mirror of https://gitee.com/openkylin/linux.git
1524 lines
41 KiB
C
1524 lines
41 KiB
C
/*
|
|
* Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
|
|
*
|
|
* Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
*
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* This code is more or less generated from another driver, please
|
|
* excuse some codingstyle oddities.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/i2c.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
|
|
#include "dib0090.h"
|
|
#include "dibx000_common.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
|
|
|
|
#define dprintk(args...) do { \
|
|
if (debug) { \
|
|
printk(KERN_DEBUG "DiB0090: "); \
|
|
printk(args); \
|
|
printk("\n"); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CONFIG_SYS_ISDBT
|
|
#define CONFIG_BAND_CBAND
|
|
#define CONFIG_BAND_VHF
|
|
#define CONFIG_BAND_UHF
|
|
#define CONFIG_DIB0090_USE_PWM_AGC
|
|
|
|
#define EN_LNA0 0x8000
|
|
#define EN_LNA1 0x4000
|
|
#define EN_LNA2 0x2000
|
|
#define EN_LNA3 0x1000
|
|
#define EN_MIX0 0x0800
|
|
#define EN_MIX1 0x0400
|
|
#define EN_MIX2 0x0200
|
|
#define EN_MIX3 0x0100
|
|
#define EN_IQADC 0x0040
|
|
#define EN_PLL 0x0020
|
|
#define EN_TX 0x0010
|
|
#define EN_BB 0x0008
|
|
#define EN_LO 0x0004
|
|
#define EN_BIAS 0x0001
|
|
|
|
#define EN_IQANA 0x0002
|
|
#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
|
|
#define EN_CRYSTAL 0x0002
|
|
|
|
#define EN_UHF 0x22E9
|
|
#define EN_VHF 0x44E9
|
|
#define EN_LBD 0x11E9
|
|
#define EN_SBD 0x44E9
|
|
#define EN_CAB 0x88E9
|
|
|
|
#define pgm_read_word(w) (*w)
|
|
|
|
struct dc_calibration;
|
|
|
|
struct dib0090_tuning {
|
|
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
|
|
u8 switch_trim;
|
|
u8 lna_tune;
|
|
u8 lna_bias;
|
|
u16 v2i;
|
|
u16 mix;
|
|
u16 load;
|
|
u16 tuner_enable;
|
|
};
|
|
|
|
struct dib0090_pll {
|
|
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
|
|
u8 vco_band;
|
|
u8 hfdiv_code;
|
|
u8 hfdiv;
|
|
u8 topresc;
|
|
};
|
|
|
|
struct dib0090_state {
|
|
struct i2c_adapter *i2c;
|
|
struct dvb_frontend *fe;
|
|
const struct dib0090_config *config;
|
|
|
|
u8 current_band;
|
|
u16 revision;
|
|
enum frontend_tune_state tune_state;
|
|
u32 current_rf;
|
|
|
|
u16 wbd_offset;
|
|
s16 wbd_target; /* in dB */
|
|
|
|
s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
|
|
s16 current_gain; /* keeps the currently programmed gain */
|
|
u8 agc_step; /* new binary search */
|
|
|
|
u16 gain[2]; /* for channel monitoring */
|
|
|
|
const u16 *rf_ramp;
|
|
const u16 *bb_ramp;
|
|
|
|
/* for the software AGC ramps */
|
|
u16 bb_1_def;
|
|
u16 rf_lt_def;
|
|
u16 gain_reg[4];
|
|
|
|
/* for the captrim/dc-offset search */
|
|
s8 step;
|
|
s16 adc_diff;
|
|
s16 min_adc_diff;
|
|
|
|
s8 captrim;
|
|
s8 fcaptrim;
|
|
|
|
const struct dc_calibration *dc;
|
|
u16 bb6, bb7;
|
|
|
|
const struct dib0090_tuning *current_tune_table_index;
|
|
const struct dib0090_pll *current_pll_table_index;
|
|
|
|
u8 tuner_is_tuned;
|
|
u8 agc_freeze;
|
|
|
|
u8 reset;
|
|
};
|
|
|
|
static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
|
|
{
|
|
u8 b[2];
|
|
struct i2c_msg msg[2] = {
|
|
{.addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1},
|
|
{.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2},
|
|
};
|
|
if (i2c_transfer(state->i2c, msg, 2) != 2) {
|
|
printk(KERN_WARNING "DiB0090 I2C read failed\n");
|
|
return 0;
|
|
}
|
|
return (b[0] << 8) | b[1];
|
|
}
|
|
|
|
static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
|
|
{
|
|
u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
|
|
struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 };
|
|
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
printk(KERN_WARNING "DiB0090 I2C write failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
|
|
#define ADC_TARGET -220
|
|
#define GAIN_ALPHA 5
|
|
#define WBD_ALPHA 6
|
|
#define LPF 100
|
|
static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
|
|
{
|
|
do {
|
|
dib0090_write_reg(state, r++, *b++);
|
|
} while (--c);
|
|
}
|
|
|
|
static u16 dib0090_identify(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u16 v;
|
|
|
|
v = dib0090_read_reg(state, 0x1a);
|
|
|
|
#ifdef FIRMWARE_FIREFLY
|
|
/* pll is not locked locked */
|
|
if (!(v & 0x800))
|
|
dprintk("FE%d : Identification : pll is not yet locked", fe->id);
|
|
#endif
|
|
|
|
/* without PLL lock info */
|
|
v &= 0x3ff;
|
|
dprintk("P/V: %04x:", v);
|
|
|
|
if ((v >> 8) & 0xf)
|
|
dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf);
|
|
else
|
|
return 0xff;
|
|
|
|
v &= 0xff;
|
|
if (((v >> 5) & 0x7) == 0x1)
|
|
dprintk("FE%d : MP001 : 9090/8096", fe->id);
|
|
else if (((v >> 5) & 0x7) == 0x4)
|
|
dprintk("FE%d : MP005 : Single Sband", fe->id);
|
|
else if (((v >> 5) & 0x7) == 0x6)
|
|
dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id);
|
|
