linux/drivers/video/aty/aty128fb.c

2558 lines
65 KiB
C

/* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
* linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
*
* Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
* Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
*
* Ani Joshi / Jeff Garzik
* - Code cleanup
*
* Michel Danzer <michdaen@iiic.ethz.ch>
* - 15/16 bit cleanup
* - fix panning
*
* Benjamin Herrenschmidt
* - pmac-specific PM stuff
* - various fixes & cleanups
*
* Andreas Hundt <andi@convergence.de>
* - FB_ACTIVATE fixes
*
* Paul Mackerras <paulus@samba.org>
* - Convert to new framebuffer API,
* fix colormap setting at 16 bits/pixel (565)
*
* Paul Mundt
* - PCI hotplug
*
* Jon Smirl <jonsmirl@yahoo.com>
* - PCI ID update
* - replace ROM BIOS search
*
* Based off of Geert's atyfb.c and vfb.c.
*
* TODO:
* - monitor sensing (DDC)
* - virtual display
* - other platform support (only ppc/x86 supported)
* - hardware cursor support
*
* Please cc: your patches to brad@neruo.com.
*/
/*
* A special note of gratitude to ATI's devrel for providing documentation,
* example code and hardware. Thanks Nitya. -atong and brad
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/backlight.h>
#include <asm/io.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include "../macmodes.h"
#endif
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
#ifdef CONFIG_BOOTX_TEXT
#include <asm/btext.h>
#endif /* CONFIG_BOOTX_TEXT */
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include <video/aty128.h>
/* Debug flag */
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
#else
#define DBG(fmt, args...)
#endif
#ifndef CONFIG_PPC_PMAC
/* default mode */
static struct fb_var_screeninfo default_var __devinitdata = {
/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
640, 480, 640, 480, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
0, FB_VMODE_NONINTERLACED
};
#else /* CONFIG_PPC_PMAC */
/* default to 1024x768 at 75Hz on PPC - this will work
* on the iMac, the usual 640x480 @ 60Hz doesn't. */
static struct fb_var_screeninfo default_var = {
/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
1024, 768, 1024, 768, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
FB_VMODE_NONINTERLACED
};
#endif /* CONFIG_PPC_PMAC */
/* default modedb mode */
/* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
static struct fb_videomode defaultmode __devinitdata = {
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39722,
.left_margin = 48,
.right_margin = 16,
.upper_margin = 33,
.lower_margin = 10,
.hsync_len = 96,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
/* Chip generations */
enum {
rage_128,
rage_128_pci,
rage_128_pro,
rage_128_pro_pci,
rage_M3,
rage_M3_pci,
rage_M4,
rage_128_ultra,
};
/* Must match above enum */
static const char *r128_family[] __devinitdata = {
"AGP",
"PCI",
"PRO AGP",
"PRO PCI",
"M3 AGP",
"M3 PCI",
"M4 AGP",
"Ultra AGP",
};
/*
* PCI driver prototypes
*/
static int aty128_probe(struct pci_dev *pdev,
const struct pci_device_id *ent);
static void aty128_remove(struct pci_dev *pdev);
static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
static int aty128_pci_resume(struct pci_dev *pdev);
static int aty128_do_resume(struct pci_dev *pdev);
/* supported Rage128 chipsets */
static struct pci_device_id aty128_pci_tbl[] = {
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
static struct pci_driver aty128fb_driver = {
.name = "aty128fb",
.id_table = aty128_pci_tbl,
.probe = aty128_probe,
.remove = __devexit_p(aty128_remove),
.suspend = aty128_pci_suspend,
.resume = aty128_pci_resume,
};
/* packed BIOS settings */
#ifndef CONFIG_PPC
typedef struct {
u8 clock_chip_type;
u8 struct_size;
u8 accelerator_entry;
u8 VGA_entry;
u16 VGA_table_offset;
u16 POST_table_offset;
u16 XCLK;
u16 MCLK;
u8 num_PLL_blocks;
u8 size_PLL_blocks;
u16 PCLK_ref_freq;
u16 PCLK_ref_divider;
u32 PCLK_min_freq;
u32 PCLK_max_freq;
u16 MCLK_ref_freq;
u16 MCLK_ref_divider;
u32 MCLK_min_freq;
u32 MCLK_max_freq;
u16 XCLK_ref_freq;
u16 XCLK_ref_divider;
u32 XCLK_min_freq;
u32 XCLK_max_freq;
} __attribute__ ((packed)) PLL_BLOCK;
#endif /* !CONFIG_PPC */
/* onboard memory information */
struct aty128_meminfo {
u8 ML;
u8 MB;
u8 Trcd;
u8 Trp;
u8 Twr;
u8 CL;
u8 Tr2w;
u8 LoopLatency;
u8 DspOn;
u8 Rloop;
const char *name;
};
/* various memory configurations */
static const struct aty128_meminfo sdr_128 =
{ 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_64 =
{ 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_sgram =
{ 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
static const struct aty128_meminfo ddr_sgram =
{ 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
.id = "ATY Rage128",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 8,
.ypanstep = 1,
.mmio_len = 0x2000,
.accel = FB_ACCEL_ATI_RAGE128,
};
static char *mode_option __devinitdata = NULL;
#ifdef CONFIG_PPC_PMAC
static int default_vmode __devinitdata = VMODE_1024_768_60;
static int default_cmode __devinitdata = CMODE_8;
#endif
static int default_crt_on __devinitdata = 0;
static int default_lcd_on __devinitdata = 1;
#ifdef CONFIG_MTRR
static int mtrr = 1;
#endif
#ifdef CONFIG_PMAC_BACKLIGHT
static int backlight __devinitdata = 1;
#else
static int backlight __devinitdata = 0;
#endif
/* PLL constants */
struct aty128_constants {
u32 ref_clk;
u32 ppll_min;
u32 ppll_max;
u32 ref_divider;
u32 xclk;
u32 fifo_width;
u32 fifo_depth;
};
struct aty128_crtc {
u32 gen_cntl;
u32 h_total, h_sync_strt_wid;
u32 v_total, v_sync_strt_wid;
u32 pitch;
u32 offset, offset_cntl;
u32 xoffset, yoffset;
u32 vxres, vyres;
u32 depth, bpp;
};
struct aty128_pll {
u32 post_divider;
u32 feedback_divider;
u32 vclk;
};
struct aty128_ddafifo {
u32 dda_config;
u32 dda_on_off;
};
/* register values for a specific mode */
struct aty128fb_par {
struct aty128_crtc crtc;
struct aty128_pll pll;
struct aty128_ddafifo fifo_reg;
u32 accel_flags;
struct aty128_constants constants; /* PLL and others */
void __iomem *regbase; /* remapped mmio */
u32 vram_size; /* onboard video ram */
int chip_gen;
const struct aty128_meminfo *mem; /* onboard mem info */
#ifdef CONFIG_MTRR
struct { int vram; int vram_valid; } mtrr;
#endif
int blitter_may_be_busy;
int fifo_slots; /* free slots in FIFO (64 max) */
int pm_reg;
int crt_on, lcd_on;
struct pci_dev *pdev;
struct fb_info *next;
int asleep;
int lock_blank;
u8 red[32]; /* see aty128fb_setcolreg */
u8 green[64];
u8 blue[32];
u32 pseudo_palette[16]; /* used for TRUECOLOR */
};
#define round_div(n, d) ((n+(d/2))/d)
static int aty128fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int aty128fb_set_par(struct fb_info *info);
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static int aty128fb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fb);
static int aty128fb_blank(int blank, struct fb_info *fb);
static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
static int aty128fb_sync(struct fb_info *info);
/*
* Internal routines
*/
static int aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par);
static int aty128_decode_var(struct fb_var_screeninfo *var,
struct aty128fb_par *par);
#if 0
static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
void __iomem *bios);
static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
#endif
static void aty128_timings(struct aty128fb_par *par);
static void aty128_init_engine(struct aty128fb_par *par);
static void aty128_reset_engine(const struct aty128fb_par *par);
static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_idle(struct aty128fb_par *par);
