mirror of https://gitee.com/openkylin/linux.git
619 lines
16 KiB
C
619 lines
16 KiB
C
/*
|
|
* arch/arm/kernel/kprobes.c
|
|
*
|
|
* Kprobes on ARM
|
|
*
|
|
* Abhishek Sagar <sagar.abhishek@gmail.com>
|
|
* Copyright (C) 2006, 2007 Motorola Inc.
|
|
*
|
|
* Nicolas Pitre <nico@marvell.com>
|
|
* Copyright (C) 2007 Marvell Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/stringify.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "kprobes.h"
|
|
#include "patch.h"
|
|
|
|
#define MIN_STACK_SIZE(addr) \
|
|
min((unsigned long)MAX_STACK_SIZE, \
|
|
(unsigned long)current_thread_info() + THREAD_START_SP - (addr))
|
|
|
|
#define flush_insns(addr, size) \
|
|
flush_icache_range((unsigned long)(addr), \
|
|
(unsigned long)(addr) + \
|
|
(size))
|
|
|
|
/* Used as a marker in ARM_pc to note when we're in a jprobe. */
|
|
#define JPROBE_MAGIC_ADDR 0xffffffff
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
kprobe_opcode_t insn;
|
|
kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
|
|
unsigned long addr = (unsigned long)p->addr;
|
|
bool thumb;
|
|
kprobe_decode_insn_t *decode_insn;
|
|
int is;
|
|
|
|
if (in_exception_text(addr))
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
thumb = true;
|
|
addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
|
|
insn = ((u16 *)addr)[0];
|
|
if (is_wide_instruction(insn)) {
|
|
insn <<= 16;
|
|
insn |= ((u16 *)addr)[1];
|
|
decode_insn = thumb32_kprobe_decode_insn;
|
|
} else
|
|
decode_insn = thumb16_kprobe_decode_insn;
|
|
#else /* !CONFIG_THUMB2_KERNEL */
|
|
thumb = false;
|
|
if (addr & 0x3)
|
|
return -EINVAL;
|
|
insn = *p->addr;
|
|
decode_insn = arm_kprobe_decode_insn;
|
|
#endif
|
|
|
|
p->opcode = insn;
|
|
p->ainsn.insn = tmp_insn;
|
|
|
|
switch ((*decode_insn)(insn, &p->ainsn)) {
|
|
case INSN_REJECTED: /* not supported */
|
|
return -EINVAL;
|
|
|
|
case INSN_GOOD: /* instruction uses slot */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
return -ENOMEM;
|
|
for (is = 0; is < MAX_INSN_SIZE; ++is)
|
|
p->ainsn.insn[is] = tmp_insn[is];
|
|
flush_insns(p->ainsn.insn,
|
|
sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
|
|
p->ainsn.insn_fn = (kprobe_insn_fn_t *)
|
|
((uintptr_t)p->ainsn.insn | thumb);
|
|
break;
|
|
|
|
case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
|
|
p->ainsn.insn = NULL;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
unsigned int brkp;
|
|
void *addr;
|
|
|
|
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
|
|
/* Remove any Thumb flag */
|
|
addr = (void *)((uintptr_t)p->addr & ~1);
|
|
|
|
if (is_wide_instruction(p->opcode))
|
|
brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
|
|
else
|
|
brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
|
|
} else {
|
|
kprobe_opcode_t insn = p->opcode;
|
|
|
|
addr = p->addr;
|
|
brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
|
|
|
|
if (insn >= 0xe0000000)
|
|
brkp |= 0xe0000000; /* Unconditional instruction */
|
|
else
|
|
brkp |= insn & 0xf0000000; /* Copy condition from insn */
|
|
}
|
|
|
|
patch_text(addr, brkp);
|
|
}
|
|
|
|
/*
|
|
* The actual disarming is done here on each CPU and synchronized using
|
|
* stop_machine. This synchronization is necessary on SMP to avoid removing
|
|
* a probe between the moment the 'Undefined Instruction' exception is raised
|
|
* and the moment the exception handler reads the faulting instruction from
|
|
* memory. It is also needed to atomically set the two half-words of a 32-bit
|
|
* Thumb breakpoint.
