linux/drivers/media/pci/smipcie/smipcie-main.c

1130 lines
29 KiB
C

/*
* SMI PCIe driver for DVBSky cards.
*
* Copyright (C) 2014 Max nibble <nibble.max@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "smipcie.h"
#include "m88ds3103.h"
#include "ts2020.h"
#include "m88rs6000t.h"
#include "si2168.h"
#include "si2157.h"
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static int smi_hw_init(struct smi_dev *dev)
{
u32 port_mux, port_ctrl, int_stat;
/* set port mux.*/
port_mux = smi_read(MUX_MODE_CTRL);
port_mux &= ~(rbPaMSMask);
port_mux |= rbPaMSDtvNoGpio;
port_mux &= ~(rbPbMSMask);
port_mux |= rbPbMSDtvNoGpio;
port_mux &= ~(0x0f0000);
port_mux |= 0x50000;
smi_write(MUX_MODE_CTRL, port_mux);
/* set DTV register.*/
/* Port A */
port_ctrl = smi_read(VIDEO_CTRL_STATUS_A);
port_ctrl &= ~0x01;
smi_write(VIDEO_CTRL_STATUS_A, port_ctrl);
port_ctrl = smi_read(MPEG2_CTRL_A);
port_ctrl &= ~0x40;
port_ctrl |= 0x80;
smi_write(MPEG2_CTRL_A, port_ctrl);
/* Port B */
port_ctrl = smi_read(VIDEO_CTRL_STATUS_B);
port_ctrl &= ~0x01;
smi_write(VIDEO_CTRL_STATUS_B, port_ctrl);
port_ctrl = smi_read(MPEG2_CTRL_B);
port_ctrl &= ~0x40;
port_ctrl |= 0x80;
smi_write(MPEG2_CTRL_B, port_ctrl);
/* disable and clear interrupt.*/
smi_write(MSI_INT_ENA_CLR, ALL_INT);
int_stat = smi_read(MSI_INT_STATUS);
smi_write(MSI_INT_STATUS_CLR, int_stat);
/* reset demod.*/
smi_clear(PERIPHERAL_CTRL, 0x0303);
msleep(50);
smi_set(PERIPHERAL_CTRL, 0x0101);
return 0;
}
/* i2c bit bus.*/
static void smi_i2c_cfg(struct smi_dev *dev, u32 sw_ctl)
{
u32 dwCtrl;
dwCtrl = smi_read(sw_ctl);
dwCtrl &= ~0x18; /* disable output.*/
dwCtrl |= 0x21; /* reset and software mode.*/
dwCtrl &= ~0xff00;
dwCtrl |= 0x6400;
smi_write(sw_ctl, dwCtrl);
msleep(20);
dwCtrl = smi_read(sw_ctl);
dwCtrl &= ~0x20;
smi_write(sw_ctl, dwCtrl);
}
static void smi_i2c_setsda(struct smi_dev *dev, int state, u32 sw_ctl)
{
if (state) {
/* set as input.*/
smi_clear(sw_ctl, SW_I2C_MSK_DAT_EN);
} else {
smi_clear(sw_ctl, SW_I2C_MSK_DAT_OUT);
/* set as output.*/
smi_set(sw_ctl, SW_I2C_MSK_DAT_EN);
}
}
static void smi_i2c_setscl(void *data, int state, u32 sw_ctl)
{
struct smi_dev *dev = data;
if (state) {
/* set as input.*/
smi_clear(sw_ctl, SW_I2C_MSK_CLK_EN);
} else {
smi_clear(sw_ctl, SW_I2C_MSK_CLK_OUT);
/* set as output.*/
smi_set(sw_ctl, SW_I2C_MSK_CLK_EN);
}
}
static int smi_i2c_getsda(void *data, u32 sw_ctl)
{
struct smi_dev *dev = data;
/* set as input.*/
smi_clear(sw_ctl, SW_I2C_MSK_DAT_EN);
udelay(1);
return (smi_read(sw_ctl) & SW_I2C_MSK_DAT_IN) ? 1 : 0;
}
static int smi_i2c_getscl(void *data, u32 sw_ctl)
{
struct smi_dev *dev = data;
/* set as input.*/
smi_clear(sw_ctl, SW_I2C_MSK_CLK_EN);
udelay(1);
return (smi_read(sw_ctl) & SW_I2C_MSK_CLK_IN) ? 1 : 0;
}
/* i2c 0.*/
static void smi_i2c0_setsda(void *data, int state)
{
struct smi_dev *dev = data;
smi_i2c_setsda(dev, state, I2C_A_SW_CTL);
}
static void smi_i2c0_setscl(void *data, int state)
{
struct smi_dev *dev = data;
smi_i2c_setscl(dev, state, I2C_A_SW_CTL);
}
static int smi_i2c0_getsda(void *data)
{
struct smi_dev *dev = data;
return smi_i2c_getsda(dev, I2C_A_SW_CTL);
}
static int smi_i2c0_getscl(void *data)
{
struct smi_dev *dev = data;
return smi_i2c_getscl(dev, I2C_A_SW_CTL);
}
/* i2c 1.*/
static void smi_i2c1_setsda(void *data, int state)
{
struct smi_dev *dev = data;
smi_i2c_setsda(dev, state, I2C_B_SW_CTL);
}
static void smi_i2c1_setscl(void *data, int state)
{
struct smi_dev *dev = data;
smi_i2c_setscl(dev, state, I2C_B_SW_CTL);
}
