linux/arch/m68knommu/platform/coldfire/intc.c

154 lines
3.6 KiB
C

/*
* intc.c -- support for the old ColdFire interrupt controller
*
* (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/traps.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
/*
* The mapping of irq number to a mask register bit is not one-to-one.
* The irq numbers are either based on "level" of interrupt or fixed
* for an autovector-able interrupt. So we keep a local data structure
* that maps from irq to mask register. Not all interrupts will have
* an IMR bit.
*/
unsigned char mcf_irq2imr[NR_IRQS];
/*
* Define the miniumun and maximum external interrupt numbers.
* This is also used as the "level" interrupt numbers.
*/
#define EIRQ1 25
#define EIRQ7 31
/*
* In the early version 2 core ColdFire parts the IMR register was 16 bits
* in size. Version 3 (and later version 2) core parts have a 32 bit
* sized IMR register. Provide some size independant methods to access the
* IMR register.
*/
#ifdef MCFSIM_IMR_IS_16BITS
void mcf_setimr(int index)
{
u16 imr;
imr = __raw_readw(MCF_MBAR + MCFSIM_IMR);
__raw_writew(imr | (0x1 << index), MCF_MBAR + MCFSIM_IMR);
}
void mcf_clrimr(int index)
{
u16 imr;
imr = __raw_readw(MCF_MBAR + MCFSIM_IMR);
__raw_writew(imr & ~(0x1 << index), MCF_MBAR + MCFSIM_IMR);
}
void mcf_maskimr(unsigned int mask)
{
u16 imr;
imr = __raw_readw(MCF_MBAR + MCFSIM_IMR);
imr |= mask;
__raw_writew(imr, MCF_MBAR + MCFSIM_IMR);
}
#else
void mcf_setimr(int index)
{
u32 imr;
imr = __raw_readl(MCF_MBAR + MCFSIM_IMR);
__raw_writel(imr | (0x1 << index), MCF_MBAR + MCFSIM_IMR);
}
void mcf_clrimr(int index)
{
u32 imr;
imr = __raw_readl(MCF_MBAR + MCFSIM_IMR);
__raw_writel(imr & ~(0x1 << index), MCF_MBAR + MCFSIM_IMR);
}
void mcf_maskimr(unsigned int mask)
{
u32 imr;
imr = __raw_readl(MCF_MBAR + MCFSIM_IMR);
imr |= mask;
__raw_writel(imr, MCF_MBAR + MCFSIM_IMR);
}
#endif
/*
* Interrupts can be "vectored" on the ColdFire cores that support this old
* interrupt controller. That is, the device raising the interrupt can also
* supply the vector number to interrupt through. The AVR register of the
* interrupt controller enables or disables this for each external interrupt,
* so provide generic support for this. Setting this up is out-of-band for
* the interrupt system API's, and needs to be done by the driver that
* supports this device. Very few devices actually use this.
*/
void mcf_autovector(int irq)
{
#ifdef MCFSIM_AVR
if ((irq >= EIRQ1) && (irq <= EIRQ7)) {
u8 avec;
avec = __raw_readb(MCF_MBAR + MCFSIM_AVR);
avec |= (0x1 << (irq - EIRQ1 + 1));
__raw_writeb(avec, MCF_MBAR + MCFSIM_AVR);
}
#endif
}
static void intc_irq_mask(unsigned int irq)
{
if (mcf_irq2imr[irq])
mcf_setimr(mcf_irq2imr[irq]);
}
static void intc_irq_unmask(unsigned int irq)
{
if (mcf_irq2imr[irq])
mcf_clrimr(mcf_irq2imr[irq]);
}
static int intc_irq_set_type(unsigned int irq, unsigned int type)
{
return 0;
}
static struct irq_chip intc_irq_chip = {
.name = "CF-INTC",
.mask = intc_irq_mask,
.unmask = intc_irq_unmask,
.set_type = intc_irq_set_type,
};
void __init init_IRQ(void)
{
int irq;
init_vectors();
mcf_maskimr(0xffffffff);
for (irq = 0; (irq < NR_IRQS); irq++) {
irq_desc[irq].status = IRQ_DISABLED;
irq_desc[irq].action = NULL;
irq_desc[irq].depth = 1;
irq_desc[irq].chip = &intc_irq_chip;
intc_irq_set_type(irq, 0);
}
}