|
|
*/
|
|
int __kprobes __arch_disarm_kprobe(void *p)
|
|
{
|
|
struct kprobe *kp = p;
|
|
void *addr = (void *)((uintptr_t)kp->addr & ~1);
|
|
|
|
__patch_text(addr, kp->opcode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__get_cpu_var(current_kprobe) = p;
|
|
}
|
|
|
|
static void __kprobes
|
|
singlestep_skip(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
|
|
if (is_wide_instruction(p->opcode))
|
|
regs->ARM_pc += 4;
|
|
else
|
|
regs->ARM_pc += 2;
|
|
#else
|
|
regs->ARM_pc += 4;
|
|
#endif
|
|
}
|
|
|
|
static inline void __kprobes
|
|
singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
|
|
{
|
|
p->ainsn.insn_singlestep(p, regs);
|
|
}
|
|
|
|
/*
|
|
* Called with IRQs disabled. IRQs must remain disabled from that point
|
|
* all the way until processing this kprobe is complete. The current
|
|
* kprobes implementation cannot process more than one nested level of
|
|
* kprobe, and that level is reserved for user kprobe handlers, so we can't
|
|
* risk encountering a new kprobe in an interrupt handler.
|
|
*/
|
|
void __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p, *cur;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
cur = kprobe_running();
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
/*
|
|
* First look for a probe which was registered using an address with
|
|
* bit 0 set, this is the usual situation for pointers to Thumb code.
|
|
* If not found, fallback to looking for one with bit 0 clear.
|
|
*/
|
|
p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
|
|
if (!p)
|
|
p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
|
|
|
|
#else /* ! CONFIG_THUMB2_KERNEL */
|
|
p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
|
|
#endif
|
|
|
|
if (p) {
|
|
if (cur) {
|
|
/* Kprobe is pending, so we're recursing. */
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/* A pre- or post-handler probe got us here. */
|
|
kprobes_inc_nmissed_count(p);
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
singlestep(p, regs, kcb);
|
|
restore_previous_kprobe(kcb);
|
|
break;
|
|
default:
|
|
/* impossible cases */
|
|
BUG();
|
|
}
|
|
} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
|
|
/* Probe hit and conditional execution check ok. */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it prepped
|
|
* for calling the break_handler below on re-entry,
|
|
* so get out doing nothing more here.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
singlestep(p, regs, kcb);
|
|
if (p->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
p->post_handler(p, regs, 0);
|
|
}
|
|
reset_current_kprobe();
|
|
}
|
|
} else {
|
|
/*
|
|
* Probe hit but conditional execution check failed,
|
|
* so just skip the instruction and continue as if
|
|
* nothing had happened.
|
|
*/
|
|
singlestep_skip(p, regs);
|
|
}
|
|
} else if (cur) {
|
|
/* We probably hit a jprobe. Call its break handler. */
|
|
if (cur->break_handler && cur->break_handler(cur, regs)) {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
singlestep(cur, regs, kcb);
|
|
if (cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
}
|
|
reset_current_kprobe();
|
|
} else {
|
|
/*
|
|
* The probe was removed and a race is in progress.
|
|
* There is nothing we can do about it. Let's restart
|
|
* the instruction. By the time we can restart, the
|
|
* real instruction will be there.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
kprobe_handler(regs);
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the PC to point back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->ARM_pc = (long)cur->addr;
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
} else {
|
|
reset_current_kprobe();
|
|
}
|
|
break;
|
|
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
|
return 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
/*
|
|
* notify_die() is currently never called on ARM,
|
|
* so this callback is currently empty.
|
|
*/
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/*
|
|
* When a retprobed function returns, trampoline_handler() is called,
|
|
* calling the kretprobe's handler. We construct a struct pt_regs to
|
|
* give a view of registers r0-r11 to the user return-handler. This is
|
|
* not a complete pt_regs structure, but that should be plenty sufficient
|
|
* for kretprobe handlers which should normally be interested in r0 only
|
|
* anyway.
