linux/drivers/rtc/lib.c

200 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* rtc and date/time utility functions
*
* Copyright (C) 2005-06 Tower Technologies
* Author: Alessandro Zummo <a.zummo@towertech.it>
*
* based on arch/arm/common/rtctime.c and other bits
*
* Author: Cassio Neri <cassio.neri@gmail.com> (rtc_time64_to_tm)
*/
#include <linux/export.h>
#include <linux/rtc.h>
static const unsigned char rtc_days_in_month[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static const unsigned short rtc_ydays[2][13] = {
/* Normal years */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
/*
* The number of days in the month.
*/
int rtc_month_days(unsigned int month, unsigned int year)
{
return rtc_days_in_month[month] + (is_leap_year(year) && month == 1);
}
EXPORT_SYMBOL(rtc_month_days);
/*
* The number of days since January 1. (0 to 365)
*/
int rtc_year_days(unsigned int day, unsigned int month, unsigned int year)
{
return rtc_ydays[is_leap_year(year)][month] + day - 1;
}
EXPORT_SYMBOL(rtc_year_days);
/**
* rtc_time64_to_tm - converts time64_t to rtc_time.
*
* @time: The number of seconds since 01-01-1970 00:00:00.
* (Must be positive.)
* @tm: Pointer to the struct rtc_time.
*/
void rtc_time64_to_tm(time64_t time, struct rtc_time *tm)
{
unsigned int secs;
int days;
u64 u64tmp;
u32 u32tmp, udays, century, day_of_century, year_of_century, year,
day_of_year, month, day;
bool is_Jan_or_Feb, is_leap_year;
/* time must be positive */
days = div_s64_rem(time, 86400, &secs);
/* day of the week, 1970-01-01 was a Thursday */
tm->tm_wday = (days + 4) % 7;
/*
* The following algorithm is, basically, Proposition 6.3 of Neri
* and Schneider [1]. In a few words: it works on the computational
* (fictitious) calendar where the year starts in March, month = 2
* (*), and finishes in February, month = 13. This calendar is
* mathematically convenient because the day of the year does not
* depend on whether the year is leap or not. For instance:
*
* March 1st 0-th day of the year;
* ...
* April 1st 31-st day of the year;
* ...
* January 1st 306-th day of the year; (Important!)
* ...
* February 28th 364-th day of the year;
* February 29th 365-th day of the year (if it exists).
*
* After having worked out the date in the computational calendar
* (using just arithmetics) it's easy to convert it to the
* corresponding date in the Gregorian calendar.
*
* [1] "Euclidean Affine Functions and Applications to Calendar
* Algorithms". https://arxiv.org/abs/2102.06959
*
* (*) The numbering of months follows rtc_time more closely and
* thus, is slightly different from [1].
*/
udays = ((u32) days) + 719468;
u32tmp = 4 * udays + 3;
century = u32tmp / 146097;
day_of_century = u32tmp % 146097 / 4;
u32tmp = 4 * day_of_century + 3;
u64tmp = 2939745ULL * u32tmp;
year_of_century = upper_32_bits(u64tmp);
day_of_year = lower_32_bits(u64tmp) / 2939745 / 4;
year = 100 * century + year_of_century;
is_leap_year = year_of_century != 0 ?
year_of_century % 4 == 0 : century % 4 == 0;
u32tmp = 2141 * day_of_year + 132377;
month = u32tmp >> 16;
day = ((u16) u32tmp) / 2141;
/*
* Recall that January 01 is the 306-th day of the year in the
* computational (not Gregorian) calendar.
*/
is_Jan_or_Feb = day_of_year >= 306;
/* Converts to the Gregorian calendar. */
year = year + is_Jan_or_Feb;
month = is_Jan_or_Feb ? month - 12 : month;
day = day + 1;
day_of_year = is_Jan_or_Feb ?
day_of_year - 306 : day_of_year + 31 + 28 + is_leap_year;
/* Converts to rtc_time's format. */
tm->tm_year = (int) (year - 1900);
tm->tm_mon = (int) month;
tm->tm_mday = (int) day;
tm->tm_yday = (int) day_of_year + 1;
tm->tm_hour = secs / 3600;
secs -= tm->tm_hour * 3600;
tm->tm_min = secs / 60;
tm->tm_sec = secs - tm->tm_min * 60;
tm->tm_isdst = 0;
}
EXPORT_SYMBOL(rtc_time64_to_tm);
/*
* Does the rtc_time represent a valid date/time?
*/
int rtc_valid_tm(struct rtc_time *tm)
{
if (tm->tm_year < 70 ||
tm->tm_year > (INT_MAX - 1900) ||
((unsigned int)tm->tm_mon) >= 12 ||
tm->tm_mday < 1 ||
tm->tm_mday > rtc_month_days(tm->tm_mon,
((unsigned int)tm->tm_year + 1900)) ||
((unsigned int)tm->tm_hour) >= 24 ||
((unsigned int)tm->tm_min) >= 60 ||
((unsigned int)tm->tm_sec) >= 60)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(rtc_valid_tm);
/*
* rtc_tm_to_time64 - Converts rtc_time to time64_t.
* Convert Gregorian date to seconds since 01-01-1970 00:00:00.
*/
time64_t rtc_tm_to_time64(struct rtc_time *tm)
{
return mktime64(((unsigned int)tm->tm_year + 1900), tm->tm_mon + 1,
tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
}
EXPORT_SYMBOL(rtc_tm_to_time64);
/*
* Convert rtc_time to ktime
*/
ktime_t rtc_tm_to_ktime(struct rtc_time tm)
{
return ktime_set(rtc_tm_to_time64(&tm), 0);
}
EXPORT_SYMBOL_GPL(rtc_tm_to_ktime);
/*
* Convert ktime to rtc_time
*/
struct rtc_time rtc_ktime_to_tm(ktime_t kt)
{
struct timespec64 ts;
struct rtc_time ret;
ts = ktime_to_timespec64(kt);
/* Round up any ns */
if (ts.tv_nsec)
ts.tv_sec++;
rtc_time64_to_tm(ts.tv_sec, &ret);
return ret;
}
EXPORT_SYMBOL_GPL(rtc_ktime_to_tm);