|
#include <asm/compat.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pointer_auth.h>
|
|
#include <asm/stacktrace.h>
|
|
|
|
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
|
|
#include <linux/stackprotector.h>
|
|
unsigned long __stack_chk_guard __read_mostly;
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
|
|
/*
|
|
* Function pointers to optional machine specific functions
|
|
*/
|
|
void (*pm_power_off)(void);
|
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
|
|
|
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
|
|
|
|
static void noinstr __cpu_do_idle(void)
|
|
{
|
|
dsb(sy);
|
|
wfi();
|
|
}
|
|
|
|
static void noinstr __cpu_do_idle_irqprio(void)
|
|
{
|
|
unsigned long pmr;
|
|
unsigned long daif_bits;
|
|
|
|
daif_bits = read_sysreg(daif);
|
|
write_sysreg(daif_bits | PSR_I_BIT, daif);
|
|
|
|
/*
|
|
* Unmask PMR before going idle to make sure interrupts can
|
|
* be raised.
|
|
*/
|
|
pmr = gic_read_pmr();
|
|
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
|
|
|
|
__cpu_do_idle();
|
|
|
|
gic_write_pmr(pmr);
|
|
write_sysreg(daif_bits, daif);
|
|
}
|
|
|
|
/*
|
|
* cpu_do_idle()
|
|
*
|
|
* Idle the processor (wait for interrupt).
|
|
*
|
|
* If the CPU supports priority masking we must do additional work to
|
|
* ensure that interrupts are not masked at the PMR (because the core will
|
|
* not wake up if we block the wake up signal in the interrupt controller).
|
|
*/
|
|
void noinstr cpu_do_idle(void)
|
|
{
|
|
if (system_uses_irq_prio_masking())
|
|
__cpu_do_idle_irqprio();
|
|
else
|
|
__cpu_do_idle();
|
|
}
|
|
|
|
/*
|
|
* This is our default idle handler.
|
|
*/
|
|
void noinstr arch_cpu_idle(void)
|
|
{
|
|
/*
|
|
* This should do all the clock switching and wait for interrupt
|
|
* tricks
|
|
*/
|
|
cpu_do_idle();
|
|
raw_local_irq_enable();
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
cpu_die();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called by kexec, immediately prior to machine_kexec().
|
|
*
|
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
|
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
|
|
*/
|
|
void machine_shutdown(void)
|
|
{
|
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
|
}
|
|
|
|
/*
|
|
* Halting simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this.
|
|
*/
|
|
void machine_halt(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
while (1);
|
|
}
|
|
|
|
/*
|
|
* Power-off simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this. When the system power is turned off, it will take all CPUs
|
|
* with it.
|
|
*/
|
|
void machine_power_off(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
}
|
|
|
|
/*
|
|
* Restart requires that the secondary CPUs stop performing any activity
|
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
|
* This is required so that any code running after reset on the primary CPU
|
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
|
* to use. Implementing such co-ordination would be essentially impossible.
|
|
*/
|
|
void machine_restart(char *cmd)
|
|
{
|
|
/* Disable interrupts first */
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
|
|
/*
|
|
* UpdateCapsule() depends on the system being reset via
|
|
* ResetSystem().
|
|
*/
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efi_reboot(reboot_mode, NULL);
|
|
|
|
/* Now call the architecture specific reboot code. */
|
|
if (arm_pm_restart)
|
|
arm_pm_restart(reboot_mode, cmd);
|
|
else
|
|
do_kernel_restart(cmd);
|
|
|
|
/*
|
|
* Whoops - the architecture was unable to reboot.