else if (((v >> 5) & 0x7) == 0x7)
|
|
dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id);
|
|
else
|
|
return 0xff;
|
|
|
|
/* revision only */
|
|
if ((v & 0x1f) == 0x3)
|
|
dprintk("FE%d : P1-D/E/F detected", fe->id);
|
|
else if ((v & 0x1f) == 0x1)
|
|
dprintk("FE%d : P1C detected", fe->id);
|
|
else if ((v & 0x1f) == 0x0) {
|
|
#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
|
|
dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id);
|
|
dib0090_p1b_register(fe);
|
|
#else
|
|
dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id);
|
|
return 0xff;
|
|
#endif
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
HARD_RESET(state);
|
|
|
|
dib0090_write_reg(state, 0x24, EN_PLL);
|
|
dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
|
|
|
|
/* adcClkOutRatio=8->7, release reset */
|
|
dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
|
|
if (cfg->clkoutdrive != 0)
|
|
dib0090_write_reg(state, 0x23,
|
|
(0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg->
|
|
clkouttobamse
|
|
<< 4) | (0
|
|
<<
|
|
2)
|
|
| (0));
|
|
else
|
|
dib0090_write_reg(state, 0x23,
|
|
(0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg->
|
|
clkouttobamse << 4) | (0
|
|
<<
|
|
2)
|
|
| (0));
|
|
|
|
/* enable pll, de-activate reset, ratio: 2/1 = 60MHz */
|
|
dib0090_write_reg(state, 0x21,
|
|
(cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv));
|
|
|
|
}
|
|
|
|
static int dib0090_wakeup(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (state->config->sleep)
|
|
state->config->sleep(fe, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int dib0090_sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (state->config->sleep)
|
|
state->config->sleep(fe, 1);
|
|
return 0;
|
|
}
|
|
|
|
void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (fast)
|
|
dib0090_write_reg(state, 0x04, 0);
|
|
else
|
|
dib0090_write_reg(state, 0x04, 1);
|
|
}
|
|
EXPORT_SYMBOL(dib0090_dcc_freq);
|
|
|
|
static const u16 rf_ramp_pwm_cband[] = {
|
|
0, /* max RF gain in 10th of dB */
|
|
0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
|
|
0, /* ramp_max = maximum X used on the ramp */
|
|
(0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
|
|
(0 << 10) | 0, /* 0x2d, LNA 1 */
|
|
(0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
|
|
(0 << 10) | 0, /* 0x2f, LNA 2 */
|
|
(0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
|
|
(0 << 10) | 0, /* 0x31, LNA 3 */
|
|
(0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
|
|
(0 << 10) | 0, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_vhf[] = {
|
|
412, /* max RF gain in 10th of dB */
|
|
132, 307, 127, /* LNA1, 13.2dB */
|
|
105, 412, 255, /* LNA2, 10.5dB */
|
|
50, 50, 127, /* LNA3, 5dB */
|
|
125, 175, 127, /* LNA4, 12.5dB */
|
|
0, 0, 127, /* CBAND, 0dB */
|
|
};
|
|
|
|
static const u16 rf_ramp_uhf[] = {
|
|
412, /* max RF gain in 10th of dB */
|
|
132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
|
|
105, 412, 255, /* LNA2 : 10.5 dB */
|
|
50, 50, 127, /* LNA3 : 5.0 dB */
|
|
125, 175, 127, /* LNA4 : 12.5 dB */
|
|
0, 0, 127, /* CBAND : 0.0 dB */
|
|
};
|
|
|
|
static const u16 rf_ramp_cband[] = {
|
|
332, /* max RF gain in 10th of dB */
|
|
132, 252, 127, /* LNA1, dB */
|
|
80, 332, 255, /* LNA2, dB */
|
|
0, 0, 127, /* LNA3, dB */
|
|
0, 0, 127, /* LNA4, dB */
|
|
120, 120, 127, /* LT1 CBAND */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_vhf[] = {
|
|
404, /* max RF gain in 10th of dB */
|
|
25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
|
|
1011, /* ramp_max = maximum X used on the ramp */
|
|
(6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
|
|
(0 << 10) | 756, /* 0x2d, LNA 1 */
|
|
(16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
|
|
(0 << 10) | 1011, /* 0x2f, LNA 2 */
|
|
(16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
|
|
(0 << 10) | 417, /* 0x31, LNA 3 */
|
|
(7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
|
|
(0 << 10) | 290, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_uhf[] = {
|
|
404, /* max RF gain in 10th of dB */
|
|
25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
|
|
1011, /* ramp_max = maximum X used on the ramp */
|
|
(6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
|
|
(0 << 10) | 756, /* 0x2d, LNA 1 */
|
|
(16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
|
|
(0 << 10) | 1011, /* 0x2f, LNA 2 */
|
|
(16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
|
|
(0 << 10) | 127, /* 0x31, LNA 3 */
|
|
(7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
|
|
(0 << 10) | 417, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 bb_ramp_boost[] = {
|
|
550, /* max BB gain in 10th of dB */
|
|
260, 260, 26, /* BB1, 26dB */
|
|
290, 550, 29, /* BB2, 29dB */
|
|
};
|
|
|
|
static const u16 bb_ramp_pwm_normal[] = {
|
|
500, /* max RF gain in 10th of dB */
|
|
8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