static int smi_i2c1_getsda(void *data)
{
struct smi_dev *dev = data;
return smi_i2c_getsda(dev, I2C_B_SW_CTL);
}
static int smi_i2c1_getscl(void *data)
{
struct smi_dev *dev = data;
return smi_i2c_getscl(dev, I2C_B_SW_CTL);
}
static int smi_i2c_init(struct smi_dev *dev)
{
int ret;
/* i2c bus 0 */
smi_i2c_cfg(dev, I2C_A_SW_CTL);
i2c_set_adapdata(&dev->i2c_bus[0], dev);
strscpy(dev->i2c_bus[0].name, "SMI-I2C0", sizeof(dev->i2c_bus[0].name));
dev->i2c_bus[0].owner = THIS_MODULE;
dev->i2c_bus[0].dev.parent = &dev->pci_dev->dev;
dev->i2c_bus[0].algo_data = &dev->i2c_bit[0];
dev->i2c_bit[0].data = dev;
dev->i2c_bit[0].setsda = smi_i2c0_setsda;
dev->i2c_bit[0].setscl = smi_i2c0_setscl;
dev->i2c_bit[0].getsda = smi_i2c0_getsda;
dev->i2c_bit[0].getscl = smi_i2c0_getscl;
dev->i2c_bit[0].udelay = 12;
dev->i2c_bit[0].timeout = 10;
/* Raise SCL and SDA */
smi_i2c0_setsda(dev, 1);
smi_i2c0_setscl(dev, 1);
ret = i2c_bit_add_bus(&dev->i2c_bus[0]);
if (ret < 0)
return ret;
/* i2c bus 1 */
smi_i2c_cfg(dev, I2C_B_SW_CTL);
i2c_set_adapdata(&dev->i2c_bus[1], dev);
strscpy(dev->i2c_bus[1].name, "SMI-I2C1", sizeof(dev->i2c_bus[1].name));
dev->i2c_bus[1].owner = THIS_MODULE;
dev->i2c_bus[1].dev.parent = &dev->pci_dev->dev;
dev->i2c_bus[1].algo_data = &dev->i2c_bit[1];
dev->i2c_bit[1].data = dev;
dev->i2c_bit[1].setsda = smi_i2c1_setsda;
dev->i2c_bit[1].setscl = smi_i2c1_setscl;
dev->i2c_bit[1].getsda = smi_i2c1_getsda;
dev->i2c_bit[1].getscl = smi_i2c1_getscl;
dev->i2c_bit[1].udelay = 12;
dev->i2c_bit[1].timeout = 10;
/* Raise SCL and SDA */
smi_i2c1_setsda(dev, 1);
smi_i2c1_setscl(dev, 1);
ret = i2c_bit_add_bus(&dev->i2c_bus[1]);
if (ret < 0)
i2c_del_adapter(&dev->i2c_bus[0]);
return ret;
}
static void smi_i2c_exit(struct smi_dev *dev)
{
i2c_del_adapter(&dev->i2c_bus[0]);
i2c_del_adapter(&dev->i2c_bus[1]);
}
static int smi_read_eeprom(struct i2c_adapter *i2c, u16 reg, u8 *data, u16 size)
{
int ret;
u8 b0[2] = { (reg >> 8) & 0xff, reg & 0xff };
struct i2c_msg msg[] = {
{ .addr = 0x50, .flags = 0,
.buf = b0, .len = 2 },
{ .addr = 0x50, .flags = I2C_M_RD,
.buf = data, .len = size }
};
ret = i2c_transfer(i2c, msg, 2);
if (ret != 2) {
dev_err(&i2c->dev, "%s: reg=0x%x (error=%d)\n",
__func__, reg, ret);
return ret;
}
return ret;
}
/* ts port interrupt operations */
static void smi_port_disableInterrupt(struct smi_port *port)
{
struct smi_dev *dev = port->dev;
smi_write(MSI_INT_ENA_CLR,
(port->_dmaInterruptCH0 | port->_dmaInterruptCH1));
}
static void smi_port_enableInterrupt(struct smi_port *port)
{
struct smi_dev *dev = port->dev;
smi_write(MSI_INT_ENA_SET,
(port->_dmaInterruptCH0 | port->_dmaInterruptCH1));
}
static void smi_port_clearInterrupt(struct smi_port *port)
{
struct smi_dev *dev = port->dev;
smi_write(MSI_INT_STATUS_CLR,
(port->_dmaInterruptCH0 | port->_dmaInterruptCH1));
}
/* tasklet handler: DMA data to dmx.*/
static void smi_dma_xfer(unsigned long data)
{
struct smi_port *port = (struct smi_port *) data;
struct smi_dev *dev = port->dev;
u32 intr_status, finishedData, dmaManagement;
u8 dmaChan0State, dmaChan1State;
intr_status = port->_int_status;
dmaManagement = smi_read(port->DMA_MANAGEMENT);
dmaChan0State = (u8)((dmaManagement & 0x00000030) >> 4);
dmaChan1State = (u8)((dmaManagement & 0x00300000) >> 20);
/* CH-0 DMA interrupt.*/
if ((intr_status & port->_dmaInterruptCH0) && (dmaChan0State == 0x01)) {
dev_dbg(&dev->pci_dev->dev,
"Port[%d]-DMA CH0 engine complete successful !\n",
port->idx);
finishedData = smi_read(port->DMA_CHAN0_TRANS_STATE);