|
|
*/
|
|
printk("Reboot failed -- System halted\n");
|
|
while (1);
|
|
}
|
|
|
|
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
|
|
static const char *const btypes[] = {
|
|
bstr(NONE, "--"),
|
|
bstr( JC, "jc"),
|
|
bstr( C, "-c"),
|
|
bstr( J , "j-")
|
|
};
|
|
#undef bstr
|
|
|
|
static void print_pstate(struct pt_regs *regs)
|
|
{
|
|
u64 pstate = regs->pstate;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
|
|
pstate,
|
|
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
|
|
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
|
|
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
|
|
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_AA32_F_BIT ? 'F' : 'f');
|
|
} else {
|
|
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
|
|
PSR_BTYPE_SHIFT];
|
|
|
|
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
|
|
pstate,
|
|
pstate & PSR_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_D_BIT ? 'D' : 'd',
|
|
pstate & PSR_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_PAN_BIT ? '+' : '-',
|
|
pstate & PSR_UAO_BIT ? '+' : '-',
|
|
pstate & PSR_TCO_BIT ? '+' : '-',
|
|
btype_str);
|
|
}
|
|
}
|
|
|
|
void __show_regs(struct pt_regs *regs)
|
|
{
|
|
int i, top_reg;
|
|
u64 lr, sp;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
lr = regs->compat_lr;
|
|
sp = regs->compat_sp;
|
|
top_reg = 12;
|
|
} else {
|
|
lr = regs->regs[30];
|
|
sp = regs->sp;
|
|
top_reg = 29;
|
|
}
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
print_pstate(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
printk("pc : %pS\n", (void *)regs->pc);
|
|
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
|
|
} else {
|
|
printk("pc : %016llx\n", regs->pc);
|
|
printk("lr : %016llx\n", lr);
|
|
}
|
|
|
|
printk("sp : %016llx\n", sp);
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
printk("pmr_save: %08llx\n", regs->pmr_save);
|
|
|
|
i = top_reg;
|
|
|
|
while (i >= 0) {
|
|
printk("x%-2d: %016llx ", i, regs->regs[i]);
|
|
i--;
|
|
|
|
if (i % 2 == 0) {
|
|
pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
|
|
i--;
|
|
}
|
|
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
__show_regs(regs);
|
|
dump_backtrace(regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static void tls_thread_flush(void)
|
|
{
|
|
write_sysreg(0, tpidr_el0);
|
|
|
|
if (is_compat_task()) {
|
|
current->thread.uw.tp_value = 0;
|
|
|
|
/*
|
|
* We need to ensure ordering between the shadow state and the
|
|
* hardware state, so that we don't corrupt the hardware state
|
|
* with a stale shadow state during context switch.
|
|
*/
|
|
barrier();
|
|
write_sysreg(0, tpidrro_el0);
|
|
}
|
|
}
|
|
|
|
static void flush_tagged_addr_state(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
|
|
clear_thread_flag(TIF_TAGGED_ADDR);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
fpsimd_flush_thread();
|
|
tls_thread_flush();
|
|
flush_ptrace_hw_breakpoint(current);
|
|
flush_tagged_addr_state();
|
|
flush_mte_state();
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
}
|
|
|
|
void arch_release_task_struct(struct task_struct *tsk)
|
|
{
|
|
fpsimd_release_task(tsk);
|
|
}
|
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
if (current->mm)
|
|
fpsimd_preserve_current_state();
|
|
*dst = *src;
|
|
|
|
/* We rely on the above assignment to initialize dst's thread_flags: */
|
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
|
|
|
|
/*
|
|
* Detach src's sve_state (if any) from dst so that it does not
|
|
* get erroneously used or freed prematurely. dst's sve_state
|
|
* will be allocated on demand later on if dst uses SVE.
|
|
* For consistency, also clear TIF_SVE here: this could be done
|
|
* later in copy_process(), but to avoid tripping up future
|
|
* maintainers it is best not to leave TIF_SVE and sve_state in
|
|
* an inconsistent state, even temporarily.
|
|
*/
|
|
dst->thread.sve_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SVE);
|
|
|
|
/* clear any pending asynchronous tag fault raised by the parent */
|
|
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long stack_start,
|
|
unsigned long stk_sz, struct task_struct *p, unsigned long tls)
|
|
{
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
|
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
|
|
|
/*
|
|
* In case p was allocated the same task_struct pointer as some
|
|
* other recently-exited task, make sure p is disassociated from
|
|
* any cpu that may have run that now-exited task recently.
|
|
* Otherwise we could erroneously skip reloading the FPSIMD
|
|
* registers for p.
|
|
*/
|
|
fpsimd_flush_task_state(p);
|
|
|
|
ptrauth_thread_init_kernel(p);
|
|
|
|
if (likely(!(p->flags & PF_KTHREAD))) {
|
|
*childregs = *current_pt_regs();
|
|
childregs->regs[0] = 0;
|
|
|
|
/*
|
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
|
* out-of-sync with the saved value.
|
|
*/
|
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
|
|
|
if (stack_start) {
|
|
if (is_compat_thread(task_thread_info(p)))
|
|
childregs->compat_sp = stack_start;
|
|
else
|
|
childregs->sp = stack_start;
|
|
}
|
|
|
|
/*
|
|
* If a TLS pointer was passed to clone, use it for the new
|
|
* thread.