|
|
400,
|
|
(2 << 9) | 0, /* 0x35 = 21dB */
|
|
(0 << 9) | 168, /* 0x36 */
|
|
(2 << 9) | 168, /* 0x37 = 29dB */
|
|
(0 << 9) | 400, /* 0x38 */
|
|
};
|
|
|
|
struct slope {
|
|
int16_t range;
|
|
int16_t slope;
|
|
};
|
|
static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
|
|
{
|
|
u8 i;
|
|
u16 rest;
|
|
u16 ret = 0;
|
|
for (i = 0; i < num; i++) {
|
|
if (val > slopes[i].range)
|
|
rest = slopes[i].range;
|
|
else
|
|
rest = val;
|
|
ret += (rest * slopes[i].slope) / slopes[i].range;
|
|
val -= rest;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static const struct slope dib0090_wbd_slopes[3] = {
|
|
{66, 120}, /* -64,-52: offset - 65 */
|
|
{600, 170}, /* -52,-35: 65 - 665 */
|
|
{170, 250}, /* -45,-10: 665 - 835 */
|
|
};
|
|
|
|
static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
|
|
{
|
|
wbd &= 0x3ff;
|
|
if (wbd < state->wbd_offset)
|
|
wbd = 0;
|
|
else
|
|
wbd -= state->wbd_offset;
|
|
/* -64dB is the floor */
|
|
return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
|
|
}
|
|
|
|
static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
|
|
{
|
|
u16 offset = 250;
|
|
|
|
/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
|
|
|
|
if (state->current_band == BAND_VHF)
|
|
offset = 650;
|
|
#ifndef FIRMWARE_FIREFLY
|
|
if (state->current_band == BAND_VHF)
|
|
offset = state->config->wbd_vhf_offset;
|
|
if (state->current_band == BAND_CBAND)
|
|
offset = state->config->wbd_cband_offset;
|
|
#endif
|
|
|
|
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
|
|
dprintk("wbd-target: %d dB", (u32) state->wbd_target);
|
|
}
|
|
|
|
static const int gain_reg_addr[4] = {
|
|
0x08, 0x0a, 0x0f, 0x01
|
|
};
|
|
|
|
static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
|
|
{
|
|
u16 rf, bb, ref;
|
|
u16 i, v, gain_reg[4] = { 0 }, gain;
|
|
const u16 *g;
|
|
|
|
if (top_delta < -511)
|
|
top_delta = -511;
|
|
if (top_delta > 511)
|
|
top_delta = 511;
|
|
|
|
if (force) {
|
|
top_delta *= (1 << WBD_ALPHA);
|
|
gain_delta *= (1 << GAIN_ALPHA);
|
|
}
|
|
|
|
if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
|
|
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
|
|
else
|
|
state->rf_gain_limit += top_delta;
|
|
|
|
if (state->rf_gain_limit < 0) /*underflow */
|
|
state->rf_gain_limit = 0;
|
|
|
|
/* use gain as a temporary variable and correct current_gain */
|
|
gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
|
|
if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
|
|
state->current_gain = gain;
|
|
else
|
|
state->current_gain += gain_delta;
|
|
/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
|
|
if (state->current_gain < 0)
|
|
state->current_gain = 0;
|
|
|
|
/* now split total gain to rf and bb gain */
|
|
gain = state->current_gain >> GAIN_ALPHA;
|
|
|
|
/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
|
|
if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
|
|
rf = state->rf_gain_limit >> WBD_ALPHA;
|
|
bb = gain - rf;
|
|
if (bb > state->bb_ramp[0])
|
|
bb = state->bb_ramp[0];
|
|
} else { /* high signal level -> all gains put on RF */
|
|
rf = gain;
|
|
bb = 0;
|
|
}
|
|
|
|
state->gain[0] = rf;
|
|
state->gain[1] = bb;
|
|
|
|
/* software ramp */
|
|
/* Start with RF gains */
|
|
g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
|
|
ref = rf;
|
|
for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
|
|
if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
|
|
v = 0; /* force the gain to write for the current amp to be null */
|
|
else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
|
|
v = g[2]; /* force this amp to be full gain */
|
|
else /* compute the value to set to this amp because we are somewhere in his range */
|
|
v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
|
|
|
|
if (i == 0) /* LNA 1 reg mapping */
|
|
gain_reg[0] = v;
|
|
else if (i == 1) /* LNA 2 reg mapping */
|
|
gain_reg[0] |= v << 7;
|
|
else if (i == 2) /* LNA 3 reg mapping */
|
|
gain_reg[1] = v;
|
|
else if (i == 3) /* LNA 4 reg mapping */
|
|
gain_reg[1] |= v << 7;
|
|
else if (i == 4) /* CBAND LNA reg mapping */
|
|
gain_reg[2] = v | state->rf_lt_def;
|
|
else if (i == 5) /* BB gain 1 reg mapping */
|
|
gain_reg[3] = v << 3;
|
|
else if (i == 6) /* BB gain 2 reg mapping */
|
|
gain_reg[3] |= v << 8;
|
|
|
|
g += 3; /* go to next gain bloc */
|
|
|
|
/* When RF is finished, start with BB */
|
|
if (i == 4) {
|
|
g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
|
|
ref = bb;
|
|
}
|
|
}
|
|
gain_reg[3] |= state->bb_1_def;
|
|
gain_reg[3] |= ((bb % 10) * 100) / 125;
|
|
|
|
#ifdef DEBUG_AGC
|
|
dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
|
|
gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
|
|
#endif
|
|
|
|
/* Write the amplifier regs */
|
|
for (i = 0; i < 4; i++) {
|
|
v = gain_reg[i];
|
|
if (force || state->gain_reg[i] != v) {
|
|