static u32 depth_to_dst(u32 depth);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
static void aty128_bl_set_power(struct fb_info *info, int power);
#endif
#define BIOS_IN8(v) (readb(bios + (v)))
#define BIOS_IN16(v) (readb(bios + (v)) | \
(readb(bios + (v) + 1) << 8))
#define BIOS_IN32(v) (readb(bios + (v)) | \
(readb(bios + (v) + 1) << 8) | \
(readb(bios + (v) + 2) << 16) | \
(readb(bios + (v) + 3) << 24))
static struct fb_ops aty128fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = aty128fb_check_var,
.fb_set_par = aty128fb_set_par,
.fb_setcolreg = aty128fb_setcolreg,
.fb_pan_display = aty128fb_pan_display,
.fb_blank = aty128fb_blank,
.fb_ioctl = aty128fb_ioctl,
.fb_sync = aty128fb_sync,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* Functions to read from/write to the mmio registers
* - endian conversions may possibly be avoided by
* using the other register aperture. TODO.
*/
static inline u32 _aty_ld_le32(volatile unsigned int regindex,
const struct aty128fb_par *par)
{
return readl (par->regbase + regindex);
}
static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
const struct aty128fb_par *par)
{
writel (val, par->regbase + regindex);
}
static inline u8 _aty_ld_8(unsigned int regindex,
const struct aty128fb_par *par)
{
return readb (par->regbase + regindex);
}
static inline void _aty_st_8(unsigned int regindex, u8 val,
const struct aty128fb_par *par)
{
writeb (val, par->regbase + regindex);
}
#define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
#define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
#define aty_ld_8(regindex) _aty_ld_8(regindex, par)
#define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
/*
* Functions to read from/write to the pll registers
*/
#define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
#define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
static u32 _aty_ld_pll(unsigned int pll_index,
const struct aty128fb_par *par)
{
aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
return aty_ld_le32(CLOCK_CNTL_DATA);
}
static void _aty_st_pll(unsigned int pll_index, u32 val,
const struct aty128fb_par *par)
{
aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
aty_st_le32(CLOCK_CNTL_DATA, val);
}
/* return true when the PLL has completed an atomic update */
static int aty_pll_readupdate(const struct aty128fb_par *par)
{
return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
}
static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
{
unsigned long timeout = jiffies + HZ/100; // should be more than enough
int reset = 1;
while (time_before(jiffies, timeout))
if (aty_pll_readupdate(par)) {
reset = 0;
break;
}
if (reset) /* reset engine?? */
printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
}
/* tell PLL to update */
static void aty_pll_writeupdate(const struct aty128fb_par *par)
{
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_REF_DIV,
aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
}
/* write to the scratch register to test r/w functionality */
static int __devinit register_test(const struct aty128fb_par *par)
{
u32 val;
int flag = 0;
val = aty_ld_le32(BIOS_0_SCRATCH);
aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
flag = 1;
}
aty_st_le32(BIOS_0_SCRATCH, val); // restore value
return flag;
}
/*
* Accelerator engine functions
*/
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
int i;
for (;;) {
for (i = 0; i < 2000000; i++) {
par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
if (par->fifo_slots >= entries)
return;
}
aty128_reset_engine(par);
}
}
static void wait_for_idle(struct aty128fb_par *par)
{
int i;
do_wait_for_fifo(64, par);
for (;;) {
for (i = 0; i < 2000000; i++) {
if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
aty128_flush_pixel_cache(par);
par->blitter_may_be_busy = 0;
return;
}
}
aty128_reset_engine(par);
}
}
static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
if (par->fifo_slots < entries)
do_wait_for_fifo(64, par);
par->fifo_slots -= entries;
}
static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
{
int i;
u32 tmp;
tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
tmp &= ~(0x00ff);
tmp |= 0x00ff;
aty_st_le32(PC_NGUI_CTLSTAT, tmp);
for (i = 0; i < 2000000; i++)
if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
break;
}
static void aty128_reset_engine(const struct aty128fb_par *par)
{
u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
aty128_flush_pixel_cache(par);
clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
mclk_cntl = aty_ld_pll(MCLK_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
aty_ld_le32(GEN_RESET_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl);
aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
/* use old pio mode */
aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
DBG("engine reset");
}
static void aty128_init_engine(struct aty128fb_par *par)
{
u32 pitch_value;
wait_for_idle(par);
/* 3D scaler not spoken here */
wait_for_fifo(1, par);
aty_st_le32(SCALE_3D_CNTL, 0x00000000);
aty128_reset_engine(par);
pitch_value = par->crtc.pitch;
if (par->crtc.bpp == 24) {
pitch_value = pitch_value * 3;
}
wait_for_fifo(4, par);
/* setup engine offset registers */
aty_st_le32(DEFAULT_OFFSET, 0x00000000);
/* setup engine pitch registers */
aty_st_le32(DEFAULT_PITCH, pitch_value);
/* set the default scissor register to max dimensions */
aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
/* set the drawing controls registers */
aty_st_le32(DP_GUI_MASTER_CNTL,
GMC_SRC_PITCH_OFFSET_DEFAULT |
GMC_DST_PITCH_OFFSET_DEFAULT |
GMC_SRC_CLIP_DEFAULT |
GMC_DST_CLIP_DEFAULT |
GMC_BRUSH_SOLIDCOLOR |
(depth_to_dst(par->crtc.depth) << 8) |
GMC_SRC_DSTCOLOR |
GMC_BYTE_ORDER_MSB_TO_LSB |
GMC_DP_CONVERSION_TEMP_6500 |
ROP3_PATCOPY |
GMC_DP_SRC_RECT |
GMC_3D_FCN_EN_CLR |
GMC_DST_CLR_CMP_FCN_CLEAR |
GMC_AUX_CLIP_CLEAR |
GMC_WRITE_MASK_SET);
wait_for_fifo(8, par);
/* clear the line drawing registers */
aty_st_le32(DST_BRES_ERR, 0);
aty_st_le32(DST_BRES_INC, 0);
aty_st_le32(DST_BRES_DEC, 0);
/* set brush color registers */
aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
/* set source color registers */
aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
/* default write mask */
aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
/* Wait for all the writes to be completed before returning */
wait_for_idle(par);
}
/* convert depth values to their register representation */
static u32 depth_to_dst(u32 depth)
{
if (depth <= 8)
return DST_8BPP;
else if (depth <= 15)
return DST_15BPP;
else if (depth == 16)
return DST_16BPP;
else if (depth <= 24)
return DST_24BPP;
else if (depth <= 32)
return DST_32BPP;
return -EINVAL;
}
/*
* PLL informations retreival
*/
#ifndef __sparc__
static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
{
u16 dptr;
u8 rom_type;
void __iomem *bios;
size_t rom_size;
/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
unsigned int temp;
temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
temp &= 0x00ffffffu;
temp |= 0x04 << 24;
aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
bios = pci_map_rom(dev, &rom_size);
if (!bios) {
printk(KERN_ERR "aty128fb: ROM failed to map\n");
return NULL;
}
/* Very simple test to make sure it appeared */
if (BIOS_IN16(0) != 0xaa55) {
printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
" be 0xaa55\n", BIOS_IN16(0));
goto failed;
}
/* Look for the PCI data to check the ROM type */
dptr = BIOS_IN16(0x18);
/* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
* for now, until I've verified this works everywhere. The goal here is more
* to phase out Open Firmware images.