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS)
|
|
p->thread.uw.tp_value = tls;
|
|
} else {
|
|
/*
|
|
* A kthread has no context to ERET to, so ensure any buggy
|
|
* ERET is treated as an illegal exception return.
|
|
*
|
|
* When a user task is created from a kthread, childregs will
|
|
* be initialized by start_thread() or start_compat_thread().
|
|
*/
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
|
|
|
|
p->thread.cpu_context.x19 = stack_start;
|
|
p->thread.cpu_context.x20 = stk_sz;
|
|
}
|
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
|
|
|
ptrace_hw_copy_thread(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tls_preserve_current_state(void)
|
|
{
|
|
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
|
}
|
|
|
|
static void tls_thread_switch(struct task_struct *next)
|
|
{
|
|
tls_preserve_current_state();
|
|
|
|
if (is_compat_thread(task_thread_info(next)))
|
|
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
|
|
else if (!arm64_kernel_unmapped_at_el0())
|
|
write_sysreg(0, tpidrro_el0);
|
|
|
|
write_sysreg(*task_user_tls(next), tpidr_el0);
|
|
}
|
|
|
|
/*
|
|
* Force SSBS state on context-switch, since it may be lost after migrating
|
|
* from a CPU which treats the bit as RES0 in a heterogeneous system.
|
|
*/
|
|
static void ssbs_thread_switch(struct task_struct *next)
|
|
{
|
|
/*
|
|
* Nothing to do for kernel threads, but 'regs' may be junk
|
|
* (e.g. idle task) so check the flags and bail early.
|
|
*/
|
|
if (unlikely(next->flags & PF_KTHREAD))
|
|
return;
|
|
|
|
/*
|
|
* If all CPUs implement the SSBS extension, then we just need to
|
|
* context-switch the PSTATE field.
|
|
*/
|
|
if (cpus_have_const_cap(ARM64_SSBS))
|
|
return;
|
|
|
|
spectre_v4_enable_task_mitigation(next);
|
|
}
|
|
|
|
/*
|
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
|
* shadow copy so that we can restore this upon entry from userspace.
|
|
*
|
|
* This is *only* for exception entry from EL0, and is not valid until we
|
|
* __switch_to() a user task.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
|
|
|
static void entry_task_switch(struct task_struct *next)
|
|
{
|
|
__this_cpu_write(__entry_task, next);
|
|
}
|
|
|
|
/*
|
|
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
|
|
* Assuming the virtual counter is enabled at the beginning of times:
|
|
*
|
|
* - disable access when switching from a 64bit task to a 32bit task
|
|
* - enable access when switching from a 32bit task to a 64bit task
|
|
*/
|
|
static void erratum_1418040_thread_switch(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
bool prev32, next32;
|
|
u64 val;
|
|
|
|
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
|
|
return;
|
|
|
|
prev32 = is_compat_thread(task_thread_info(prev));
|
|
next32 = is_compat_thread(task_thread_info(next));
|
|
|
|
if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
|
|
return;
|
|
|
|
val = read_sysreg(cntkctl_el1);
|
|
|
|
if (!next32)
|
|
val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
|
|
else
|
|
val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
|
|
|
|
write_sysreg(val, cntkctl_el1);
|
|
}
|
|
|
|
/*
|
|
* Thread switching.
|
|
*/
|
|
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
struct task_struct *last;
|
|
|
|
fpsimd_thread_switch(next);
|
|
tls_thread_switch(next);
|
|
hw_breakpoint_thread_switch(next);
|
|
contextidr_thread_switch(next);
|
|
entry_task_switch(next);
|
|
ssbs_thread_switch(next);
|
|
erratum_1418040_thread_switch(prev, next);
|
|
|
|
/*
|
|
* Complete any pending TLB or cache maintenance on this CPU in case
|
|
* the thread migrates to a different CPU.