state->gain_reg[i] = v;
|
|
dib0090_write_reg(state, gain_reg_addr[i], v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dib0090_set_boost(struct dib0090_state *state, int onoff)
|
|
{
|
|
state->bb_1_def &= 0xdfff;
|
|
state->bb_1_def |= onoff << 13;
|
|
}
|
|
|
|
static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->rf_ramp = cfg;
|
|
}
|
|
|
|
static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->rf_ramp = cfg;
|
|
|
|
dib0090_write_reg(state, 0x2a, 0xffff);
|
|
|
|
dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
|
|
|
|
dib0090_write_regs(state, 0x2c, cfg + 3, 6);
|
|
dib0090_write_regs(state, 0x3e, cfg + 9, 2);
|
|
}
|
|
|
|
static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->bb_ramp = cfg;
|
|
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
|
|
}
|
|
|
|
static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->bb_ramp = cfg;
|
|
|
|
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
|
|
|
|
dib0090_write_reg(state, 0x33, 0xffff);
|
|
dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
|
|
dib0090_write_regs(state, 0x35, cfg + 3, 4);
|
|
}
|
|
|
|
void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
/* reset the AGC */
|
|
|
|
if (state->config->use_pwm_agc) {
|
|
#ifdef CONFIG_BAND_SBAND
|
|
if (state->current_band == BAND_SBAND) {
|
|
dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband);
|
|
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_CBAND
|
|
if (state->current_band == BAND_CBAND) {
|
|
dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband);
|
|
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
if (state->current_band == BAND_VHF) {
|
|
dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
|
|
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
|
|
} else
|
|
#endif
|
|
{
|
|
dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf);
|
|
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
|
|
}
|
|
|
|
if (state->rf_ramp[0] != 0)
|
|
dib0090_write_reg(state, 0x32, (3 << 11));
|
|
else
|
|
dib0090_write_reg(state, 0x32, (0 << 11));
|
|
|
|
dib0090_write_reg(state, 0x39, (1 << 10));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dib0090_pwm_gain_reset);
|
|
|
|
int dib0090_gain_control(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
enum frontend_tune_state *tune_state = &state->tune_state;
|
|
int ret = 10;
|
|
|
|
u16 wbd_val = 0;
|
|
u8 apply_gain_immediatly = 1;
|
|
s16 wbd_error = 0, adc_error = 0;
|
|
|
|
if (*tune_state == CT_AGC_START) {
|
|
state->agc_freeze = 0;
|
|
dib0090_write_reg(state, 0x04, 0x0);
|
|
|
|
#ifdef CONFIG_BAND_SBAND
|
|
if (state->current_band == BAND_SBAND) {
|
|
dib0090_set_rframp(state, rf_ramp_sband);
|
|
dib0090_set_bbramp(state, bb_ramp_boost);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
if (state->current_band == BAND_VHF) {
|
|
dib0090_set_rframp(state, rf_ramp_vhf);
|
|
dib0090_set_bbramp(state, bb_ramp_boost);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_CBAND
|
|
if (state->current_band == BAND_CBAND) {
|
|
dib0090_set_rframp(state, rf_ramp_cband);
|
|
dib0090_set_bbramp(state, bb_ramp_boost);
|
|
} else
|
|
#endif
|
|
{
|
|
dib0090_set_rframp(state, rf_ramp_uhf);
|
|
dib0090_set_bbramp(state, bb_ramp_boost);
|
|
}
|
|
|
|
dib0090_write_reg(state, 0x32, 0);
|
|
dib0090_write_reg(state, 0x39, 0);
|
|
|
|
dib0090_wbd_target(state, state->current_rf);
|
|
|
|
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
|
|
state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
|
|
|
|
*tune_state = CT_AGC_STEP_0;
|
|
} else if (!state->agc_freeze) {
|
|
s16 wbd;
|
|
|
|
int adc;
|
|
wbd_val = dib0090_read_reg(state, 0x1d);
|
|
|
|
/* read and calc the wbd power */
|
|
wbd = dib0090_wbd_to_db(state, wbd_val);
|
|
wbd_error = state->wbd_target - wbd;
|
|
|
|
if (*tune_state == CT_AGC_STEP_0) {
|
|
if (wbd_error < 0 && state->rf_gain_limit > 0) {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
|
|
u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
|
|
if (state->current_band == BAND_CBAND && ltg2) {
|
|
ltg2 >>= 1;
|
|
state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
|
|
}
|
|
#endif
|
|
} else {
|
|
state->agc_step = 0;
|
|
*tune_state = CT_AGC_STEP_1;
|
|
}
|
|
} else {
|
|
/* calc the adc power */
|
|
adc = state->config->get_adc_power(fe);
|
|
adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
|
|
|
|
adc_error = (s16) (((s32) ADC_TARGET) - adc);
|
|
#ifdef CONFIG_STANDARD_DAB
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
|
|
adc_error += 130;
|
|
#endif
|
|
#ifdef CONFIG_STANDARD_DVBT
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
|
|
(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
|
|
adc_error += 60;
|
|
#endif
|
|
#ifdef CONFIG_SYS_ISDBT
|
|
if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[0].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.layer[0].