*
* Currently, we only look at the first PCI data, we could iteratre and deal with
* them all, and we should use fb_bios_start relative to start of image and not
* relative start of ROM, but so far, I never found a dual-image ATI card
*
* typedef struct {
* u32 signature; + 0x00
* u16 vendor; + 0x04
* u16 device; + 0x06
* u16 reserved_1; + 0x08
* u16 dlen; + 0x0a
* u8 drevision; + 0x0c
* u8 class_hi; + 0x0d
* u16 class_lo; + 0x0e
* u16 ilen; + 0x10
* u16 irevision; + 0x12
* u8 type; + 0x14
* u8 indicator; + 0x15
* u16 reserved_2; + 0x16
* } pci_data_t;
*/
if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
BIOS_IN32(dptr));
goto anyway;
}
rom_type = BIOS_IN8(dptr + 0x14);
switch(rom_type) {
case 0:
printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
break;
case 1:
printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
goto failed;
case 2:
printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
goto failed;
default:
printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
goto failed;
}
anyway:
return bios;
failed:
pci_unmap_rom(dev, bios);
return NULL;
}
static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
{
unsigned int bios_hdr;
unsigned int bios_pll;
bios_hdr = BIOS_IN16(0x48);
bios_pll = BIOS_IN16(bios_hdr + 0x30);
par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
par->constants.ppll_max, par->constants.ppll_min,
par->constants.xclk, par->constants.ref_divider,
par->constants.ref_clk);
}
#ifdef CONFIG_X86
static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
{
/* I simplified this code as we used to miss the signatures in
* a lot of case. It's now closer to XFree, we just don't check
* for signatures at all... Something better will have to be done
* if we end up having conflicts
*/
u32 segstart;
unsigned char __iomem *rom_base = NULL;
for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
rom_base = ioremap(segstart, 0x10000);
if (rom_base == NULL)
return NULL;
if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
break;
iounmap(rom_base);
rom_base = NULL;
}
return rom_base;
}
#endif
#endif /* ndef(__sparc__) */
/* fill in known card constants if pll_block is not available */
static void __devinit aty128_timings(struct aty128fb_par *par)
{
#ifdef CONFIG_PPC_OF
/* instead of a table lookup, assume OF has properly
* setup the PLL registers and use their values
* to set the XCLK values and reference divider values */
u32 x_mpll_ref_fb_div;
u32 xclk_cntl;
u32 Nx, M;
unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
#endif
if (!par->constants.ref_clk)
par->constants.ref_clk = 2950;
#ifdef CONFIG_PPC_OF
x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
M = x_mpll_ref_fb_div & 0x0000ff;
par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
(M * PostDivSet[xclk_cntl]));
par->constants.ref_divider =
aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
#endif
if (!par->constants.ref_divider) {
par->constants.ref_divider = 0x3b;
aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
aty_pll_writeupdate(par);
}
aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
aty_pll_writeupdate(par);
/* from documentation */
if (!par->constants.ppll_min)
par->constants.ppll_min = 12500;
if (!par->constants.ppll_max)
par->constants.ppll_max = 25000; /* 23000 on some cards? */
if (!par->constants.xclk)
par->constants.xclk = 0x1d4d; /* same as mclk */
par->constants.fifo_width = 128;
par->constants.fifo_depth = 32;
switch (aty_ld_le32(MEM_CNTL) & 0x3) {
case 0:
par->mem = &sdr_128;
break;
case 1:
par->mem = &sdr_sgram;
break;
case 2:
par->mem = &ddr_sgram;
break;
default:
par->mem = &sdr_sgram;
}
}
/*
* CRTC programming
*/
/* Program the CRTC registers */
static void aty128_set_crtc(const struct aty128_crtc *crtc,
const struct aty128fb_par *par)
{
aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
aty_st_le32(CRTC_PITCH, crtc->pitch);
aty_st_le32(CRTC_OFFSET, crtc->offset);
aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
/* Disable ATOMIC updating. Is this the right place? */
aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
}
static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
struct aty128_crtc *crtc,
const struct aty128fb_par *par)
{
u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
u32 left, right, upper, lower, hslen, vslen, sync, vmode;
u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 depth, bytpp;
u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
/* input */
xres = var->xres;
yres = var->yres;
vxres = var->xres_virtual;
vyres = var->yres_virtual;
xoffset = var->xoffset;
yoffset = var->yoffset;
bpp = var->bits_per_pixel;
left = var->left_margin;
right = var->right_margin;
upper = var->upper_margin;
lower = var->lower_margin;
hslen = var->hsync_len;
vslen = var->vsync_len;
sync = var->sync;
vmode = var->vmode;
if (bpp != 16)
depth = bpp;
else
depth = (var->green.length == 6) ? 16 : 15;
/* check for mode eligibility
* accept only non interlaced modes */
if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
/* convert (and round up) and validate */
xres = (xres + 7) & ~7;
xoffset = (xoffset + 7) & ~7;
if (vxres < xres + xoffset)
vxres = xres + xoffset;
if (vyres < yres + yoffset)
vyres = yres + yoffset;
/* convert depth into ATI register depth */
dst = depth_to_dst(depth);
if (dst == -EINVAL) {
printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
return -EINVAL;
}
/* convert register depth to bytes per pixel */
bytpp = mode_bytpp[dst];
/* make sure there is enough video ram for the mode */
if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
return -EINVAL;
}
h_disp = (xres >> 3) - 1;
h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
v_disp = yres - 1;
v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
/* check to make sure h_total and v_total are in range */
if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
printk(KERN_ERR "aty128fb: invalid width ranges\n");
return -EINVAL;
}
h_sync_wid = (hslen + 7) >> 3;
if (h_sync_wid == 0)
h_sync_wid = 1;
else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
h_sync_wid = 0x3f;
h_sync_strt = (h_disp << 3) + right;
v_sync_wid = vslen;
if (v_sync_wid == 0)
v_sync_wid = 1;
else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
v_sync_wid = 0x1f;
v_sync_strt = v_disp + lower;
h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
crtc->h_total = h_total | (h_disp << 16);
crtc->v_total = v_total | (v_disp << 16);
crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
(h_sync_pol << 23);
crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
(v_sync_pol << 23);
crtc->pitch = vxres >> 3;
crtc->offset = 0;
if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