finishedData &= 0x003FFFFF;
/* value of DMA_PORT0_CHAN0_TRANS_STATE register [21:0]
* indicate dma total transfer length and
* zero of [21:0] indicate dma total transfer length
* equal to 0x400000 (4MB)*/
if (finishedData == 0)
finishedData = 0x00400000;
if (finishedData != SMI_TS_DMA_BUF_SIZE) {
dev_dbg(&dev->pci_dev->dev,
"DMA CH0 engine complete length mismatched, finish data=%d !\n",
finishedData);
}
dvb_dmx_swfilter_packets(&port->demux,
port->cpu_addr[0], (finishedData / 188));
/*dvb_dmx_swfilter(&port->demux,
port->cpu_addr[0], finishedData);*/
}
/* CH-1 DMA interrupt.*/
if ((intr_status & port->_dmaInterruptCH1) && (dmaChan1State == 0x01)) {
dev_dbg(&dev->pci_dev->dev,
"Port[%d]-DMA CH1 engine complete successful !\n",
port->idx);
finishedData = smi_read(port->DMA_CHAN1_TRANS_STATE);
finishedData &= 0x003FFFFF;
/* value of DMA_PORT0_CHAN0_TRANS_STATE register [21:0]
* indicate dma total transfer length and
* zero of [21:0] indicate dma total transfer length
* equal to 0x400000 (4MB)*/
if (finishedData == 0)
finishedData = 0x00400000;
if (finishedData != SMI_TS_DMA_BUF_SIZE) {
dev_dbg(&dev->pci_dev->dev,
"DMA CH1 engine complete length mismatched, finish data=%d !\n",
finishedData);
}
dvb_dmx_swfilter_packets(&port->demux,
port->cpu_addr[1], (finishedData / 188));
/*dvb_dmx_swfilter(&port->demux,
port->cpu_addr[1], finishedData);*/
}
/* restart DMA.*/
if (intr_status & port->_dmaInterruptCH0)
dmaManagement |= 0x00000002;
if (intr_status & port->_dmaInterruptCH1)
dmaManagement |= 0x00020000;
smi_write(port->DMA_MANAGEMENT, dmaManagement);
/* Re-enable interrupts */
smi_port_enableInterrupt(port);
}
static void smi_port_dma_free(struct smi_port *port)
{
if (port->cpu_addr[0]) {
pci_free_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE,
port->cpu_addr[0], port->dma_addr[0]);
port->cpu_addr[0] = NULL;
}
if (port->cpu_addr[1]) {
pci_free_consistent(port->dev->pci_dev, SMI_TS_DMA_BUF_SIZE,
port->cpu_addr[1], port->dma_addr[1]);
port->cpu_addr[1] = NULL;
}
}
static int smi_port_init(struct smi_port *port, int dmaChanUsed)
{
dev_dbg(&port->dev->pci_dev->dev,
"%s, port %d, dmaused %d\n", __func__, port->idx, dmaChanUsed);
port->enable = 0;
if (port->idx == 0) {
/* Port A */
port->_dmaInterruptCH0 = dmaChanUsed & 0x01;
port->_dmaInterruptCH1 = dmaChanUsed & 0x02;
port->DMA_CHAN0_ADDR_LOW = DMA_PORTA_CHAN0_ADDR_LOW;
port->DMA_CHAN0_ADDR_HI = DMA_PORTA_CHAN0_ADDR_HI;
port->DMA_CHAN0_TRANS_STATE = DMA_PORTA_CHAN0_TRANS_STATE;
port->DMA_CHAN0_CONTROL = DMA_PORTA_CHAN0_CONTROL;
port->DMA_CHAN1_ADDR_LOW = DMA_PORTA_CHAN1_ADDR_LOW;
port->DMA_CHAN1_ADDR_HI = DMA_PORTA_CHAN1_ADDR_HI;
port->DMA_CHAN1_TRANS_STATE = DMA_PORTA_CHAN1_TRANS_STATE;
port->DMA_CHAN1_CONTROL = DMA_PORTA_CHAN1_CONTROL;
port->DMA_MANAGEMENT = DMA_PORTA_MANAGEMENT;
} else {
/* Port B */
port->_dmaInterruptCH0 = (dmaChanUsed << 2) & 0x04;
port->_dmaInterruptCH1 = (dmaChanUsed << 2) & 0x08;
port->DMA_CHAN0_ADDR_LOW = DMA_PORTB_CHAN0_ADDR_LOW;
port->DMA_CHAN0_ADDR_HI = DMA_PORTB_CHAN0_ADDR_HI;
port->DMA_CHAN0_TRANS_STATE = DMA_PORTB_CHAN0_TRANS_STATE;
port->DMA_CHAN0_CONTROL = DMA_PORTB_CHAN0_CONTROL;
port->DMA_CHAN1_ADDR_LOW = DMA_PORTB_CHAN1_ADDR_LOW;
port->DMA_CHAN1_ADDR_HI = DMA_PORTB_CHAN1_ADDR_HI;
port->DMA_CHAN1_TRANS_STATE = DMA_PORTB_CHAN1_TRANS_STATE;
port->DMA_CHAN1_CONTROL = DMA_PORTB_CHAN1_CONTROL;
port->DMA_MANAGEMENT = DMA_PORTB_MANAGEMENT;
}
if (port->_dmaInterruptCH0) {
port->cpu_addr[0] = pci_alloc_consistent(port->dev->pci_dev,
SMI_TS_DMA_BUF_SIZE,