|
|
modulation == QAM_16)))
|
|
||
|
|
((state->fe->dtv_property_cache.layer[1].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[1].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.layer[1].
|
|
modulation == QAM_16)))
|
|
||
|
|
((state->fe->dtv_property_cache.layer[2].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[2].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.layer[2].
|
|
modulation == QAM_16)))
|
|
)
|
|
)
|
|
adc_error += 60;
|
|
#endif
|
|
|
|
if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
|
|
if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
|
|
|
|
#ifdef CONFIG_STANDARD_DAB
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
|
|
dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
|
|
dib0090_write_reg(state, 0x04, 0x0);
|
|
} else
|
|
#endif
|
|
{
|
|
dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
|
|
dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
|
|
}
|
|
|
|
*tune_state = CT_AGC_STOP;
|
|
}
|
|
} else {
|
|
/* everything higher than or equal to CT_AGC_STOP means tracking */
|
|
ret = 100; /* 10ms interval */
|
|
apply_gain_immediatly = 0;
|
|
}
|
|
}
|
|
#ifdef DEBUG_AGC
|
|
dprintk
|
|
("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
|
|
(u32) fe->id, (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
|
|
(u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
|
|
#endif
|
|
}
|
|
|
|
/* apply gain */
|
|
if (!state->agc_freeze)
|
|
dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_gain_control);
|
|
|
|
void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (rf)
|
|
*rf = state->gain[0];
|
|
if (bb)
|
|
*bb = state->gain[1];
|
|
if (rf_gain_limit)
|
|
*rf_gain_limit = state->rf_gain_limit;
|
|
if (rflt)
|
|
*rflt = (state->rf_lt_def >> 10) & 0x7;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_get_current_gain);
|
|
|
|
u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner)
|
|
{
|
|
struct dib0090_state *st = tuner->tuner_priv;
|
|
return st->wbd_offset;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_get_wbd_offset);
|
|
|
|
static const u16 dib0090_defaults[] = {
|
|
|
|
25, 0x01,
|
|
0x0000,
|
|
0x99a0,
|
|
0x6008,
|
|
0x0000,
|
|
0x8acb,
|
|
0x0000,
|
|
0x0405,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0xb802,
|
|
0x0300,
|
|
0x2d12,
|
|
0xbac0,
|
|
0x7c00,
|
|
0xdbb9,
|
|
0x0954,
|
|
0x0743,
|
|
0x8000,
|
|
0x0001,
|
|
0x0040,
|
|
0x0100,
|
|
0x0000,
|
|
0xe910,
|
|
0x149e,
|
|
|
|
1, 0x1c,
|
|
0xff2d,
|
|
|
|
1, 0x39,
|
|
0x0000,
|
|
|
|
1, 0x1b,
|
|
EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL,
|
|
2, 0x1e,
|
|
0x07FF,
|
|
0x0007,
|
|
|
|
1, 0x24,
|
|
EN_UHF | EN_CRYSTAL,
|
|
|
|
2, 0x3c,
|
|
0x3ff,
|
|
0x111,
|
|
0
|
|
};
|
|
|
|
static int dib0090_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u16 l, r, *n;
|
|
|
|
dib0090_reset_digital(fe, state->config);
|
|
state->revision = dib0090_identify(fe);
|
|
|
|
/* Revision definition */
|
|
if (state->revision == 0xff)
|
|
return -EINVAL;
|
|
#ifdef EFUSE
|
|
else if ((state->revision & 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */
|
|
dib0090_set_EFUSE(state);
|
|
#endif
|
|
|
|
#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
|
|
if (!(state->revision & 0x1)) /* it is P1B - reset is already done */
|
|
return 0;
|
|
#endif
|
|
|
|
/* Upload the default values */
|
|
n = (u16 *) dib0090_defaults;
|
|
l = pgm_read_word(n++);
|
|
while (l) {
|
|
r = pgm_read_word(n++);
|
|
do {
|
|
/* DEBUG_TUNER */
|
|
/* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */
|
|
dib0090_write_reg(state, r, pgm_read_word(n++));
|
|
r++;
|
|
} while (--l);
|
|
l = pgm_read_word(n++);
|
|
}
|
|
|
|
/* Congigure in function of the crystal */
|
|
if (state->config->io.clock_khz >= 24000)
|
|
l = 1;
|
|
else
|
|
l = 2;
|
|
dib0090_write_reg(state, 0x14, l);
|
|
dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
|
|
|
|
state->reset = 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define steps(u) (((u) > 15) ? ((u)-16) : (u))
|
|
#define INTERN_WAIT 10
|
|
static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = INTERN_WAIT * 10;
|
|
|
|
switch (*tune_state) {
|
|
case CT_TUNER_STEP_2:
|
|
/* Turns to positive */
|
|
dib0090_write_reg(state, 0x1f, 0x7);
|
|
*tune_state = CT_TUNER_STEP_3;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_3:
|
|
state->adc_diff = dib0090_read_reg(state, 0x1d);
|
|
|
|
/* Turns to negative */
|
|
dib0090_write_reg(state, 0x1f, 0x4);
|
|
*tune_state = CT_TUNER_STEP_4;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_4:
|
|
state->adc_diff -= dib0090_read_reg(state, 0x1d);
|
|
*tune_state = CT_TUNER_STEP_5;
|
|
ret = 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct dc_calibration {
|
|
uint8_t addr;
|
|
uint8_t offset;
|
|
uint8_t pga:1;
|
|