crtc->offset_cntl = 0x00010000;
else
crtc->offset_cntl = 0;
crtc->vxres = vxres;
crtc->vyres = vyres;
crtc->xoffset = xoffset;
crtc->yoffset = yoffset;
crtc->depth = depth;
crtc->bpp = bpp;
return 0;
}
static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
{
/* fill in pixel info */
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.offset = 0;
var->blue.msb_right = 0;
var->transp.offset = 0;
var->transp.length = 0;
var->transp.msb_right = 0;
switch (pix_width) {
case CRTC_PIX_WIDTH_8BPP:
var->bits_per_pixel = 8;
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.length = 8;
break;
case CRTC_PIX_WIDTH_15BPP:
var->bits_per_pixel = 16;
var->red.offset = 10;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.length = 5;
break;
case CRTC_PIX_WIDTH_16BPP:
var->bits_per_pixel = 16;
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.length = 5;
break;
case CRTC_PIX_WIDTH_24BPP:
var->bits_per_pixel = 24;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.length = 8;
break;
case CRTC_PIX_WIDTH_32BPP:
var->bits_per_pixel = 32;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;
default:
printk(KERN_ERR "aty128fb: Invalid pixel width\n");
return -EINVAL;
}
return 0;
}
static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
struct fb_var_screeninfo *var)
{
u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 pix_width;
/* fun with masking */
h_total = crtc->h_total & 0x1ff;
h_disp = (crtc->h_total >> 16) & 0xff;
h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
h_sync_dly = crtc->h_sync_strt_wid & 0x7;
h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
v_total = crtc->v_total & 0x7ff;
v_disp = (crtc->v_total >> 16) & 0x7ff;
v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
/* do conversions */
xres = (h_disp + 1) << 3;
yres = v_disp + 1;
left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
hslen = h_sync_wid << 3;
upper = v_total - v_sync_strt - v_sync_wid;
lower = v_sync_strt - v_disp;
vslen = v_sync_wid;
sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
aty128_pix_width_to_var(pix_width, var);
var->xres = xres;
var->yres = yres;
var->xres_virtual = crtc->vxres;
var->yres_virtual = crtc->vyres;
var->xoffset = crtc->xoffset;
var->yoffset = crtc->yoffset;
var->left_margin = left;
var->right_margin = right;
var->upper_margin = upper;
var->lower_margin = lower;
var->hsync_len = hslen;
var->vsync_len = vslen;
var->sync = sync;
var->vmode = FB_VMODE_NONINTERLACED;
return 0;
}
static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
{
if (on) {
aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
} else
aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
}
static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
{
u32 reg;
#ifdef CONFIG_FB_ATY128_BACKLIGHT
struct fb_info *info = pci_get_drvdata(par->pdev);
#endif
if (on) {
reg = aty_ld_le32(LVDS_GEN_CNTL);
reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
reg &= ~LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_set_power(info, FB_BLANK_UNBLANK);
#endif
} else {
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
#endif
reg = aty_ld_le32(LVDS_GEN_CNTL);
reg |= LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
mdelay(100);
reg &= ~(LVDS_ON /*| LVDS_EN*/);
aty_st_le32(LVDS_GEN_CNTL, reg);
}
}
static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
{
u32 div3;
unsigned char post_conv[] = /* register values for post dividers */
{ 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
/* select PPLL_DIV_3 */
aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
/* reset PLL */
aty_st_pll(PPLL_CNTL,
aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
/* write the reference divider */
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
aty_pll_writeupdate(par);
div3 = aty_ld_pll(PPLL_DIV_3);
div3 &= ~PPLL_FB3_DIV_MASK;
div3 |= pll->feedback_divider;
div3 &= ~PPLL_POST3_DIV_MASK;
div3 |= post_conv[pll->post_divider] << 16;
/* write feedback and post dividers */
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_DIV_3, div3);
aty_pll_writeupdate(par);
aty_pll_wait_readupdate(par);
aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
aty_pll_writeupdate(par);
/* clear the reset, just in case */
aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
}
static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
const struct aty128fb_par *par)
{
const struct aty128_constants c = par->constants;
unsigned char post_dividers[] = {1,2,4,8,3,6,12};
u32 output_freq;
u32 vclk; /* in .01 MHz */
int i = 0;
u32 n, d;
vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
/* adjust pixel clock if necessary */
if (vclk > c.ppll_max)
vclk = c.ppll_max;
if (vclk * 12 < c.ppll_min)
vclk = c.ppll_min/12;
pll->post_divider = -1;
/* now, find an acceptable divider */
for (i = 0; i < sizeof(post_dividers); i++) {
output_freq = post_dividers[i] * vclk;
if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
pll->post_divider = post_dividers[i];
break;
}
}
if (pll->post_divider < 0)
return -EINVAL;
/* calculate feedback divider */
n = c.ref_divider * output_freq;
d = c.ref_clk;
pll->feedback_divider = round_div(n, d);
pll->vclk = vclk;
DBG("post %d feedback %d vlck %d output %d ref_divider %d "
"vclk_per: %d\n", pll->post_divider,
pll->feedback_divider, vclk, output_freq,
c.ref_divider, period_in_ps);
return 0;
}
static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
{
var->pixclock = 100000000 / pll->vclk;
return 0;
}
static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
const struct aty128fb_par *par)
{
aty_st_le32(DDA_CONFIG, dsp->dda_config);
aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
}
static int aty128_ddafifo(struct aty128_ddafifo *dsp,
const struct aty128_pll *pll,
u32 depth,
const struct aty128fb_par *par)
{
const struct aty128_meminfo *m = par->mem;
u32 xclk = par->constants.xclk;
u32 fifo_width = par->constants.fifo_width;
u32 fifo_depth = par->constants.fifo_depth;
s32 x, b, p, ron, roff;
u32 n, d, bpp;
/* round up to multiple of 8 */
bpp = (depth+7) & ~7;
n = xclk * fifo_width;
d = pll->vclk * bpp;
x = round_div(n, d);
ron = 4 * m->MB +
3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
2 * m->Trp +
m->Twr +
m->CL +
m->Tr2w +
x;
DBG("x %x\n", x);
b = 0;
while (x) {
x >>= 1;
b++;
}
p = b + 1;
ron <<= (11 - p);
n <<= (11 - p);
x = round_div(n, d);
roff = x * (fifo_depth - 4);
if ((ron + m->Rloop) >= roff) {
printk(KERN_ERR "aty128fb: Mode out of range!\n");
return -EINVAL;
}
DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
p, m->Rloop, x, ron, roff);
dsp->dda_config = p << 16 | m->Rloop << 20 | x;
dsp->dda_on_off = ron << 16 | roff;
return 0;
}
/*
* This actually sets the video mode.
