linux/net/rxrpc/ar-peer.c

318 lines
7.4 KiB
C

/* RxRPC remote transport endpoint management
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/icmp.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <net/ip.h>
#include <net/route.h>
#include "ar-internal.h"
static LIST_HEAD(rxrpc_peers);
static DEFINE_RWLOCK(rxrpc_peer_lock);
static DECLARE_WAIT_QUEUE_HEAD(rxrpc_peer_wq);
static void rxrpc_destroy_peer(struct work_struct *work);
/*
* assess the MTU size for the network interface through which this peer is
* reached
*/
static void rxrpc_assess_MTU_size(struct rxrpc_peer *peer)
{
struct rtable *rt;
struct flowi fl;
int ret;
peer->if_mtu = 1500;
memset(&fl, 0, sizeof(fl));
switch (peer->srx.transport.family) {
case AF_INET:
fl.oif = 0;
fl.proto = IPPROTO_UDP,
fl.fl4_dst = peer->srx.transport.sin.sin_addr.s_addr;
fl.fl4_src = 0;
fl.fl4_tos = 0;
/* assume AFS.CM talking to AFS.FS */
fl.fl_ip_sport = htons(7001);
fl.fl_ip_dport = htons(7000);
break;
default:
BUG();
}
ret = ip_route_output_key(&init_net, &rt, &fl);
if (ret < 0) {
_leave(" [route err %d]", ret);
return;
}
peer->if_mtu = dst_mtu(&rt->dst);
dst_release(&rt->dst);
_leave(" [if_mtu %u]", peer->if_mtu);
}
/*
* allocate a new peer
*/
static struct rxrpc_peer *rxrpc_alloc_peer(struct sockaddr_rxrpc *srx,
gfp_t gfp)
{
struct rxrpc_peer *peer;
_enter("");
peer = kzalloc(sizeof(struct rxrpc_peer), gfp);
if (peer) {
INIT_WORK(&peer->destroyer, &rxrpc_destroy_peer);
INIT_LIST_HEAD(&peer->link);
INIT_LIST_HEAD(&peer->error_targets);
spin_lock_init(&peer->lock);
atomic_set(&peer->usage, 1);
peer->debug_id = atomic_inc_return(&rxrpc_debug_id);
memcpy(&peer->srx, srx, sizeof(*srx));
rxrpc_assess_MTU_size(peer);
peer->mtu = peer->if_mtu;
if (srx->transport.family == AF_INET) {
peer->hdrsize = sizeof(struct iphdr);
switch (srx->transport_type) {
case SOCK_DGRAM:
peer->hdrsize += sizeof(struct udphdr);
break;
default:
BUG();
break;
}
} else {
BUG();
}
peer->hdrsize += sizeof(struct rxrpc_header);
peer->maxdata = peer->mtu - peer->hdrsize;
}
_leave(" = %p", peer);
return peer;
}
/*
* obtain a remote transport endpoint for the specified address
*/
struct rxrpc_peer *rxrpc_get_peer(struct sockaddr_rxrpc *srx, gfp_t gfp)
{
struct rxrpc_peer *peer, *candidate;
const char *new = "old";
int usage;
_enter("{%d,%d,%pI4+%hu}",
srx->transport_type,
srx->transport_len,
&srx->transport.sin.sin_addr,
ntohs(srx->transport.sin.sin_port));
/* search the peer list first */
read_lock_bh(&rxrpc_peer_lock);
list_for_each_entry(peer, &rxrpc_peers, link) {
_debug("check PEER %d { u=%d t=%d l=%d }",
peer->debug_id,
atomic_read(&peer->usage),
peer->srx.transport_type,
peer->srx.transport_len);
if (atomic_read(&peer->usage) > 0 &&
peer->srx.transport_type == srx->transport_type &&
peer->srx.transport_len == srx->transport_len &&
memcmp(&peer->srx.transport,
&srx->transport,
srx->transport_len) == 0)
goto found_extant_peer;
}
read_unlock_bh(&rxrpc_peer_lock);
/* not yet present - create a candidate for a new record and then
* redo the search */
candidate = rxrpc_alloc_peer(srx, gfp);
if (!candidate) {
_leave(" = -ENOMEM");
return ERR_PTR(-ENOMEM);
}
write_lock_bh(&rxrpc_peer_lock);
list_for_each_entry(peer, &rxrpc_peers, link) {
if (atomic_read(&peer->usage) > 0 &&
peer->srx.transport_type == srx->transport_type &&