uint16_t bb1;
|
|
uint8_t i:1;
|
|
};
|
|
|
|
static const struct dc_calibration dc_table[] = {
|
|
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
|
|
{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
|
|
{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
|
|
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
|
|
{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
|
|
{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
|
|
{0},
|
|
};
|
|
|
|
static void dib0090_set_trim(struct dib0090_state *state)
|
|
{
|
|
u16 *val;
|
|
|
|
if (state->dc->addr == 0x07)
|
|
val = &state->bb7;
|
|
else
|
|
val = &state->bb6;
|
|
|
|
*val &= ~(0x1f << state->dc->offset);
|
|
*val |= state->step << state->dc->offset;
|
|
|
|
dib0090_write_reg(state, state->dc->addr, *val);
|
|
}
|
|
|
|
static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (*tune_state) {
|
|
|
|
case CT_TUNER_START:
|
|
/* init */
|
|
dprintk("Internal DC calibration");
|
|
|
|
/* the LNA is off */
|
|
dib0090_write_reg(state, 0x24, 0x02ed);
|
|
|
|
/* force vcm2 = 0.8V */
|
|
state->bb6 = 0;
|
|
state->bb7 = 0x040d;
|
|
|
|
state->dc = dc_table;
|
|
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
|
|
/* fall through */
|
|
|
|
case CT_TUNER_STEP_0:
|
|
dib0090_write_reg(state, 0x01, state->dc->bb1);
|
|
dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
|
|
|
|
state->step = 0;
|
|
|
|
state->min_adc_diff = 1023;
|
|
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
ret = 50;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_1:
|
|
dib0090_set_trim(state);
|
|
|
|
*tune_state = CT_TUNER_STEP_2;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_2:
|
|
case CT_TUNER_STEP_3:
|
|
case CT_TUNER_STEP_4:
|
|
ret = dib0090_get_offset(state, tune_state);
|
|
break;
|
|
|
|
case CT_TUNER_STEP_5: /* found an offset */
|
|
dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step);
|
|
|
|
/* first turn for this frequency */
|
|
if (state->step == 0) {
|
|
if (state->dc->pga && state->adc_diff < 0)
|
|
state->step = 0x10;
|
|
if (state->dc->pga == 0 && state->adc_diff > 0)
|
|
state->step = 0x10;
|
|
}
|
|
|
|
state->adc_diff = ABS(state->adc_diff);
|
|
|
|
if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) { /* stop search when the delta to 0 is increasing */
|
|
state->step++;
|
|
state->min_adc_diff = state->adc_diff;
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
} else {
|
|
|
|
/* the minimum was what we have seen in the step before */
|
|
state->step--;
|
|
dib0090_set_trim(state);
|
|
|
|
dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff,
|
|
state->step);
|
|
|
|
state->dc++;
|
|
if (state->dc->addr == 0) /* done */
|
|
*tune_state = CT_TUNER_STEP_6;
|
|
else
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
|
|
}
|
|
break;
|
|
|
|
case CT_TUNER_STEP_6:
|
|
dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
|
|
dib0090_write_reg(state, 0x1f, 0x7);
|
|
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
|
|
state->reset &= ~0x1;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
switch (*tune_state) {
|
|
case CT_TUNER_START:
|
|
/* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */
|
|
dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10));
|
|
dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff);
|
|
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
|
|
case CT_TUNER_STEP_0:
|
|
state->wbd_offset = dib0090_read_reg(state, 0x1d);
|
|
dprintk("WBD calibration offset = %d", state->wbd_offset);
|
|
|
|
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
|
|
state->reset &= ~0x2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dib0090_set_bandwidth(struct dib0090_state *state)
|
|
{
|
|
u16 tmp;
|
|
|
|
if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
|
|
tmp = (3 << 14);
|
|
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
|
|
tmp = (2 << 14);
|
|
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
|
|
tmp = (1 << 14);
|
|
else
|
|
tmp = (0 << 14);
|
|
|
|
state->bb_1_def &= 0x3fff;
|
|
state->bb_1_def |= tmp;
|
|
|
|
dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
|
|
}
|
|
|
|
static const struct dib0090_pll dib0090_pll_table[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{56000, 0, 9, 48, 6},
|
|
{70000, 1, 9, 48, 6},
|
|
{87000, 0, 8, 32, 4},
|
|
{105000, 1, 8, 32, 4},
|
|
{115000, 0, 7, 24, 6},
|
|
{140000, 1, 7, 24, 6},
|
|
{170000, 0, 6, 16, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{200000, 1, 6, 16, 4},
|
|
{230000, 0, 5, 12, 6},
|
|
{280000, 1, 5, 12, 6},
|
|
{340000, 0, 4, 8, 4},
|
|
{380000, 1, 4, 8, 4},
|
|
{450000, 0, 3, 6, 6},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{580000, 1, 3, 6, 6},
|
|
{700000, 0, 2, 4, 4},
|
|