*/
static int aty128fb_set_par(struct fb_info *info)
{
struct aty128fb_par *par = info->par;
u32 config;
int err;
if ((err = aty128_decode_var(&info->var, par)) != 0)
return err;
if (par->blitter_may_be_busy)
wait_for_idle(par);
/* clear all registers that may interfere with mode setting */
aty_st_le32(OVR_CLR, 0);
aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
aty_st_le32(OV0_SCALE_CNTL, 0);
aty_st_le32(MPP_TB_CONFIG, 0);
aty_st_le32(MPP_GP_CONFIG, 0);
aty_st_le32(SUBPIC_CNTL, 0);
aty_st_le32(VIPH_CONTROL, 0);
aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
aty_st_le32(CAP0_TRIG_CNTL, 0);
aty_st_le32(CAP1_TRIG_CNTL, 0);
aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
aty128_set_crtc(&par->crtc, par);
aty128_set_pll(&par->pll, par);
aty128_set_fifo(&par->fifo_reg, par);
config = aty_ld_le32(CONFIG_CNTL) & ~3;
#if defined(__BIG_ENDIAN)
if (par->crtc.bpp == 32)
config |= 2; /* make aperture do 32 bit swapping */
else if (par->crtc.bpp == 16)
config |= 1; /* make aperture do 16 bit swapping */
#endif
aty_st_le32(CONFIG_CNTL, config);
aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
if (par->chip_gen == rage_M3) {
aty128_set_crt_enable(par, par->crt_on);
aty128_set_lcd_enable(par, par->lcd_on);
}
if (par->accel_flags & FB_ACCELF_TEXT)
aty128_init_engine(par);
#ifdef CONFIG_BOOTX_TEXT
btext_update_display(info->fix.smem_start,
(((par->crtc.h_total>>16) & 0xff)+1)*8,
((par->crtc.v_total>>16) & 0x7ff)+1,
par->crtc.bpp,
par->crtc.vxres*par->crtc.bpp/8);
#endif /* CONFIG_BOOTX_TEXT */
return 0;
}
/*
* encode/decode the User Defined Part of the Display
*/
static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
{
int err;
struct aty128_crtc crtc;
struct aty128_pll pll;
struct aty128_ddafifo fifo_reg;
if ((err = aty128_var_to_crtc(var, &crtc, par)))
return err;
if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
return err;
if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
return err;
par->crtc = crtc;
par->pll = pll;
par->fifo_reg = fifo_reg;
par->accel_flags = var->accel_flags;
return 0;
}
static int aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par)
{
int err;
if ((err = aty128_crtc_to_var(&par->crtc, var)))
return err;
if ((err = aty128_pll_to_var(&par->pll, var)))
return err;
var->nonstd = 0;
var->activate = 0;
var->height = -1;
var->width = -1;
var->accel_flags = par->accel_flags;
return 0;
}
static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct aty128fb_par par;
int err;
par = *(struct aty128fb_par *)info->par;
if ((err = aty128_decode_var(var, &par)) != 0)
return err;
aty128_encode_var(var, &par);
return 0;
}
/*
* Pan or Wrap the Display
*/
static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
{
struct aty128fb_par *par = fb->par;
u32 xoffset, yoffset;
u32 offset;
u32 xres, yres;
xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
xoffset = (var->xoffset +7) & ~7;
yoffset = var->yoffset;
if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
return -EINVAL;
par->crtc.xoffset = xoffset;
par->crtc.yoffset = yoffset;
offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
if (par->crtc.bpp == 24)
offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
aty_st_le32(CRTC_OFFSET, offset);
return 0;
}
/*
* Helper function to store a single palette register
*/
static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
struct aty128fb_par *par)
{
if (par->chip_gen == rage_M3) {
#if 0
/* Note: For now, on M3, we set palette on both heads, which may
* be useless. Can someone with a M3 check this ?
*
* This code would still be useful if using the second CRTC to
* do mirroring
*/
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
aty_st_8(PALETTE_INDEX, regno);
aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
#endif
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
}
aty_st_8(PALETTE_INDEX, regno);
aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
}
static int aty128fb_sync(struct fb_info *info)
{
struct aty128fb_par *par = info->par;
if (par->blitter_may_be_busy)
wait_for_idle(par);
return 0;
}
#ifndef MODULE
static int __devinit aty128fb_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "lcd:", 4)) {
default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
continue;
} else if (!strncmp(this_opt, "crt:", 4)) {
default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
continue;
} else if (!strncmp(this_opt, "backlight:", 10)) {
backlight = simple_strtoul(this_opt+10, NULL, 0);
continue;
}
#ifdef CONFIG_MTRR
if(!strncmp(this_opt, "nomtrr", 6)) {
mtrr = 0;
continue;
}
#endif
#ifdef CONFIG_PPC_PMAC
/* vmode and cmode deprecated */
if (!strncmp(this_opt, "vmode:", 6)) {
unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
if (vmode > 0 && vmode <= VMODE_MAX)
default_vmode = vmode;
continue;
} else if (!strncmp(this_opt, "cmode:", 6)) {
unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
switch (cmode) {
case 0:
case 8:
default_cmode = CMODE_8;
break;
case 15:
case 16:
default_cmode = CMODE_16;
break;
case 24:
case 32:
default_cmode = CMODE_32;
break;
}
continue;
}
#endif /* CONFIG_PPC_PMAC */
mode_option = this_opt;
}
return 0;
}
#endif /* MODULE */
/* Backlight */
#ifdef CONFIG_FB_ATY128_BACKLIGHT
#define MAX_LEVEL 0xFF
static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
int level)
{
struct fb_info *info = pci_get_drvdata(par->pdev);
int atylevel;
/* Get and convert the value */
/* No locking of bl_curve since we read a single value */
atylevel = MAX_LEVEL -
(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
if (atylevel < 0)
atylevel = 0;
else if (atylevel > MAX_LEVEL)
atylevel = MAX_LEVEL;
return atylevel;
}
/* We turn off the LCD completely instead of just dimming the backlight.