&port->dma_addr[0]);
if (!port->cpu_addr[0]) {
dev_err(&port->dev->pci_dev->dev,
"Port[%d] DMA CH0 memory allocation failed!\n",
port->idx);
goto err;
}
}
if (port->_dmaInterruptCH1) {
port->cpu_addr[1] = pci_alloc_consistent(port->dev->pci_dev,
SMI_TS_DMA_BUF_SIZE,
&port->dma_addr[1]);
if (!port->cpu_addr[1]) {
dev_err(&port->dev->pci_dev->dev,
"Port[%d] DMA CH1 memory allocation failed!\n",
port->idx);
goto err;
}
}
smi_port_disableInterrupt(port);
tasklet_init(&port->tasklet, smi_dma_xfer, (unsigned long)port);
tasklet_disable(&port->tasklet);
port->enable = 1;
return 0;
err:
smi_port_dma_free(port);
return -ENOMEM;
}
static void smi_port_exit(struct smi_port *port)
{
smi_port_disableInterrupt(port);
tasklet_kill(&port->tasklet);
smi_port_dma_free(port);
port->enable = 0;
}
static int smi_port_irq(struct smi_port *port, u32 int_status)
{
u32 port_req_irq = port->_dmaInterruptCH0 | port->_dmaInterruptCH1;
int handled = 0;
if (int_status & port_req_irq) {
smi_port_disableInterrupt(port);
port->_int_status = int_status;
smi_port_clearInterrupt(port);
tasklet_schedule(&port->tasklet);
handled = 1;
}
return handled;
}
static irqreturn_t smi_irq_handler(int irq, void *dev_id)
{
struct smi_dev *dev = dev_id;
struct smi_port *port0 = &dev->ts_port[0];
struct smi_port *port1 = &dev->ts_port[1];
struct smi_rc *ir = &dev->ir;
int handled = 0;
u32 intr_status = smi_read(MSI_INT_STATUS);
/* ts0 interrupt.*/
if (dev->info->ts_0)
handled += smi_port_irq(port0, intr_status);
/* ts1 interrupt.*/
if (dev->info->ts_1)
handled += smi_port_irq(port1, intr_status);
/* ir interrupt.*/
handled += smi_ir_irq(ir, intr_status);
return IRQ_RETVAL(handled);
}
static struct i2c_client *smi_add_i2c_client(struct i2c_adapter *adapter,
struct i2c_board_info *info)
{
struct i2c_client *client;
request_module(info->type);
client = i2c_new_device(adapter, info);
if (client == NULL || client->dev.driver == NULL)
goto err_add_i2c_client;
if (!try_module_get(client->dev.driver->owner)) {
i2c_unregister_device(client);
goto err_add_i2c_client;
}
return client;
err_add_i2c_client:
client = NULL;
return client;
}
static void smi_del_i2c_client(struct i2c_client *client)
{
module_put(client->dev.driver->owner);
i2c_unregister_device(client);
}
static const struct m88ds3103_config smi_dvbsky_m88ds3103_cfg = {
.i2c_addr = 0x68,
.clock = 27000000,
.i2c_wr_max = 33,
.clock_out = 0,
.ts_mode = M88DS3103_TS_PARALLEL,
.ts_clk = 16000,
.ts_clk_pol = 1,
.agc = 0x99,
.lnb_hv_pol = 0,
.lnb_en_pol = 1,
};
static int smi_dvbsky_m88ds3103_fe_attach(struct smi_port *port)
{
int ret = 0;
struct smi_dev *dev = port->dev;
struct i2c_adapter *i2c;
/* tuner I2C module */
struct i2c_adapter *tuner_i2c_adapter;
struct i2c_client *tuner_client;
struct i2c_board_info tuner_info;
struct ts2020_config ts2020_config = {};
memset(&tuner_info, 0, sizeof(struct i2c_board_info));
i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1];
/* attach demod */
port->fe = dvb_attach(m88ds3103_attach,
&smi_dvbsky_m88ds3103_cfg, i2c, &tuner_i2c_adapter);
if (!port->fe) {
ret = -ENODEV;
return ret;
}
/* attach tuner */
ts2020_config.fe = port->fe;
strscpy(tuner_info.type, "ts2020", I2C_NAME_SIZE);
tuner_info.addr = 0x60;
tuner_info.platform_data = &ts2020_config;
tuner_client = smi_add_i2c_client(tuner_i2c_adapter, &tuner_info);
if (!tuner_client) {
ret = -ENODEV;
goto err_tuner_i2c_device;
}
/* delegate signal strength measurement to tuner */
port->fe->ops.read_signal_strength =
port->fe->ops.tuner_ops.get_rf_strength;
