linux/drivers/net/wireless/rsi/rsi_91x_sdio_ops.c

452 lines
11 KiB
C

/**
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <net/rsi_91x.h>
#include "rsi_sdio.h"
#include "rsi_common.h"
/**
* rsi_sdio_master_access_msword() - This function sets the AHB master access
* MS word in the SDIO slave registers.
* @adapter: Pointer to the adapter structure.
* @ms_word: ms word need to be initialized.
*
* Return: status: 0 on success, -1 on failure.
*/
int rsi_sdio_master_access_msword(struct rsi_hw *adapter, u16 ms_word)
{
u8 byte;
u8 function = 0;
int status = 0;
byte = (u8)(ms_word & 0x00FF);
rsi_dbg(INIT_ZONE,
"%s: MASTER_ACCESS_MSBYTE:0x%x\n", __func__, byte);
status = rsi_sdio_write_register(adapter,
function,
SDIO_MASTER_ACCESS_MSBYTE,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: fail to access MASTER_ACCESS_MSBYTE\n",
__func__);
return -1;
}
byte = (u8)(ms_word >> 8);
rsi_dbg(INIT_ZONE, "%s:MASTER_ACCESS_LSBYTE:0x%x\n", __func__, byte);
status = rsi_sdio_write_register(adapter,
function,
SDIO_MASTER_ACCESS_LSBYTE,
&byte);
return status;
}
void rsi_sdio_rx_thread(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
struct rsi_91x_sdiodev *sdev = adapter->rsi_dev;
struct sk_buff *skb;
int status;
do {
rsi_wait_event(&sdev->rx_thread.event, EVENT_WAIT_FOREVER);
rsi_reset_event(&sdev->rx_thread.event);
while (true) {
if (atomic_read(&sdev->rx_thread.thread_done))
goto out;
skb = skb_dequeue(&sdev->rx_q.head);
if (!skb)
break;
if (sdev->rx_q.num_rx_pkts > 0)
sdev->rx_q.num_rx_pkts--;
status = rsi_read_pkt(common, skb->data, skb->len);
if (status) {
rsi_dbg(ERR_ZONE, "Failed to read the packet\n");
dev_kfree_skb(skb);
break;
}
dev_kfree_skb(skb);
}
} while (1);
out:
rsi_dbg(INFO_ZONE, "%s: Terminated SDIO RX thread\n", __func__);
skb_queue_purge(&sdev->rx_q.head);
atomic_inc(&sdev->rx_thread.thread_done);
complete_and_exit(&sdev->rx_thread.completion, 0);
}
/**
* rsi_process_pkt() - This Function reads rx_blocks register and figures out
* the size of the rx pkt.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_process_pkt(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 num_blks = 0;
u32 rcv_pkt_len = 0;
int status = 0;
u8 value = 0;
struct sk_buff *skb;
if (dev->rx_q.num_rx_pkts >= RSI_MAX_RX_PKTS)
return 0;
num_blks = ((adapter->interrupt_status & 1) |
((adapter->interrupt_status >> RECV_NUM_BLOCKS) << 1));
if (!num_blks) {
status = rsi_sdio_read_register(adapter,
SDIO_RX_NUM_BLOCKS_REG,
&value);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read pkt length from the card:\n",
__func__);
return status;
}
num_blks = value & 0x1f;
}
if (dev->write_fail == 2)
rsi_sdio_ack_intr(common->priv, (1 << MSDU_PKT_PENDING));
if (unlikely(!num_blks)) {
dev->write_fail = 2;
return -1;
}
rcv_pkt_len = (num_blks * 256);
skb = dev_alloc_skb(rcv_pkt_len);
if (!skb)
return -ENOMEM;
status = rsi_sdio_host_intf_read_pkt(adapter, skb->data, rcv_pkt_len);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Failed to read packet from card\n",
__func__);
dev_kfree_skb(skb);
return status;
}
skb_put(skb, rcv_pkt_len);
skb_queue_tail(&dev->rx_q.head, skb);
dev->rx_q.num_rx_pkts++;
rsi_set_event(&dev->rx_thread.event);
return 0;
}
/**
* rsi_init_sdio_slave_regs() - This function does the actual initialization
* of SDBUS slave registers.
* @adapter: Pointer to the adapter structure.
*
* Return: status: 0 on success, -1 on failure.
*/
int rsi_init_sdio_slave_regs(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 function = 0;
u8 byte;
int status = 0;
if (dev->next_read_delay) {
byte = dev->next_read_delay;
status = rsi_sdio_write_register(adapter,
function,
SDIO_NXT_RD_DELAY2,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_NXT_RD_DELAY2\n",
__func__);
return -1;
}
}
if (dev->sdio_high_speed_enable) {
rsi_dbg(INIT_ZONE, "%s: Enabling SDIO High speed\n", __func__);
byte = 0x3;
status = rsi_sdio_write_register(adapter,
function,
SDIO_REG_HIGH_SPEED,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to enable SDIO high speed\n",
__func__);
return -1;
}
}
/* This tells SDIO FIFO when to start read to host */
rsi_dbg(INIT_ZONE, "%s: Initialzing SDIO read start level\n", __func__);
byte = 0x24;
status = rsi_sdio_write_register(adapter,
function,
SDIO_READ_START_LVL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_READ_START_LVL\n", __func__);
return -1;
}
rsi_dbg(INIT_ZONE, "%s: Initialzing FIFO ctrl registers\n", __func__);
byte = (128 - 32);
status = rsi_sdio_write_register(adapter,
function,
SDIO_READ_FIFO_CTL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_READ_FIFO_CTL\n", __func__);
return -1;
}
byte = 32;
status = rsi_sdio_write_register(adapter,
function,
SDIO_WRITE_FIFO_CTL,
&byte);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO_WRITE_FIFO_CTL\n", __func__);
return -1;
}
return 0;
}
/**
* rsi_interrupt_handler() - This function read and process SDIO interrupts.
