mirror of https://gitee.com/openkylin/linux.git
441 lines
10 KiB
C
441 lines
10 KiB
C
/*
|
|
* Intel SMP support routines.
|
|
*
|
|
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
|
|
* (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
|
|
* (c) 2002,2003 Andi Kleen, SuSE Labs.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mach_apic.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/apicdef.h>
|
|
|
|
/*
|
|
* Smarter SMP flushing macros.
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*/
|
|
|
|
static cpumask_t flush_cpumask;
|
|
static struct mm_struct * flush_mm;
|
|
static unsigned long flush_va;
|
|
static DEFINE_SPINLOCK(tlbstate_lock);
|
|
#define FLUSH_ALL -1ULL
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*/
|
|
static inline void leave_mm (unsigned long cpu)
|
|
{
|
|
if (read_pda(mmu_state) == TLBSTATE_OK)
|
|
BUG();
|
|
clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask);
|
|
load_cr3(swapper_pg_dir);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* The flush IPI assumes that a thread switch happens in this order:
|
|
* [cpu0: the cpu that switches]
|
|
* 1) switch_mm() either 1a) or 1b)
|
|
* 1a) thread switch to a different mm
|
|
* 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
|
|
* Stop ipi delivery for the old mm. This is not synchronized with
|
|
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
|
|
* for the wrong mm, and in the worst case we perform a superfluous
|
|
* tlb flush.
|
|
* 1a2) set cpu mmu_state to TLBSTATE_OK
|
|
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
|
|
* was in lazy tlb mode.
|
|
* 1a3) update cpu active_mm
|
|
* Now cpu0 accepts tlb flushes for the new mm.
|
|
* 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
|
|
* Now the other cpus will send tlb flush ipis.
|
|
* 1a4) change cr3.
|
|
* 1b) thread switch without mm change
|
|
* cpu active_mm is correct, cpu0 already handles
|
|
* flush ipis.
|
|
* 1b1) set cpu mmu_state to TLBSTATE_OK
|
|
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
|
|
* Atomically set the bit [other cpus will start sending flush ipis],
|
|
* and test the bit.
|
|
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
|
|
* 2) switch %%esp, ie current
|
|
*
|
|
* The interrupt must handle 2 special cases:
|
|
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
|
|
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
|
|
* runs in kernel space, the cpu could load tlb entries for user space
|
|
* pages.
|
|
*
|
|
* The good news is that cpu mmu_state is local to each cpu, no
|
|
* write/read ordering problems.
|
|
*/
|
|
|
|
/*
|
|
* TLB flush IPI:
|
|
*
|
|
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
|
|
* 2) Leave the mm if we are in the lazy tlb mode.
|
|
*/
|
|
|
|
asmlinkage void smp_invalidate_interrupt (void)
|
|
{
|
|
unsigned long cpu;
|
|
|
|
cpu = get_cpu();
|
|
|
|
if (!cpu_isset(cpu, flush_cpumask))
|
|
goto out;
|
|
/*
|
|
* This was a BUG() but until someone can quote me the
|
|
* line from the intel manual that guarantees an IPI to
|
|
* multiple CPUs is retried _only_ on the erroring CPUs
|
|
* its staying as a return
|
|
*
|
|
* BUG();
|
|
*/
|
|
|
|
if (flush_mm == read_pda(active_mm)) {
|
|
if (read_pda(mmu_state) == TLBSTATE_OK) {
|
|
if (flush_va == FLUSH_ALL)
|
|
local_flush_tlb();
|
|
else
|
|
__flush_tlb_one(flush_va);
|
|
} else
|
|
leave_mm(cpu);
|
|
}
|
|
ack_APIC_irq();
|
|
cpu_clear(cpu, flush_cpumask);
|
|
|
|
out:
|
|
put_cpu_no_resched();
|
|
}
|
|
|
|
static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
|
|
unsigned long va)
|
|
{
|
|
cpumask_t tmp;
|
|
/*
|
|
* A couple of (to be removed) sanity checks:
|
|
*
|
|
* - we do not send IPIs to not-yet booted CPUs.
|
|
* - current CPU must not be in mask
|
|
* - mask must exist :)
|
|
*/
|
|
BUG_ON(cpus_empty(cpumask));
|
|
cpus_and(tmp, cpumask, cpu_online_map);
|
|
BUG_ON(!cpus_equal(tmp, cpumask));
|
|
BUG_ON(cpu_isset(smp_processor_id(), cpumask));
|
|
if (!mm)
|
|
BUG();
|
|
|
|
/*
|
|
* I'm not happy about this global shared spinlock in the
|
|
* MM hot path, but we'll see how contended it is.
|
|
* Temporarily this turns IRQs off, so that lockups are
|
|
* detected by the NMI watchdog.
|
|
*/
|
|
spin_lock(&tlbstate_lock);
|
|
|
|
flush_mm = mm;
|
|
flush_va = va;
|
|
cpus_or(flush_cpumask, cpumask, flush_cpumask);
|
|
|
|
/*
|
|
* We have to send the IPI only to
|
|
* CPUs affected.