{860000, 1, 2, 4, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1800000, 1, 0, 2, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2900000, 0, 14, 1, 4},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
|
|
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table[] = {
|
|
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
|
|
static int dib0090_tune(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
const struct dib0090_tuning *tune = state->current_tune_table_index;
|
|
const struct dib0090_pll *pll = state->current_pll_table_index;
|
|
enum frontend_tune_state *tune_state = &state->tune_state;
|
|
|
|
u32 rf;
|
|
u16 lo4 = 0xe900, lo5, lo6, Den;
|
|
u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
|
|
u16 tmp, adc;
|
|
int8_t step_sign;
|
|
int ret = 10; /* 1ms is the default delay most of the time */
|
|
u8 c, i;
|
|
|
|
state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000);
|
|
rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
|
|
BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf);
|
|
/* in any case we first need to do a reset if needed */
|
|
if (state->reset & 0x1)
|
|
return dib0090_dc_offset_calibration(state, tune_state);
|
|
else if (state->reset & 0x2)
|
|
return dib0090_wbd_calibration(state, tune_state);
|
|
|
|
/************************* VCO ***************************/
|
|
/* Default values for FG */
|
|
/* from these are needed : */
|
|
/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
|
|
|
|
#ifdef CONFIG_SYS_ISDBT
|
|
if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1)
|
|
rf += 850;
|
|
#endif
|
|
|
|
if (state->current_rf != rf) {
|
|
state->tuner_is_tuned = 0;
|
|
|
|
tune = dib0090_tuning_table;
|
|
|
|
tmp = (state->revision >> 5) & 0x7;
|
|
if (tmp == 0x4 || tmp == 0x7) {
|
|
/* CBAND tuner version for VHF */
|
|
if (state->current_band == BAND_FM || state->current_band == BAND_VHF) {
|
|
/* Force CBAND */
|
|
state->current_band = BAND_CBAND;
|
|
tune = dib0090_tuning_table_fm_vhf_on_cband;
|
|
}
|
|
}
|
|
|
|
pll = dib0090_pll_table;
|
|
/* Look for the interval */
|
|
while (rf > tune->max_freq)
|
|
tune++;
|
|
while (rf > pll->max_freq)
|
|
pll++;
|
|
state->current_tune_table_index = tune;
|
|
state->current_pll_table_index = pll;
|
|
}
|
|
|
|
if (*tune_state == CT_TUNER_START) {
|
|
|
|
if (state->tuner_is_tuned == 0)
|
|
state->current_rf = 0;
|
|
|
|
if (state->current_rf != rf) {
|
|
|
|
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
|
|
|
|
/* external loop filter, otherwise:
|
|
* lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
|
|
* lo6 = 0x0e34 */
|
|
if (pll->vco_band)
|
|
lo5 = 0x049e;
|
|
else if (state->config->analog_output)
|
|
lo5 = 0x041d;
|
|
else
|
|
lo5 = 0x041c;
|
|
|
|
lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
|
|
|
|
if (!state->config->io.pll_int_loop_filt)
|
|
lo6 = 0xff28;
|
|
else
|
|
lo6 = (state->config->io.pll_int_loop_filt << 3);
|
|
|
|
VCOF_kHz = (pll->hfdiv * rf) * 2;
|
|
|
|
FREF = state->config->io.clock_khz;
|
|
|
|
FBDiv = (VCOF_kHz / pll->topresc / FREF);
|
|
Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
|
|
|
|
if (Rest < LPF)
|
|
Rest = 0;
|
|
else if (Rest < 2 * LPF)
|
|
Rest = 2 * LPF;
|
|
else if (Rest > (FREF - LPF)) {
|
|
Rest = 0;
|
|
FBDiv += 1;
|
|
} else if (Rest > (FREF - 2 * LPF))
|
|
Rest = FREF - 2 * LPF;
|
|
Rest = (Rest * 6528) / (FREF / 10);
|
|
|
|
Den = 1;
|
|
|
|
dprintk(" ***** ******* Rest value = %d", Rest);
|
|
|
|
if (Rest > 0) {
|
|
if (state->config->analog_output)
|
|
lo6 |= (1 << 2) | 2;
|
|
else
|
|
lo6 |= (1 << 2) | 1;
|
|
Den = 255;
|
|
}
|
|
#ifdef CONFIG_BAND_SBAND
|
|
if (state->current_band == BAND_SBAND)
|
|
lo6 &= 0xfffb;
|
|
#endif
|
|
|
|
dib0090_write_reg(state, 0x15, (u16) FBDiv);
|
|
|
|
dib0090_write_reg(state, 0x16, (Den << 8) | 1);
|
|
|
|
dib0090_write_reg(state, 0x17, (u16) Rest);
|
|
|
|
dib0090_write_reg(state, 0x19, lo5);
|
|
|
|
dib0090_write_reg(state, 0x1c, lo6);
|
|
|
|
lo6 = tune->tuner_enable;
|
|
if (state->config->analog_output)
|
|
lo6 = (lo6 & 0xff9f) | 0x2;
|
|
|
|
dib0090_write_reg(state, 0x24, lo6 | EN_LO
|
|
#ifdef CONFIG_DIB0090_USE_PWM_AGC
|
|
| state->config->use_pwm_agc * EN_CRYSTAL
|
|
#endif
|
|
);
|
|
|
|
state->current_rf = rf;
|
|
|
|
/* prepare a complete captrim */
|
|
state->step = state->captrim = state->fcaptrim = 64;
|
|
|
|
} else { /* we are already tuned to this frequency - the configuration is correct */
|
|
|
|
/* do a minimal captrim even if the frequency has not changed */
|
|
state->step = 4;
|
|
state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
|
|
}
|
|
state->adc_diff = 3000;
|
|
|
|
dib0090_write_reg(state, 0x10, 0x2B1);
|
|
|
|
dib0090_write_reg(state, 0x1e, 0x0032);
|
|
|
|
ret = 20;
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
} else if (*tune_state == CT_TUNER_STEP_0) {