* This provides greater power saving and the display is useless without
* backlight anyway
*/
#define BACKLIGHT_LVDS_OFF
/* That one prevents proper CRT output with LCD off */
#undef BACKLIGHT_DAC_OFF
static int aty128_bl_update_status(struct backlight_device *bd)
{
struct aty128fb_par *par = bl_get_data(bd);
unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
int level;
if (bd->props.power != FB_BLANK_UNBLANK ||
bd->props.fb_blank != FB_BLANK_UNBLANK ||
!par->lcd_on)
level = 0;
else
level = bd->props.brightness;
reg |= LVDS_BL_MOD_EN | LVDS_BLON;
if (level > 0) {
reg |= LVDS_DIGION;
if (!(reg & LVDS_ON)) {
reg &= ~LVDS_BLON;
aty_st_le32(LVDS_GEN_CNTL, reg);
aty_ld_le32(LVDS_GEN_CNTL);
mdelay(10);
reg |= LVDS_BLON;
aty_st_le32(LVDS_GEN_CNTL, reg);
}
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
reg |= LVDS_ON | LVDS_EN;
reg &= ~LVDS_DISPLAY_DIS;
#endif
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
#endif
} else {
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
reg |= LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
aty_ld_le32(LVDS_GEN_CNTL);
udelay(10);
reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
#endif
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
#endif
}
return 0;
}
static int aty128_bl_get_brightness(struct backlight_device *bd)
{
return bd->props.brightness;
}
static struct backlight_ops aty128_bl_data = {
.get_brightness = aty128_bl_get_brightness,
.update_status = aty128_bl_update_status,
};
static void aty128_bl_set_power(struct fb_info *info, int power)
{
if (info->bl_dev) {
info->bl_dev->props.power = power;
backlight_update_status(info->bl_dev);
}
}
static void aty128_bl_init(struct aty128fb_par *par)
{
struct fb_info *info = pci_get_drvdata(par->pdev);
struct backlight_device *bd;
char name[12];
/* Could be extended to Rage128Pro LVDS output too */
if (par->chip_gen != rage_M3)
return;
#ifdef CONFIG_PMAC_BACKLIGHT
if (!pmac_has_backlight_type("ati"))
return;
#endif
snprintf(name, sizeof(name), "aty128bl%d", info->node);
bd = backlight_device_register(name, info->dev, par, &aty128_bl_data);
if (IS_ERR(bd)) {
info->bl_dev = NULL;
printk(KERN_WARNING "aty128: Backlight registration failed\n");
goto error;
}
info->bl_dev = bd;
fb_bl_default_curve(info, 0,
63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
bd->props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
bd->props.brightness = bd->props.max_brightness;
bd->props.power = FB_BLANK_UNBLANK;
backlight_update_status(bd);
printk("aty128: Backlight initialized (%s)\n", name);
return;
error:
return;
}
static void aty128_bl_exit(struct backlight_device *bd)
{
backlight_device_unregister(bd);
printk("aty128: Backlight unloaded\n");
}
#endif /* CONFIG_FB_ATY128_BACKLIGHT */
/*
* Initialisation
*/
#ifdef CONFIG_PPC_PMAC
static void aty128_early_resume(void *data)
{
struct aty128fb_par *par = data;
if (try_acquire_console_sem())
return;
aty128_do_resume(par->pdev);
release_console_sem();
}
#endif /* CONFIG_PPC_PMAC */
static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
struct fb_var_screeninfo var;
char video_card[DEVICE_NAME_SIZE];
u8 chip_rev;
u32 dac;
/* Get the chip revision */
chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
strcpy(video_card, "Rage128 XX ");
video_card[8] = ent->device >> 8;
video_card[9] = ent->device & 0xFF;
/* range check to make sure */
if (ent->driver_data < ARRAY_SIZE(r128_family))
strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));
printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
if (par->vram_size % (1024 * 1024) == 0)
printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
else
printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
par->chip_gen = ent->driver_data;
/* fill in info */
info->fbops = &aty128fb_ops;
info->flags = FBINFO_FLAG_DEFAULT;
par->lcd_on = default_lcd_on;
par->crt_on = default_crt_on;
var = default_var;
#ifdef CONFIG_PPC_PMAC
if (machine_is(powermac)) {
/* Indicate sleep capability */
if (par->chip_gen == rage_M3) {
pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
pmac_set_early_video_resume(aty128_early_resume, par);
}
/* Find default mode */
if (mode_option) {
if (!mac_find_mode(&var, info, mode_option, 8))
var = default_var;
} else {
if (default_vmode <= 0 || default_vmode > VMODE_MAX)
default_vmode = VMODE_1024_768_60;
/* iMacs need that resolution
* PowerMac2,1 first r128 iMacs
* PowerMac2,2 summer 2000 iMacs
* PowerMac4,1 january 2001 iMacs "flower power"
*/
if (machine_is_compatible("PowerMac2,1") ||
machine_is_compatible("PowerMac2,2") ||
machine_is_compatible("PowerMac4,1"))
default_vmode = VMODE_1024_768_75;
/* iBook SE */
if (machine_is_compatible("PowerBook2,2"))
default_vmode = VMODE_800_600_60;
/* PowerBook Firewire (Pismo), iBook Dual USB */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook4,1"))
default_vmode = VMODE_1024_768_60;
/* PowerBook Titanium */
if (machine_is_compatible("PowerBook3,2"))
default_vmode = VMODE_1152_768_60;
if (default_cmode > 16)
default_cmode = CMODE_32;
else if (default_cmode > 8)
default_cmode = CMODE_16;
else
default_cmode = CMODE_8;
if (mac_vmode_to_var(default_vmode, default_cmode, &var))
var = default_var;
}
} else
#endif /* CONFIG_PPC_PMAC */
{
if (mode_option)
if (fb_find_mode(&var, info, mode_option, NULL,
0, &defaultmode, 8) == 0)
var = default_var;
}
var.accel_flags &= ~FB_ACCELF_TEXT;
// var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
if (aty128fb_check_var(&var, info)) {
printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
return 0;
}
/* setup the DAC the way we like it */
dac = aty_ld_le32(DAC_CNTL);
dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
dac |= DAC_MASK;
if (par->chip_gen == rage_M3)
