mirror of https://gitee.com/openkylin/linux.git
186 lines
4.5 KiB
C
186 lines
4.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Handle caching attributes in page tables (PAT)
|
|
*
|
|
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
* Suresh B Siddha <suresh.b.siddha@intel.com>
|
|
*
|
|
* Interval tree used to store the PAT memory type reservations.
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/interval_tree_generic.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pat.h>
|
|
|
|
#include "pat_internal.h"
|
|
|
|
/*
|
|
* The memtype tree keeps track of memory type for specific
|
|
* physical memory areas. Without proper tracking, conflicting memory
|
|
* types in different mappings can cause CPU cache corruption.
|
|
*
|
|
* The tree is an interval tree (augmented rbtree) with tree ordered
|
|
* on starting address. Tree can contain multiple entries for
|
|
* different regions which overlap. All the aliases have the same
|
|
* cache attributes of course.
|
|
*
|
|
* memtype_lock protects the rbtree.
|
|
*/
|
|
static inline u64 memtype_interval_start(struct memtype *memtype)
|
|
{
|
|
return memtype->start;
|
|
}
|
|
|
|
static inline u64 memtype_interval_end(struct memtype *memtype)
|
|
{
|
|
return memtype->end - 1;
|
|
}
|
|
INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
|
|
memtype_interval_start, memtype_interval_end,
|
|
static, memtype_interval)
|
|
|
|
static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED;
|
|
|
|
enum {
|
|
MEMTYPE_EXACT_MATCH = 0,
|
|
MEMTYPE_END_MATCH = 1
|
|
};
|
|
|
|
static struct memtype *memtype_match(u64 start, u64 end, int match_type)
|
|
{
|
|
struct memtype *match;
|
|
|
|
match = memtype_interval_iter_first(&memtype_rbroot, start, end-1);
|
|
while (match != NULL && match->start < end) {
|
|
if ((match_type == MEMTYPE_EXACT_MATCH) &&
|
|
(match->start == start) && (match->end == end))
|
|
return match;
|
|
|
|
if ((match_type == MEMTYPE_END_MATCH) &&
|
|
(match->start < start) && (match->end == end))
|
|
return match;
|
|
|
|
match = memtype_interval_iter_next(match, start, end-1);
|
|
}
|
|
|
|
return NULL; /* Returns NULL if there is no match */
|
|
}
|
|
|
|
static int memtype_check_conflict(u64 start, u64 end,
|
|
enum page_cache_mode reqtype,
|
|
enum page_cache_mode *newtype)
|
|
{
|
|
struct memtype *match;
|
|
enum page_cache_mode found_type = reqtype;
|
|
|
|
match = memtype_interval_iter_first(&memtype_rbroot, start, end-1);
|
|
if (match == NULL)
|
|
goto success;
|
|
|
|
if (match->type != found_type && newtype == NULL)
|
|
goto failure;
|
|
|
|
dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
|
|
found_type = match->type;
|
|
|
|
match = memtype_interval_iter_next(match, start, end-1);
|
|
while (match) {
|
|
if (match->type != found_type)
|
|
goto failure;
|
|
|
|
match = memtype_interval_iter_next(match, start, end-1);
|
|
}
|
|
success:
|
|
if (newtype)
|
|
*newtype = found_type;
|
|
|
|
return 0;
|
|
|
|
failure:
|
|
pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
|
|
current->comm, current->pid, start, end,
|
|
cattr_name(found_type), cattr_name(match->type));
|
|
return -EBUSY;
|
|
}
|
|
|
|
int memtype_check_insert(struct memtype *new,
|
|
enum page_cache_mode *ret_type)
|
|
{
|
|
int err = 0;
|
|
|
|
err = memtype_check_conflict(new->start, new->end, new->type, ret_type);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ret_type)
|
|
new->type = *ret_type;
|
|
|
|
memtype_interval_insert(new, &memtype_rbroot);
|
|
return 0;
|
|
}
|
|
|
|
struct memtype *memtype_erase(u64 start, u64 end)
|
|
{
|
|
struct memtype *data;
|
|
|
|
/*
|
|
* Since the memtype_rbroot tree allows overlapping ranges,
|
|
* memtype_erase() checks with EXACT_MATCH first, i.e. free
|
|
* a whole node for the munmap case. If no such entry is found,
|
|
* it then checks with END_MATCH, i.e. shrink the size of a node
|
|
* from the end for the mremap case.
|
|
*/
|
|
data = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
|
|
if (!data) {
|
|
data = memtype_match(start, end, MEMTYPE_END_MATCH);
|
|
if (!data)
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (data->start == start) {
|
|
/* munmap: erase this node */
|
|
memtype_interval_remove(data, &memtype_rbroot);
|
|
} else {
|
|
/* mremap: update the end value of this node */
|
|
memtype_interval_remove(data, &memtype_rbroot);
|
|
data->end = start;
|
|
memtype_interval_insert(data, &memtype_rbroot);
|
|
return NULL;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
struct memtype *memtype_lookup(u64 addr)
|
|
{
|
|
return memtype_interval_iter_first(&memtype_rbroot, addr,
|
|
addr + PAGE_SIZE-1);
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
int memtype_copy_nth_element(struct memtype *out, loff_t pos)
|
|
{
|
|
struct memtype *match;
|
|
int i = 1;
|
|
|
|
match = memtype_interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
|
|
while (match && pos != i) {
|
|
match = memtype_interval_iter_next(match, 0, ULONG_MAX);
|
|
i++;
|
|
}
|
|
|
|
if (match) { /* pos == i */
|
|
*out = *match;
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|