|
|
*/
|
|
void __naked __kprobes kretprobe_trampoline(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"stmdb sp!, {r0 - r11} \n\t"
|
|
"mov r0, sp \n\t"
|
|
"bl trampoline_handler \n\t"
|
|
"mov lr, r0 \n\t"
|
|
"ldmia sp!, {r0 - r11} \n\t"
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
"bx lr \n\t"
|
|
#else
|
|
"mov pc, lr \n\t"
|
|
#endif
|
|
: : : "memory");
|
|
}
|
|
|
|
/* Called from kretprobe_trampoline */
|
|
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
|
|
{
|
|
struct kretprobe_instance *ri = NULL;
|
|
struct hlist_head *head, empty_rp;
|
|
struct hlist_node *node, *tmp;
|
|
unsigned long flags, orig_ret_address = 0;
|
|
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
|
|
|
|
INIT_HLIST_HEAD(&empty_rp);
|
|
kretprobe_hash_lock(current, &head, &flags);
|
|
|
|
/*
|
|
* It is possible to have multiple instances associated with a given
|
|
* task either because multiple functions in the call path have
|
|
* a return probe installed on them, and/or more than one return
|
|
* probe was registered for a target function.
|
|
*
|
|
* We can handle this because:
|
|
* - instances are always inserted at the head of the list
|
|
* - when multiple return probes are registered for the same
|
|
* function, the first instance's ret_addr will point to the
|
|
* real return address, and all the rest will point to
|
|
* kretprobe_trampoline
|
|
*/
|
|
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
|
|
if (ri->task != current)
|
|
/* another task is sharing our hash bucket */
|
|
continue;
|
|
|
|
if (ri->rp && ri->rp->handler) {
|
|
__get_cpu_var(current_kprobe) = &ri->rp->kp;
|
|
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
ri->rp->handler(ri, regs);
|
|
__get_cpu_var(current_kprobe) = NULL;
|
|
}
|
|
|
|
orig_ret_address = (unsigned long)ri->ret_addr;
|
|
recycle_rp_inst(ri, &empty_rp);
|
|
|
|
if (orig_ret_address != trampoline_address)
|
|
/*
|
|
* This is the real return address. Any other
|
|
* instances associated with this task are for
|
|
* other calls deeper on the call stack
|
|
*/
|
|
break;
|
|
}
|
|
|
|
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
kretprobe_hash_unlock(current, &flags);
|
|
|
|
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
|
|
hlist_del(&ri->hlist);
|
|
kfree(ri);
|
|
}
|
|
|
|
return (void *)orig_ret_address;
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
|
|
|
|
/* Replace the return addr with trampoline addr. */
|
|
regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
|
|
}
|
|
|
|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
long sp_addr = regs->ARM_sp;
|
|
long cpsr;
|
|
|
|
kcb->jprobe_saved_regs = *regs;
|
|
memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
|
|
regs->ARM_pc = (long)jp->entry;
|
|
|
|
cpsr = regs->ARM_cpsr | PSR_I_BIT;
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
/* Set correct Thumb state in cpsr */
|
|
if (regs->ARM_pc & 1)
|
|
cpsr |= PSR_T_BIT;
|
|
else
|
|
cpsr &= ~PSR_T_BIT;
|
|
#endif
|
|
regs->ARM_cpsr = cpsr;
|
|
|
|
preempt_disable();
|
|
return 1;
|
|
}
|
|
|
|
void __kprobes jprobe_return(void)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
__asm__ __volatile__ (
|
|
/*
|
|
* Setup an empty pt_regs. Fill SP and PC fields as
|
|
* they're needed by longjmp_break_handler.
|
|
*
|
|
* We allocate some slack between the original SP and start of
|
|
* our fabricated regs. To be precise we want to have worst case
|
|
* covered which is STMFD with all 16 regs so we allocate 2 *
|
|
* sizeof(struct_pt_regs)).
|
|
*
|
|
* This is to prevent any simulated instruction from writing
|
|
* over the regs when they are accessing the stack.