|
|
* This full barrier is also required by the membarrier system
|
|
* call.
|
|
*/
|
|
dsb(ish);
|
|
|
|
/*
|
|
* MTE thread switching must happen after the DSB above to ensure that
|
|
* any asynchronous tag check faults have been logged in the TFSR*_EL1
|
|
* registers.
|
|
*/
|
|
mte_thread_switch(next);
|
|
|
|
/* the actual thread switch */
|
|
last = cpu_switch_to(prev, next);
|
|
|
|
return last;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
struct stackframe frame;
|
|
unsigned long stack_page, ret = 0;
|
|
int count = 0;
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
stack_page = (unsigned long)try_get_task_stack(p);
|
|
if (!stack_page)
|
|
return 0;
|
|
|
|
start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
|
|
|
|
do {
|
|
if (unwind_frame(p, &frame))
|
|
goto out;
|
|
if (!in_sched_functions(frame.pc)) {
|
|
ret = frame.pc;
|
|
goto out;
|
|
}
|
|
} while (count ++ < 16);
|
|
|
|
out:
|
|
put_task_stack(p);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_int() & ~PAGE_MASK;
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
/*
|
|
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
|
|
*/
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
|
|
|
|
ptrauth_thread_init_user(current);
|
|
|
|
if (task_spec_ssb_noexec(current)) {
|
|
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
|
|
PR_SPEC_ENABLE);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
|
|
/*
|
|
* Control the relaxed ABI allowing tagged user addresses into the kernel.
|
|
*/
|
|
static unsigned int tagged_addr_disabled;
|
|
|
|
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (system_supports_mte())
|
|
valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
|
|
|
|
if (arg & ~valid_mask)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Do not allow the enabling of the tagged address ABI if globally
|
|
* disabled via sysctl abi.tagged_addr_disabled.
|
|
*/
|
|
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
|
|
return -EINVAL;
|
|
|
|
if (set_mte_ctrl(task, arg) != 0)
|
|
return -EINVAL;
|
|
|
|
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_tagged_addr_ctrl(struct task_struct *task)
|
|
{
|
|
long ret = 0;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
|
|
ret = PR_TAGGED_ADDR_ENABLE;
|
|
|
|
ret |= get_mte_ctrl(task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Global sysctl to disable the tagged user addresses support. This control
|
|
* only prevents the tagged address ABI enabling via prctl() and does not
|
|
* disable it for tasks that already opted in to the relaxed ABI.
|
|
*/
|
|
|
|
static struct ctl_table tagged_addr_sysctl_table[] = {
|
|
{
|
|
.procname = "tagged_addr_disabled",
|
|
.mode = 0644,
|
|
.data = &tagged_addr_disabled,
|
|
.maxlen = sizeof(int),
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int __init tagged_addr_init(void)
|
|
{
|
|
if (!register_sysctl("abi", tagged_addr_sysctl_table))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(tagged_addr_init);
|
|
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
|
|
|
|
asmlinkage void __sched arm64_preempt_schedule_irq(void)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* Preempting a task from an IRQ means we leave copies of PSTATE
|
|
* on the stack. cpufeature's enable calls may modify PSTATE, but
|
|
* resuming one of these preempted tasks would undo those changes.
|
|
*
|
|
* Only allow a task to be preempted once cpufeatures have been
|
|
* enabled.
|
|
*/
|
|
if (system_capabilities_finalized())
|
|
preempt_schedule_irq();
|
|
}
|
|
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
|
|
bool has_interp, bool is_interp)
|
|
{
|
|
/*
|
|
* For dynamically linked executables the interpreter is
|
|
* responsible for setting PROT_BTI on everything except
|
|
* itself.
|
|
*/
|
|
if (is_interp != has_interp)
|
|
return prot;
|
|
|
|
if (!(state->flags & ARM64_ELF_BTI))
|
|
return prot;
|
|
|
|
if (prot & PROT_EXEC)
|
|
prot |= PROT_BTI;
|
|
|
|
return prot;
|
|
}
|
|
#endif
|