dac |= DAC_PALETTE2_SNOOP_EN;
aty_st_le32(DAC_CNTL, dac);
/* turn off bus mastering, just in case */
aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
info->var = var;
fb_alloc_cmap(&info->cmap, 256, 0);
var.activate = FB_ACTIVATE_NOW;
aty128_init_engine(par);
par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
par->pdev = pdev;
par->asleep = 0;
par->lock_blank = 0;
#ifdef CONFIG_FB_ATY128_BACKLIGHT
if (backlight)
aty128_bl_init(par);
#endif
if (register_framebuffer(info) < 0)
return 0;
printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
info->node, info->fix.id, video_card);
return 1; /* success! */
}
#ifdef CONFIG_PCI
/* register a card ++ajoshi */
static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned long fb_addr, reg_addr;
struct aty128fb_par *par;
struct fb_info *info;
int err;
#ifndef __sparc__
void __iomem *bios = NULL;
#endif
/* Enable device in PCI config */
if ((err = pci_enable_device(pdev))) {
printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
err);
return -ENODEV;
}
fb_addr = pci_resource_start(pdev, 0);
if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
"aty128fb FB")) {
printk(KERN_ERR "aty128fb: cannot reserve frame "
"buffer memory\n");
return -ENODEV;
}
reg_addr = pci_resource_start(pdev, 2);
if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
"aty128fb MMIO")) {
printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
goto err_free_fb;
}
/* We have the resources. Now virtualize them */
info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
if (info == NULL) {
printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
goto err_free_mmio;
}
par = info->par;
info->pseudo_palette = par->pseudo_palette;
/* Virtualize mmio region */
info->fix.mmio_start = reg_addr;
par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
if (!par->regbase)
goto err_free_info;
/* Grab memory size from the card */
// How does this relate to the resource length from the PCI hardware?
par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
/* Virtualize the framebuffer */
info->screen_base = ioremap(fb_addr, par->vram_size);
if (!info->screen_base)
goto err_unmap_out;
/* Set up info->fix */
info->fix = aty128fb_fix;
info->fix.smem_start = fb_addr;
info->fix.smem_len = par->vram_size;
info->fix.mmio_start = reg_addr;
/* If we can't test scratch registers, something is seriously wrong */
if (!register_test(par)) {
printk(KERN_ERR "aty128fb: Can't write to video register!\n");
goto err_out;
}
#ifndef __sparc__
bios = aty128_map_ROM(par, pdev);
#ifdef CONFIG_X86
if (bios == NULL)
bios = aty128_find_mem_vbios(par);
#endif
if (bios == NULL)
printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
else {
printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
aty128_get_pllinfo(par, bios);
pci_unmap_rom(pdev, bios);
}
#endif /* __sparc__ */
aty128_timings(par);
pci_set_drvdata(pdev, info);
if (!aty128_init(pdev, ent))
goto err_out;
#ifdef CONFIG_MTRR
if (mtrr) {
par->mtrr.vram = mtrr_add(info->fix.smem_start,
par->vram_size, MTRR_TYPE_WRCOMB, 1);
par->mtrr.vram_valid = 1;
/* let there be speed */
printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
}
#endif /* CONFIG_MTRR */
return 0;
err_out:
iounmap(info->screen_base);
err_unmap_out:
iounmap(par->regbase);
err_free_info:
framebuffer_release(info);
err_free_mmio:
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
err_free_fb:
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
return -ENODEV;
}
static void __devexit aty128_remove(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par;
if (!info)
return;
par = info->par;
unregister_framebuffer(info);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_exit(info->bl_dev);
#endif
#ifdef CONFIG_MTRR
if (par->mtrr.vram_valid)
mtrr_del(par->mtrr.vram, info->fix.smem_start,
par->vram_size);
#endif /* CONFIG_MTRR */
iounmap(par->regbase);
iounmap(info->screen_base);
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
framebuffer_release(info);
}
#endif /* CONFIG_PCI */
/*
* Blank the display.
*/
static int aty128fb_blank(int blank, struct fb_info *fb)
{
struct aty128fb_par *par = fb->par;
u8 state;
if (par->lock_blank || par->asleep)
return 0;
switch (blank) {
case FB_BLANK_NORMAL:
state = 4;
break;
case FB_BLANK_VSYNC_SUSPEND:
state = 6;
break;
case FB_BLANK_HSYNC_SUSPEND:
state = 5;
break;
case FB_BLANK_POWERDOWN:
state = 7;
break;
case FB_BLANK_UNBLANK:
default:
state = 0;
break;
}
aty_st_8(CRTC_EXT_CNTL+1, state);
if (par->chip_gen == rage_M3) {
aty128_set_crt_enable(par, par->crt_on && !blank);
aty128_set_lcd_enable(par, par->lcd_on && !blank);
}
return 0;
}
/*
* Set a single color register. The values supplied are already
* rounded down to the hardware's capabilities (according to the
* entries in the var structure). Return != 0 for invalid regno.
*/
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
struct aty128fb_par *par = info->par;
if (regno > 255
|| (par->crtc.depth == 16 && regno > 63)
|| (par->crtc.depth == 15 && regno > 31))
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
if (regno < 16) {
int i;
u32 *pal = info->pseudo_palette;
switch (par->crtc.depth) {
case 15:
pal[regno] = (regno << 10) | (regno << 5) | regno;
break;
case 16:
pal[regno] = (regno << 11) | (regno << 6) | regno;
break;
case 24:
pal[regno] = (regno << 16) | (regno << 8) | regno;
break;
case 32:
i = (regno << 8) | regno;
pal[regno] = (i << 16) | i;
break;
}
}
if (par->crtc.depth == 16 && regno > 0) {
/*
* With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
* have 32 slots for R and B values but 64 slots for G values.
* Thus the R and B values go in one slot but the G value
* goes in a different slot, and we have to avoid disturbing
* the other fields in the slots we touch.