port->i2c_client_tuner = tuner_client;
return ret;
err_tuner_i2c_device:
dvb_frontend_detach(port->fe);
return ret;
}
static const struct m88ds3103_config smi_dvbsky_m88rs6000_cfg = {
.i2c_addr = 0x69,
.clock = 27000000,
.i2c_wr_max = 33,
.ts_mode = M88DS3103_TS_PARALLEL,
.ts_clk = 16000,
.ts_clk_pol = 1,
.agc = 0x99,
.lnb_hv_pol = 0,
.lnb_en_pol = 1,
};
static int smi_dvbsky_m88rs6000_fe_attach(struct smi_port *port)
{
int ret = 0;
struct smi_dev *dev = port->dev;
struct i2c_adapter *i2c;
/* tuner I2C module */
struct i2c_adapter *tuner_i2c_adapter;
struct i2c_client *tuner_client;
struct i2c_board_info tuner_info;
struct m88rs6000t_config m88rs6000t_config;
memset(&tuner_info, 0, sizeof(struct i2c_board_info));
i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1];
/* attach demod */
port->fe = dvb_attach(m88ds3103_attach,
&smi_dvbsky_m88rs6000_cfg, i2c, &tuner_i2c_adapter);
if (!port->fe) {
ret = -ENODEV;
return ret;
}
/* attach tuner */
m88rs6000t_config.fe = port->fe;
strscpy(tuner_info.type, "m88rs6000t", I2C_NAME_SIZE);
tuner_info.addr = 0x21;
tuner_info.platform_data = &m88rs6000t_config;
tuner_client = smi_add_i2c_client(tuner_i2c_adapter, &tuner_info);
if (!tuner_client) {
ret = -ENODEV;
goto err_tuner_i2c_device;
}
/* delegate signal strength measurement to tuner */
port->fe->ops.read_signal_strength =
port->fe->ops.tuner_ops.get_rf_strength;
port->i2c_client_tuner = tuner_client;
return ret;
err_tuner_i2c_device:
dvb_frontend_detach(port->fe);
return ret;
}
static int smi_dvbsky_sit2_fe_attach(struct smi_port *port)
{
int ret = 0;
struct smi_dev *dev = port->dev;
struct i2c_adapter *i2c;
struct i2c_adapter *tuner_i2c_adapter;
struct i2c_client *client_tuner, *client_demod;
struct i2c_board_info client_info;
struct si2168_config si2168_config;
struct si2157_config si2157_config;
/* select i2c bus */
i2c = (port->idx == 0) ? &dev->i2c_bus[0] : &dev->i2c_bus[1];
/* attach demod */
memset(&si2168_config, 0, sizeof(si2168_config));
si2168_config.i2c_adapter = &tuner_i2c_adapter;
si2168_config.fe = &port->fe;
si2168_config.ts_mode = SI2168_TS_PARALLEL;
memset(&client_info, 0, sizeof(struct i2c_board_info));
strscpy(client_info.type, "si2168", I2C_NAME_SIZE);
client_info.addr = 0x64;
client_info.platform_data = &si2168_config;
client_demod = smi_add_i2c_client(i2c, &client_info);
if (!client_demod) {
ret = -ENODEV;
return ret;
}
port->i2c_client_demod = client_demod;
/* attach tuner */
memset(&si2157_config, 0, sizeof(si2157_config));
si2157_config.fe = port->fe;
si2157_config.if_port = 1;
memset(&client_info, 0, sizeof(struct i2c_board_info));
strscpy(client_info.type, "si2157", I2C_NAME_SIZE);
client_info.addr = 0x60;
client_info.platform_data = &si2157_config;
client_tuner = smi_add_i2c_client(tuner_i2c_adapter, &client_info);
if (!client_tuner) {
smi_del_i2c_client(port->i2c_client_demod);
port->i2c_client_demod = NULL;
ret = -ENODEV;
return ret;
}
port->i2c_client_tuner = client_tuner;
return ret;
}
static int smi_fe_init(struct smi_port *port)
{
int ret = 0;
struct smi_dev *dev = port->dev;
struct dvb_adapter *adap = &port->dvb_adapter;
u8 mac_ee[16];
dev_dbg(&port->dev->pci_dev->dev,
"%s: port %d, fe_type = %d\n",
__func__, port->idx, port->fe_type);
switch (port->fe_type) {
case DVBSKY_FE_M88DS3103:
ret = smi_dvbsky_m88ds3103_fe_attach(port);
break;
case DVBSKY_FE_M88RS6000:
ret = smi_dvbsky_m88rs6000_fe_attach(port);
break;
case DVBSKY_FE_SIT2:
ret = smi_dvbsky_sit2_fe_attach(port);
break;
}
if (ret < 0)