* @adapter: Pointer to the adapter structure.
*
* Return: None.
*/
void rsi_interrupt_handler(struct rsi_hw *adapter)
{
struct rsi_common *common = adapter->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status;
enum sdio_interrupt_type isr_type;
u8 isr_status = 0;
u8 fw_status = 0;
dev->rx_info.sdio_int_counter++;
do {
mutex_lock(&common->rx_lock);
status = rsi_sdio_read_register(common->priv,
RSI_FN1_INT_REGISTER,
&isr_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to Read Intr Status Register\n",
__func__);
mutex_unlock(&common->rx_lock);
return;
}
adapter->interrupt_status = isr_status;
if (isr_status == 0) {
rsi_set_event(&common->tx_thread.event);
dev->rx_info.sdio_intr_status_zero++;
mutex_unlock(&common->rx_lock);
return;
}
rsi_dbg(ISR_ZONE, "%s: Intr_status = %x %d %d\n",
__func__, isr_status, (1 << MSDU_PKT_PENDING),
(1 << FW_ASSERT_IND));
do {
RSI_GET_SDIO_INTERRUPT_TYPE(isr_status, isr_type);
switch (isr_type) {
case BUFFER_AVAILABLE:
status = rsi_sdio_check_buffer_status(adapter,
0);
if (status < 0)
rsi_dbg(ERR_ZONE,
"%s: Failed to check buffer status\n",
__func__);
rsi_sdio_ack_intr(common->priv,
(1 << PKT_BUFF_AVAILABLE));
rsi_set_event(&common->tx_thread.event);
rsi_dbg(ISR_ZONE,
"%s: ==> BUFFER_AVAILABLE <==\n",
__func__);
dev->buff_status_updated = true;
break;
case FIRMWARE_ASSERT_IND:
rsi_dbg(ERR_ZONE,
"%s: ==> FIRMWARE Assert <==\n",
__func__);
status = rsi_sdio_read_register(common->priv,
SDIO_FW_STATUS_REG,
&fw_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read f/w reg\n",
__func__);
} else {
rsi_dbg(ERR_ZONE,
"%s: Firmware Status is 0x%x\n",
__func__ , fw_status);
rsi_sdio_ack_intr(common->priv,
(1 << FW_ASSERT_IND));
}
common->fsm_state = FSM_CARD_NOT_READY;
break;
case MSDU_PACKET_PENDING:
rsi_dbg(ISR_ZONE, "Pkt pending interrupt\n");
dev->rx_info.total_sdio_msdu_pending_intr++;
status = rsi_process_pkt(common);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read pkt\n",
__func__);
mutex_unlock(&common->rx_lock);
return;
}
break;
default:
rsi_sdio_ack_intr(common->priv, isr_status);
dev->rx_info.total_sdio_unknown_intr++;
isr_status = 0;
rsi_dbg(ISR_ZONE,
"Unknown Interrupt %x\n",
isr_status);
break;
}
isr_status ^= BIT(isr_type - 1);
} while (isr_status);
mutex_unlock(&common->rx_lock);
} while (1);
}
/* This function is used to read buffer status register and
* set relevant fields in rsi_91x_sdiodev struct.
*/
int rsi_sdio_check_buffer_status(struct rsi_hw *adapter, u8 q_num)
{
struct rsi_common *common = adapter->priv;
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 buf_status = 0;
int status = 0;
static int counter = 4;
if (!dev->buff_status_updated && counter) {
counter--;
goto out;
}
dev->buff_status_updated = false;
status = rsi_sdio_read_register(common->priv,
RSI_DEVICE_BUFFER_STATUS_REGISTER,
&buf_status);
if (status) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read status register\n", __func__);
return -1;
}
if (buf_status & (BIT(PKT_MGMT_BUFF_FULL))) {
if (!dev->rx_info.mgmt_buffer_full)
dev->rx_info.mgmt_buf_full_counter++;
dev->rx_info.mgmt_buffer_full = true;
} else {
dev->rx_info.mgmt_buffer_full = false;
}
if (buf_status & (BIT(PKT_BUFF_FULL))) {
if (!dev->rx_info.buffer_full)
dev->rx_info.buf_full_counter++;
dev->rx_info.buffer_full = true;
} else {
dev->rx_info.buffer_full = false;
}
if (buf_status & (BIT(PKT_BUFF_SEMI_FULL))) {
if (!dev->rx_info.semi_buffer_full)
dev->rx_info.buf_semi_full_counter++;
dev->rx_info.semi_buffer_full = true;
} else {
dev->rx_info.semi_buffer_full = false;
}
if (dev->rx_info.mgmt_buffer_full || dev->rx_info.buf_full_counter)
counter = 1;
else
counter = 4;
out:
if ((q_num == MGMT_SOFT_Q) && (dev->rx_info.mgmt_buffer_full))
return QUEUE_FULL;
if ((q_num < MGMT_SOFT_Q) && (dev->rx_info.buffer_full))
return QUEUE_FULL;
return QUEUE_NOT_FULL;
}
/**
* rsi_sdio_determine_event_timeout() - This Function determines the event
* timeout duration.
* @adapter: Pointer to the adapter structure.
*
* Return: timeout duration is returned.
*/
int rsi_sdio_determine_event_timeout(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
/* Once buffer full is seen, event timeout to occur every 2 msecs */
if (dev->rx_info.buffer_full)
return 2;
return EVENT_WAIT_FOREVER;
}