|
|
*/
|
|
send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
|
|
|
|
while (!cpus_empty(flush_cpumask))
|
|
mb(); /* nothing. lockup detection does not belong here */;
|
|
|
|
flush_mm = NULL;
|
|
flush_va = 0;
|
|
spin_unlock(&tlbstate_lock);
|
|
}
|
|
|
|
void flush_tlb_current_task(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
local_flush_tlb();
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_mm (struct mm_struct * mm)
|
|
{
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
local_flush_tlb();
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if(current->mm)
|
|
__flush_tlb_one(va);
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, va);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void do_flush_tlb_all(void* info)
|
|
{
|
|
unsigned long cpu = smp_processor_id();
|
|
|
|
__flush_tlb_all();
|
|
if (read_pda(mmu_state) == TLBSTATE_LAZY)
|
|
leave_mm(cpu);
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
|
|
}
|
|
|
|
void smp_kdb_stop(void)
|
|
{
|
|
send_IPI_allbutself(KDB_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* Structure and data for smp_call_function(). This is designed to minimise
|
|
* static memory requirements. It also looks cleaner.
|
|
*/
|
|
static DEFINE_SPINLOCK(call_lock);
|
|
|
|
struct call_data_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
atomic_t started;
|
|
atomic_t finished;
|
|
int wait;
|
|
};
|
|
|
|
static struct call_data_struct * call_data;
|
|
|
|
/*
|
|
* this function sends a 'generic call function' IPI to all other CPUs
|
|
* in the system.
|
|
*/
|
|
static void __smp_call_function (void (*func) (void *info), void *info,
|
|
int nonatomic, int wait)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpus = num_online_cpus()-1;
|
|
|
|
if (!cpus)
|
|
return;
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
atomic_set(&data.started, 0);
|
|
data.wait = wait;
|
|
if (wait)
|
|
atomic_set(&data.finished, 0);
|
|
|
|
call_data = &data;
|
|
wmb();
|
|
/* Send a message to all other CPUs and wait for them to respond */
|
|
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
|
|
|
|
/* Wait for response */
|
|
while (atomic_read(&data.started) != cpus)
|
|
cpu_relax();
|
|
|
|
if (!wait)
|
|
return;
|
|
|
|
while (atomic_read(&data.finished) != cpus)
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* smp_call_function - run a function on all other CPUs.
|
|
* @func: The function to run. This must be fast and non-blocking.
|
|
* @info: An arbitrary pointer to pass to the function.
|
|
* @nonatomic: currently unused.
|
|
* @wait: If true, wait (atomically) until function has completed on other
|
|
* CPUs.
|
|
*
|
|
* Returns 0 on success, else a negative status code. Does not return until
|
|
* remote CPUs are nearly ready to execute func or are or have executed.
|
|
*
|
|
* You must not call this function with disabled interrupts or from a
|
|
* hardware interrupt handler or from a bottom half handler.
|
|
* Actually there are a few legal cases, like panic.
|
|
*/
|
|
int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
|
|
int wait)
|
|
{
|
|
spin_lock(&call_lock);
|
|
__smp_call_function(func,info,nonatomic,wait);
|
|
spin_unlock(&call_lock);
|
|
return 0;
|
|
}
|
|
|
|
void smp_stop_cpu(void)
|
|
{
|
|
/*
|
|
* Remove this CPU:
|
|
*/
|
|
cpu_clear(smp_processor_id(), cpu_online_map);
|
|
local_irq_disable();
|
|
disable_local_APIC();
|
|
local_irq_enable();
|
|
}
|
|
|
|
static void smp_really_stop_cpu(void *dummy)
|
|
{
|
|
smp_stop_cpu();
|
|
for (;;)
|
|
asm("hlt");
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
int nolock = 0;
|
|
if (reboot_force)
|
|
return;
|
|
/* Don't deadlock on the call lock in panic */
|
|
if (!spin_trylock(&call_lock)) {
|
|
/* ignore locking because we have paniced anyways */
|
|
nolock = 1;
|
|
}
|
|
__smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
|
|
if (!nolock)
|
|
spin_unlock(&call_lock);
|
|
|
|
local_irq_disable();
|
|
disable_local_APIC();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* Reschedule call back. Nothing to do,
|
|
* all the work is done automatically when
|
|
* we return from the interrupt.
|
|
*/
|
|
asmlinkage void smp_reschedule_interrupt(void)
|
|
{
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
asmlinkage void smp_call_function_interrupt(void)
|
|
{
|
|
void (*func) (void *info) = call_data->func;
|
|
void *info = call_data->info;
|
|
int wait = call_data->wait;
|
|
|
|
ack_APIC_irq();
|
|
/*
|
|
* Notify initiating CPU that I've grabbed the data and am
|
|
* about to execute the function
|
|
*/
|
|
mb();
|
|
atomic_inc(&call_data->started);
|
|
/*
|
|
* At this point the info structure may be out of scope unless wait==1
|
|
*/
|
|
irq_enter();
|
|
(*func)(info);
|
|
irq_exit();
|
|
if (wait) {
|
|
mb();
|
|
atomic_inc(&call_data->finished);
|
|
}
|
|
}
|
|
|
|
int safe_smp_processor_id(void)
|
|
{
|
|
int apicid, i;
|
|
|
|
if (disable_apic)
|
|
return 0;
|
|
|
|
apicid = hard_smp_processor_id();
|
|
if (x86_cpu_to_apicid[apicid] == apicid)
|
|
return apicid;
|
|
|
|
for (i = 0; i < NR_CPUS; ++i) {
|
|
if (x86_cpu_to_apicid[i] == apicid)
|
|
return i;
|
|
}
|
|
|
|
/* No entries in x86_cpu_to_apicid? Either no MPS|ACPI,
|
|
* or called too early. Either way, we must be CPU 0. */
|
|
if (x86_cpu_to_apicid[0] == BAD_APICID)
|
|
return 0;
|
|
|
|
return 0; /* Should not happen */
|
|
}
|