return ret;
/* register dvb frontend */
ret = dvb_register_frontend(adap, port->fe);
if (ret < 0) {
if (port->i2c_client_tuner)
smi_del_i2c_client(port->i2c_client_tuner);
if (port->i2c_client_demod)
smi_del_i2c_client(port->i2c_client_demod);
dvb_frontend_detach(port->fe);
return ret;
}
/* init MAC.*/
ret = smi_read_eeprom(&dev->i2c_bus[0], 0xc0, mac_ee, 16);
dev_info(&port->dev->pci_dev->dev,
"%s port %d MAC: %pM\n", dev->info->name,
port->idx, mac_ee + (port->idx)*8);
memcpy(adap->proposed_mac, mac_ee + (port->idx)*8, 6);
return ret;
}
static void smi_fe_exit(struct smi_port *port)
{
dvb_unregister_frontend(port->fe);
/* remove I2C demod and tuner */
if (port->i2c_client_tuner)
smi_del_i2c_client(port->i2c_client_tuner);
if (port->i2c_client_demod)
smi_del_i2c_client(port->i2c_client_demod);
dvb_frontend_detach(port->fe);
}
static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
int (*start_feed)(struct dvb_demux_feed *),
int (*stop_feed)(struct dvb_demux_feed *),
void *priv)
{
dvbdemux->priv = priv;
dvbdemux->filternum = 256;
dvbdemux->feednum = 256;
dvbdemux->start_feed = start_feed;
dvbdemux->stop_feed = stop_feed;
dvbdemux->write_to_decoder = NULL;
dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
DMX_SECTION_FILTERING |
DMX_MEMORY_BASED_FILTERING);
return dvb_dmx_init(dvbdemux);
}
static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
struct dvb_demux *dvbdemux,
struct dmx_frontend *hw_frontend,
struct dmx_frontend *mem_frontend,
struct dvb_adapter *dvb_adapter)
{
int ret;
dmxdev->filternum = 256;
dmxdev->demux = &dvbdemux->dmx;
dmxdev->capabilities = 0;
ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
if (ret < 0)
return ret;
hw_frontend->source = DMX_FRONTEND_0;
dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
mem_frontend->source = DMX_MEMORY_FE;
dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
}
static u32 smi_config_DMA(struct smi_port *port)
{
struct smi_dev *dev = port->dev;
u32 totalLength = 0, dmaMemPtrLow, dmaMemPtrHi, dmaCtlReg;
u8 chanLatencyTimer = 0, dmaChanEnable = 1, dmaTransStart = 1;
u32 dmaManagement = 0, tlpTransUnit = DMA_TRANS_UNIT_188;
u8 tlpTc = 0, tlpTd = 1, tlpEp = 0, tlpAttr = 0;
u64 mem;
dmaManagement = smi_read(port->DMA_MANAGEMENT);
/* Setup Channel-0 */
if (port->_dmaInterruptCH0) {
totalLength = SMI_TS_DMA_BUF_SIZE;
mem = port->dma_addr[0];
dmaMemPtrLow = mem & 0xffffffff;
dmaMemPtrHi = mem >> 32;
dmaCtlReg = (totalLength) | (tlpTransUnit << 22) | (tlpTc << 25)
| (tlpTd << 28) | (tlpEp << 29) | (tlpAttr << 30);
dmaManagement |= dmaChanEnable | (dmaTransStart << 1)
| (chanLatencyTimer << 8);
/* write DMA register, start DMA engine */
smi_write(port->DMA_CHAN0_ADDR_LOW, dmaMemPtrLow);
smi_write(port->DMA_CHAN0_ADDR_HI, dmaMemPtrHi);
smi_write(port->DMA_CHAN0_CONTROL, dmaCtlReg);
}
/* Setup Channel-1 */
if (port->_dmaInterruptCH1) {
totalLength = SMI_TS_DMA_BUF_SIZE;
mem = port->dma_addr[1];
dmaMemPtrLow = mem & 0xffffffff;
dmaMemPtrHi = mem >> 32;
dmaCtlReg = (totalLength) | (tlpTransUnit << 22) | (tlpTc << 25)
| (tlpTd << 28) | (tlpEp << 29) | (tlpAttr << 30);
dmaManagement |= (dmaChanEnable << 16) | (dmaTransStart << 17)
| (chanLatencyTimer << 24);
/* write DMA register, start DMA engine */
smi_write(port->DMA_CHAN1_ADDR_LOW, dmaMemPtrLow);
smi_write(port->DMA_CHAN1_ADDR_HI, dmaMemPtrHi);
smi_write(port->DMA_CHAN1_CONTROL, dmaCtlReg);
}
return dmaManagement;
}
static int smi_start_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct smi_port *port = dvbdmx->priv;