*/
par->green[regno] = green;
if (regno < 32) {
par->red[regno] = red;
par->blue[regno] = blue;
aty128_st_pal(regno * 8, red, par->green[regno*2],
blue, par);
}
red = par->red[regno/2];
blue = par->blue[regno/2];
regno <<= 2;
} else if (par->crtc.bpp == 16)
regno <<= 3;
aty128_st_pal(regno, red, green, blue, par);
return 0;
}
#define ATY_MIRROR_LCD_ON 0x00000001
#define ATY_MIRROR_CRT_ON 0x00000002
/* out param: u32* backlight value: 0 to 15 */
#define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
/* in param: u32* backlight value: 0 to 15 */
#define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
{
struct aty128fb_par *par = info->par;
u32 value;
int rc;
switch (cmd) {
case FBIO_ATY128_SET_MIRROR:
if (par->chip_gen != rage_M3)
return -EINVAL;
rc = get_user(value, (__u32 __user *)arg);
if (rc)
return rc;
par->lcd_on = (value & 0x01) != 0;
par->crt_on = (value & 0x02) != 0;
if (!par->crt_on && !par->lcd_on)
par->lcd_on = 1;
aty128_set_crt_enable(par, par->crt_on);
aty128_set_lcd_enable(par, par->lcd_on);
return 0;
case FBIO_ATY128_GET_MIRROR:
if (par->chip_gen != rage_M3)
return -EINVAL;
value = (par->crt_on << 1) | par->lcd_on;
return put_user(value, (__u32 __user *)arg);
}
return -EINVAL;
}
#if 0
/*
* Accelerated functions
*/
static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
u_int width, u_int height,
struct fb_info_aty128 *par)
{
u32 save_dp_datatype, save_dp_cntl, dstval;
if (!width || !height)
return;
dstval = depth_to_dst(par->current_par.crtc.depth);
if (dstval == DST_24BPP) {
srcx *= 3;
dstx *= 3;
width *= 3;
} else if (dstval == -EINVAL) {
printk("aty128fb: invalid depth or RGBA\n");
return;
}
wait_for_fifo(2, par);
save_dp_datatype = aty_ld_le32(DP_DATATYPE);
save_dp_cntl = aty_ld_le32(DP_CNTL);
wait_for_fifo(6, par);
aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
par->blitter_may_be_busy = 1;
wait_for_fifo(2, par);
aty_st_le32(DP_DATATYPE, save_dp_datatype);
aty_st_le32(DP_CNTL, save_dp_cntl);
}
/*
* Text mode accelerated functions
*/
static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
int height, int width)
{
sx *= fontwidth(p);
sy *= fontheight(p);
dx *= fontwidth(p);
dy *= fontheight(p);
width *= fontwidth(p);
height *= fontheight(p);
aty128_rectcopy(sx, sy, dx, dy, width, height,
(struct fb_info_aty128 *)p->fb_info);
}
#endif /* 0 */
static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
{
u32 pmgt;
u16 pwr_command;
struct pci_dev *pdev = par->pdev;
if (!par->pm_reg)
return;
/* Set the chip into the appropriate suspend mode (we use D2,
* D3 would require a complete re-initialisation of the chip,
* including PCI config registers, clocks, AGP configuration, ...)
*/
if (suspend) {
/* Make sure CRTC2 is reset. Remove that the day we decide to
* actually use CRTC2 and replace it with real code for disabling
* the CRTC2 output during sleep
*/
aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
~(CRTC2_EN));
/* Set the power management mode to be PCI based */
/* Use this magic value for now */
pmgt = 0x0c005407;
aty_st_pll(POWER_MANAGEMENT, pmgt);
(void)aty_ld_pll(POWER_MANAGEMENT);
aty_st_le32(BUS_CNTL1, 0x00000010);
aty_st_le32(MEM_POWER_MISC, 0x0c830000);
mdelay(100);
pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
/* Switch PCI power management to D2 */
pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
(pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
} else {
/* Switch back PCI power management to D0 */
mdelay(100);
pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
mdelay(100);
}
}
static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
/* We don't do anything but D2, for now we return 0, but
* we may want to change that. How do we know if the BIOS
* can properly take care of D3 ? Also, with swsusp, we
* know we'll be rebooted, ...
*/
#ifndef CONFIG_PPC_PMAC
/* HACK ALERT ! Once I find a proper way to say to each driver
* individually what will happen with it's PCI slot, I'll change
* that. On laptops, the AGP slot is just unclocked, so D2 is
* expected, while on desktops, the card is powered off
*/
return 0;
#endif /* CONFIG_PPC_PMAC */
if (state.event == pdev->dev.power.power_state.event)
return 0;
printk(KERN_DEBUG "aty128fb: suspending...\n");
acquire_console_sem();
fb_set_suspend(info, 1);
/* Make sure engine is reset */
wait_for_idle(par);
aty128_reset_engine(par);
wait_for_idle(par);
/* Blank display and LCD */
aty128fb_blank(FB_BLANK_POWERDOWN, info);
/* Sleep */
par->asleep = 1;
par->lock_blank = 1;
#ifdef CONFIG_PPC_PMAC
/* On powermac, we have hooks to properly suspend/resume AGP now,
* use them here. We'll ultimately need some generic support here,
* but the generic code isn't quite ready for that yet
*/
pmac_suspend_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */
/* We need a way to make sure the fbdev layer will _not_ touch the
* framebuffer before we put the chip to suspend state. On 2.4, I
* used dummy fb ops, 2.5 need proper support for this at the
* fbdev level
*/
if (state.event != PM_EVENT_ON)
aty128_set_suspend(par, 1);
release_console_sem();
pdev->dev.power.power_state = state;
return 0;
}
static int aty128_do_resume(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
if (pdev->dev.power.power_state.event == PM_EVENT_ON)
return 0;
/* Wakeup chip */
aty128_set_suspend(par, 0);
par->asleep = 0;
/* Restore display & engine */
aty128_reset_engine(par);
wait_for_idle(par);
aty128fb_set_par(info);
fb_pan_display(info, &info->var);
fb_set_cmap(&info->cmap, info);
/* Refresh */
fb_set_suspend(info, 0);
/* Unblank */
par->lock_blank = 0;
aty128fb_blank(0, info);
#ifdef CONFIG_PPC_PMAC
/* On powermac, we have hooks to properly suspend/resume AGP now,
* use them here. We'll ultimately need some generic support here,
* but the generic code isn't quite ready for that yet
*/
pmac_resume_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */
pdev->dev.power.power_state = PMSG_ON;
printk(KERN_DEBUG "aty128fb: resumed !\n");
return 0;
}
static int aty128_pci_resume(struct pci_dev *pdev)
{
int rc;
acquire_console_sem();
rc = aty128_do_resume(pdev);
release_console_sem();
return rc;
}
static int __devinit aty128fb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options("aty128fb", &option))
return -ENODEV;
aty128fb_setup(option);
#endif
return pci_register_driver(&aty128fb_driver);
}
static void __exit aty128fb_exit(void)
{
pci_unregister_driver(&aty128fb_driver);
}
module_init(aty128fb_init);
module_exit(aty128fb_exit);
MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
MODULE_LICENSE("GPL");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
#ifdef CONFIG_MTRR
module_param_named(nomtrr, mtrr, invbool, 0);
MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
#endif