peer->srx.transport_len == srx->transport_len &&
memcmp(&peer->srx.transport,
&srx->transport,
srx->transport_len) == 0)
goto found_extant_second;
}
/* we can now add the new candidate to the list */
peer = candidate;
candidate = NULL;
list_add_tail(&peer->link, &rxrpc_peers);
write_unlock_bh(&rxrpc_peer_lock);
new = "new";
success:
_net("PEER %s %d {%d,%u,%pI4+%hu}",
new,
peer->debug_id,
peer->srx.transport_type,
peer->srx.transport.family,
&peer->srx.transport.sin.sin_addr,
ntohs(peer->srx.transport.sin.sin_port));
_leave(" = %p {u=%d}", peer, atomic_read(&peer->usage));
return peer;
/* we found the peer in the list immediately */
found_extant_peer:
usage = atomic_inc_return(&peer->usage);
read_unlock_bh(&rxrpc_peer_lock);
goto success;
/* we found the peer on the second time through the list */
found_extant_second:
usage = atomic_inc_return(&peer->usage);
write_unlock_bh(&rxrpc_peer_lock);
kfree(candidate);
goto success;
}
/*
* find the peer associated with a packet
*/
struct rxrpc_peer *rxrpc_find_peer(struct rxrpc_local *local,
__be32 addr, __be16 port)
{
struct rxrpc_peer *peer;
_enter("");
/* search the peer list */
read_lock_bh(&rxrpc_peer_lock);
if (local->srx.transport.family == AF_INET &&
local->srx.transport_type == SOCK_DGRAM
) {
list_for_each_entry(peer, &rxrpc_peers, link) {
if (atomic_read(&peer->usage) > 0 &&
peer->srx.transport_type == SOCK_DGRAM &&
peer->srx.transport.family == AF_INET &&
peer->srx.transport.sin.sin_port == port &&
peer->srx.transport.sin.sin_addr.s_addr == addr)
goto found_UDP_peer;
}
goto new_UDP_peer;
}
read_unlock_bh(&rxrpc_peer_lock);
_leave(" = -EAFNOSUPPORT");
return ERR_PTR(-EAFNOSUPPORT);
found_UDP_peer:
_net("Rx UDP DGRAM from peer %d", peer->debug_id);
atomic_inc(&peer->usage);
read_unlock_bh(&rxrpc_peer_lock);
_leave(" = %p", peer);
return peer;
new_UDP_peer:
_net("Rx UDP DGRAM from NEW peer %d", peer->debug_id);
read_unlock_bh(&rxrpc_peer_lock);
_leave(" = -EBUSY [new]");
return ERR_PTR(-EBUSY);
}
/*
* release a remote transport endpoint
*/
void rxrpc_put_peer(struct rxrpc_peer *peer)
{
_enter("%p{u=%d}", peer, atomic_read(&peer->usage));
ASSERTCMP(atomic_read(&peer->usage), >, 0);
if (likely(!atomic_dec_and_test(&peer->usage))) {
_leave(" [in use]");
return;
}
rxrpc_queue_work(&peer->destroyer);
_leave("");
}
/*
* destroy a remote transport endpoint
*/
static void rxrpc_destroy_peer(struct work_struct *work)
{
struct rxrpc_peer *peer =
container_of(work, struct rxrpc_peer, destroyer);
_enter("%p{%d}", peer, atomic_read(&peer->usage));
write_lock_bh(&rxrpc_peer_lock);
list_del(&peer->link);
write_unlock_bh(&rxrpc_peer_lock);
_net("DESTROY PEER %d", peer->debug_id);
kfree(peer);
if (list_empty(&rxrpc_peers))
wake_up_all(&rxrpc_peer_wq);
_leave("");
}
/*
* preemptively destroy all the peer records from a transport endpoint rather
* than waiting for them to time out
*/
void __exit rxrpc_destroy_all_peers(void)
{
DECLARE_WAITQUEUE(myself,current);
_enter("");
/* we simply have to wait for them to go away */
if (!list_empty(&rxrpc_peers)) {
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&rxrpc_peer_wq, &myself);
while (!list_empty(&rxrpc_peers)) {
schedule();
set_current_state(TASK_UNINTERRUPTIBLE);
}
remove_wait_queue(&rxrpc_peer_wq, &myself);
set_current_state(TASK_RUNNING);
}
_leave("");
}