struct smi_dev *dev = port->dev;
u32 dmaManagement;
if (port->users++ == 0) {
dmaManagement = smi_config_DMA(port);
smi_port_clearInterrupt(port);
smi_port_enableInterrupt(port);
smi_write(port->DMA_MANAGEMENT, dmaManagement);
tasklet_enable(&port->tasklet);
}
return port->users;
}
static int smi_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct smi_port *port = dvbdmx->priv;
struct smi_dev *dev = port->dev;
if (--port->users)
return port->users;
tasklet_disable(&port->tasklet);
smi_port_disableInterrupt(port);
smi_clear(port->DMA_MANAGEMENT, 0x30003);
return 0;
}
static int smi_dvb_init(struct smi_port *port)
{
int ret;
struct dvb_adapter *adap = &port->dvb_adapter;
struct dvb_demux *dvbdemux = &port->demux;
dev_dbg(&port->dev->pci_dev->dev,
"%s, port %d\n", __func__, port->idx);
ret = dvb_register_adapter(adap, "SMI_DVB", THIS_MODULE,
&port->dev->pci_dev->dev,
adapter_nr);
if (ret < 0) {
dev_err(&port->dev->pci_dev->dev, "Fail to register DVB adapter.\n");
return ret;
}
ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
smi_start_feed,
smi_stop_feed, port);
if (ret < 0)
goto err_del_dvb_register_adapter;
ret = my_dvb_dmxdev_ts_card_init(&port->dmxdev, &port->demux,
&port->hw_frontend,
&port->mem_frontend, adap);
if (ret < 0)
goto err_del_dvb_dmx;
ret = dvb_net_init(adap, &port->dvbnet, port->dmxdev.demux);
if (ret < 0)
goto err_del_dvb_dmxdev;
return 0;
err_del_dvb_dmxdev:
dvbdemux->dmx.close(&dvbdemux->dmx);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->hw_frontend);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->mem_frontend);
dvb_dmxdev_release(&port->dmxdev);
err_del_dvb_dmx:
dvb_dmx_release(&port->demux);
err_del_dvb_register_adapter:
dvb_unregister_adapter(&port->dvb_adapter);
return ret;
}
static void smi_dvb_exit(struct smi_port *port)
{
struct dvb_demux *dvbdemux = &port->demux;
dvb_net_release(&port->dvbnet);
dvbdemux->dmx.close(&dvbdemux->dmx);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->hw_frontend);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &port->mem_frontend);
dvb_dmxdev_release(&port->dmxdev);
dvb_dmx_release(&port->demux);
dvb_unregister_adapter(&port->dvb_adapter);
}
static int smi_port_attach(struct smi_dev *dev,
struct smi_port *port, int index)
{
int ret, dmachs;
port->dev = dev;
port->idx = index;
port->fe_type = (index == 0) ? dev->info->fe_0 : dev->info->fe_1;
dmachs = (index == 0) ? dev->info->ts_0 : dev->info->ts_1;
/* port init.*/
ret = smi_port_init(port, dmachs);
if (ret < 0)
return ret;
/* dvb init.*/
ret = smi_dvb_init(port);
if (ret < 0)
goto err_del_port_init;
/* fe init.*/
ret = smi_fe_init(port);
if (ret < 0)
goto err_del_dvb_init;
return 0;
err_del_dvb_init:
smi_dvb_exit(port);
err_del_port_init:
smi_port_exit(port);
return ret;
}
static void smi_port_detach(struct smi_port *port)
{
smi_fe_exit(port);
smi_dvb_exit(port);
smi_port_exit(port);
}
static int smi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct smi_dev *dev;
int ret = -ENOMEM;
if (pci_enable_device(pdev) < 0)
return -ENODEV;
dev = kzalloc(sizeof(struct smi_dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err_pci_disable_device;
}
dev->pci_dev = pdev;
pci_set_drvdata(pdev, dev);
dev->info = (struct smi_cfg_info *) id->driver_data;
dev_info(&dev->pci_dev->dev,
"card detected: %s\n", dev->info->name);
dev->nr = dev->info->type;
dev->lmmio = ioremap(pci_resource_start(dev->pci_dev, 0),
pci_resource_len(dev->pci_dev, 0));
if (!dev->lmmio) {
ret = -ENOMEM;
goto err_kfree;