|
|
/* nothing */
|
|
} else if (*tune_state == CT_TUNER_STEP_1) {
|
|
state->step /= 2;
|
|
dib0090_write_reg(state, 0x18, lo4 | state->captrim);
|
|
*tune_state = CT_TUNER_STEP_2;
|
|
} else if (*tune_state == CT_TUNER_STEP_2) {
|
|
|
|
adc = dib0090_read_reg(state, 0x1d);
|
|
dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc,
|
|
(u32) (adc) * (u32) 1800 / (u32) 1024);
|
|
|
|
if (adc >= 400) {
|
|
adc -= 400;
|
|
step_sign = -1;
|
|
} else {
|
|
adc = 400 - adc;
|
|
step_sign = 1;
|
|
}
|
|
|
|
if (adc < state->adc_diff) {
|
|
dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
|
|
state->adc_diff = adc;
|
|
state->fcaptrim = state->captrim;
|
|
|
|
}
|
|
|
|
state->captrim += step_sign * state->step;
|
|
if (state->step >= 1)
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
else
|
|
*tune_state = CT_TUNER_STEP_3;
|
|
|
|
ret = 15;
|
|
} else if (*tune_state == CT_TUNER_STEP_3) {
|
|
/*write the final cptrim config */
|
|
dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
|
|
|
|
#ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY
|
|
state->memory[state->memory_index].cap = state->fcaptrim;
|
|
#endif
|
|
|
|
*tune_state = CT_TUNER_STEP_4;
|
|
} else if (*tune_state == CT_TUNER_STEP_4) {
|
|
dib0090_write_reg(state, 0x1e, 0x07ff);
|
|
|
|
dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim);
|
|
dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code);
|
|
dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band);
|
|
dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf);
|
|
dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz);
|
|
dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
|
|
dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17),
|
|
(u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3);
|
|
|
|
c = 4;
|
|
i = 3;
|
|
#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
|
|
if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) {
|
|
c = 2;
|
|
i = 2;
|
|
}
|
|
#endif
|
|
dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD
|
|
#ifdef CONFIG_DIB0090_USE_PWM_AGC
|
|
| (state->config->use_pwm_agc << 1)
|
|
#endif
|
|
));
|
|
dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0));
|
|
dib0090_write_reg(state, 0x0c, tune->v2i);
|
|
dib0090_write_reg(state, 0x0d, tune->mix);
|
|
dib0090_write_reg(state, 0x0e, tune->load);
|
|
|
|
*tune_state = CT_TUNER_STEP_5;
|
|
} else if (*tune_state == CT_TUNER_STEP_5) {
|
|
|
|
/* initialize the lt gain register */
|
|
state->rf_lt_def = 0x7c00;
|
|
dib0090_write_reg(state, 0x0f, state->rf_lt_def);
|
|
|
|
dib0090_set_bandwidth(state);
|
|
state->tuner_is_tuned = 1;
|
|
*tune_state = CT_TUNER_STOP;
|
|
} else
|
|
ret = FE_CALLBACK_TIME_NEVER;
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_release(struct dvb_frontend *fe)
|
|
{
|
|
kfree(fe->tuner_priv);
|
|
fe->tuner_priv = NULL;
|
|
return 0;
|
|
}
|
|
|
|
enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
return state->tune_state;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_get_tune_state);
|
|
|
|
int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
state->tune_state = tune_state;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_set_tune_state);
|
|
|
|
static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
*frequency = 1000 * state->current_rf;
|
|
return 0;
|
|
}
|
|
|
|
static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
uint32_t ret;
|
|
|
|
state->tune_state = CT_TUNER_START;
|
|
|
|
do {
|
|
ret = dib0090_tune(fe);
|
|
if (ret != FE_CALLBACK_TIME_NEVER)
|
|
msleep(ret / 10);
|
|
else
|
|
break;
|
|
} while (state->tune_state != CT_TUNER_STOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dvb_tuner_ops dib0090_ops = {
|
|
.info = {
|
|
.name = "DiBcom DiB0090",
|
|
.frequency_min = 45000000,
|
|
.frequency_max = 860000000,
|
|
.frequency_step = 1000,
|
|
},
|
|
.release = dib0090_release,
|
|
|
|
.init = dib0090_wakeup,
|
|
.sleep = dib0090_sleep,
|
|
.set_params = dib0090_set_params,
|
|
.get_frequency = dib0090_get_frequency,
|
|
};
|
|
|
|
struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
|
|
{
|
|
struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
st->config = config;
|
|
st->i2c = i2c;
|
|
st->fe = fe;
|
|
fe->tuner_priv = st;
|
|
|
|
if (dib0090_reset(fe) != 0)
|
|
goto free_mem;
|
|
|
|
printk(KERN_INFO "DiB0090: successfully identified\n");
|
|
memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
|
|
|
|
return fe;
|
|
free_mem:
|
|
kfree(st);
|
|
fe->tuner_priv = NULL;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_register);
|
|
|
|
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
|
|
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
|
|
MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
|
|
MODULE_LICENSE("GPL");
|