|
|
*/
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
"sub r0, %0, %1 \n\t"
|
|
"mov sp, r0 \n\t"
|
|
#else
|
|
"sub sp, %0, %1 \n\t"
|
|
#endif
|
|
"ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
|
|
"str %0, [sp, %2] \n\t"
|
|
"str r0, [sp, %3] \n\t"
|
|
"mov r0, sp \n\t"
|
|
"bl kprobe_handler \n\t"
|
|
|
|
/*
|
|
* Return to the context saved by setjmp_pre_handler
|
|
* and restored by longjmp_break_handler.
|
|
*/
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
"ldr lr, [sp, %2] \n\t" /* lr = saved sp */
|
|
"ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
|
|
"ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
|
|
"stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
|
|
/* rfe context */
|
|
"ldmia sp, {r0 - r12} \n\t"
|
|
"mov sp, lr \n\t"
|
|
"ldr lr, [sp], #4 \n\t"
|
|
"rfeia sp! \n\t"
|
|
#else
|
|
"ldr r0, [sp, %4] \n\t"
|
|
"msr cpsr_cxsf, r0 \n\t"
|
|
"ldmia sp, {r0 - pc} \n\t"
|
|
#endif
|
|
:
|
|
: "r" (kcb->jprobe_saved_regs.ARM_sp),
|
|
"I" (sizeof(struct pt_regs) * 2),
|
|
"J" (offsetof(struct pt_regs, ARM_sp)),
|
|
"J" (offsetof(struct pt_regs, ARM_pc)),
|
|
"J" (offsetof(struct pt_regs, ARM_cpsr)),
|
|
"J" (offsetof(struct pt_regs, ARM_lr))
|
|
: "memory", "cc");
|
|
}
|
|
|
|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
|
|
long orig_sp = regs->ARM_sp;
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
|
if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
|
|
if (orig_sp != stack_addr) {
|
|
struct pt_regs *saved_regs =
|
|
(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
|
|
printk("current sp %lx does not match saved sp %lx\n",
|
|
orig_sp, stack_addr);
|
|
printk("Saved registers for jprobe %p\n", jp);
|
|
show_regs(saved_regs);
|
|
printk("Current registers\n");
|
|
show_regs(regs);
|
|
BUG();
|
|
}
|
|
*regs = kcb->jprobe_saved_regs;
|
|
memcpy((void *)stack_addr, kcb->jprobes_stack,
|
|
MIN_STACK_SIZE(stack_addr));
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
|
|
static struct undef_hook kprobes_thumb16_break_hook = {
|
|
.instr_mask = 0xffff,
|
|
.instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
|
|
.cpsr_mask = MODE_MASK,
|
|
.cpsr_val = SVC_MODE,
|
|
.fn = kprobe_trap_handler,
|
|
};
|
|
|
|
static struct undef_hook kprobes_thumb32_break_hook = {
|
|
.instr_mask = 0xffffffff,
|
|
.instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
|
|
.cpsr_mask = MODE_MASK,
|
|
.cpsr_val = SVC_MODE,
|
|
.fn = kprobe_trap_handler,
|
|
};
|
|
|
|
#else /* !CONFIG_THUMB2_KERNEL */
|
|
|
|
static struct undef_hook kprobes_arm_break_hook = {
|
|
.instr_mask = 0x0fffffff,
|
|
.instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
|
|
.cpsr_mask = MODE_MASK,
|
|
.cpsr_val = SVC_MODE,
|
|
.fn = kprobe_trap_handler,
|
|
};
|
|
|
|
#endif /* !CONFIG_THUMB2_KERNEL */
|
|
|
|
int __init arch_init_kprobes()
|
|
{
|
|
arm_kprobe_decode_init();
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
register_undef_hook(&kprobes_thumb16_break_hook);
|
|
register_undef_hook(&kprobes_thumb32_break_hook);
|
|
#else
|
|
register_undef_hook(&kprobes_arm_break_hook);
|
|
#endif
|
|
return 0;
|
|
}
|