}
/* should we set to 32bit DMA? */
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret < 0)
goto err_pci_iounmap;
pci_set_master(pdev);
ret = smi_hw_init(dev);
if (ret < 0)
goto err_pci_iounmap;
ret = smi_i2c_init(dev);
if (ret < 0)
goto err_pci_iounmap;
if (dev->info->ts_0) {
ret = smi_port_attach(dev, &dev->ts_port[0], 0);
if (ret < 0)
goto err_del_i2c_adaptor;
}
if (dev->info->ts_1) {
ret = smi_port_attach(dev, &dev->ts_port[1], 1);
if (ret < 0)
goto err_del_port0_attach;
}
ret = smi_ir_init(dev);
if (ret < 0)
goto err_del_port1_attach;
#ifdef CONFIG_PCI_MSI /* to do msi interrupt.???*/
if (pci_msi_enabled())
ret = pci_enable_msi(dev->pci_dev);
if (ret)
dev_info(&dev->pci_dev->dev, "MSI not available.\n");
#endif
ret = request_irq(dev->pci_dev->irq, smi_irq_handler,
IRQF_SHARED, "SMI_PCIE", dev);
if (ret < 0)
goto err_del_ir;
smi_ir_start(&dev->ir);
return 0;
err_del_ir:
smi_ir_exit(dev);
err_del_port1_attach:
if (dev->info->ts_1)
smi_port_detach(&dev->ts_port[1]);
err_del_port0_attach:
if (dev->info->ts_0)
smi_port_detach(&dev->ts_port[0]);
err_del_i2c_adaptor:
smi_i2c_exit(dev);
err_pci_iounmap:
iounmap(dev->lmmio);
err_kfree:
pci_set_drvdata(pdev, NULL);
kfree(dev);
err_pci_disable_device:
pci_disable_device(pdev);
return ret;
}
static void smi_remove(struct pci_dev *pdev)
{
struct smi_dev *dev = pci_get_drvdata(pdev);
smi_write(MSI_INT_ENA_CLR, ALL_INT);
free_irq(dev->pci_dev->irq, dev);
#ifdef CONFIG_PCI_MSI
pci_disable_msi(dev->pci_dev);
#endif
if (dev->info->ts_1)
smi_port_detach(&dev->ts_port[1]);
if (dev->info->ts_0)
smi_port_detach(&dev->ts_port[0]);
smi_ir_exit(dev);
smi_i2c_exit(dev);
iounmap(dev->lmmio);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
kfree(dev);
}
/* DVBSky cards */
static const struct smi_cfg_info dvbsky_s950_cfg = {
.type = SMI_DVBSKY_S950,
.name = "DVBSky S950 V3",
.ts_0 = SMI_TS_NULL,
.ts_1 = SMI_TS_DMA_BOTH,
.fe_0 = DVBSKY_FE_NULL,
.fe_1 = DVBSKY_FE_M88DS3103,
.rc_map = RC_MAP_DVBSKY,
};
static const struct smi_cfg_info dvbsky_s952_cfg = {
.type = SMI_DVBSKY_S952,
.name = "DVBSky S952 V3",
.ts_0 = SMI_TS_DMA_BOTH,
.ts_1 = SMI_TS_DMA_BOTH,
.fe_0 = DVBSKY_FE_M88RS6000,
.fe_1 = DVBSKY_FE_M88RS6000,
.rc_map = RC_MAP_DVBSKY,
};
static const struct smi_cfg_info dvbsky_t9580_cfg = {
.type = SMI_DVBSKY_T9580,
.name = "DVBSky T9580 V3",
.ts_0 = SMI_TS_DMA_BOTH,
.ts_1 = SMI_TS_DMA_BOTH,
.fe_0 = DVBSKY_FE_SIT2,
.fe_1 = DVBSKY_FE_M88DS3103,
.rc_map = RC_MAP_DVBSKY,
};
static const struct smi_cfg_info technotrend_s2_4200_cfg = {
.type = SMI_TECHNOTREND_S2_4200,
.name = "TechnoTrend TT-budget S2-4200 Twin",
.ts_0 = SMI_TS_DMA_BOTH,
.ts_1 = SMI_TS_DMA_BOTH,
.fe_0 = DVBSKY_FE_M88RS6000,
.fe_1 = DVBSKY_FE_M88RS6000,
.rc_map = RC_MAP_TT_1500,
};
/* PCI IDs */
#define SMI_ID(_subvend, _subdev, _driverdata) { \
.vendor = SMI_VID, .device = SMI_PID, \
.subvendor = _subvend, .subdevice = _subdev, \
.driver_data = (unsigned long)&_driverdata }
static const struct pci_device_id smi_id_table[] = {
SMI_ID(0x4254, 0x0550, dvbsky_s950_cfg),
SMI_ID(0x4254, 0x0552, dvbsky_s952_cfg),
SMI_ID(0x4254, 0x5580, dvbsky_t9580_cfg),
SMI_ID(0x13c2, 0x3016, technotrend_s2_4200_cfg),
{0}
};
MODULE_DEVICE_TABLE(pci, smi_id_table);
static struct pci_driver smipcie_driver = {
.name = "SMI PCIe driver",
.id_table = smi_id_table,
.probe = smi_probe,
.remove = smi_remove,
};
module_pci_driver(smipcie_driver);
MODULE_AUTHOR("Max nibble <nibble.max@gmail.com>");
MODULE_DESCRIPTION("SMI PCIe driver");
MODULE_LICENSE("GPL");