linux/drivers/hsi/controllers/omap_ssi_port.c

1407 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* OMAP SSI port driver.
*
* Copyright (C) 2010 Nokia Corporation. All rights reserved.
* Copyright (C) 2014 Sebastian Reichel <sre@kernel.org>
*
* Contact: Carlos Chinea <carlos.chinea@nokia.com>
*/
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/debugfs.h>
#include "omap_ssi_regs.h"
#include "omap_ssi.h"
static inline int hsi_dummy_msg(struct hsi_msg *msg __maybe_unused)
{
return 0;
}
static inline int hsi_dummy_cl(struct hsi_client *cl __maybe_unused)
{
return 0;
}
static inline unsigned int ssi_wakein(struct hsi_port *port)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
return gpiod_get_value(omap_port->wake_gpio);
}
#ifdef CONFIG_DEBUG_FS
static void ssi_debug_remove_port(struct hsi_port *port)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
debugfs_remove_recursive(omap_port->dir);
}
static int ssi_port_regs_show(struct seq_file *m, void *p __maybe_unused)
{
struct hsi_port *port = m->private;
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
void __iomem *base = omap_ssi->sys;
unsigned int ch;
pm_runtime_get_sync(omap_port->pdev);
if (omap_port->wake_irq > 0)
seq_printf(m, "CAWAKE\t\t: %d\n", ssi_wakein(port));
seq_printf(m, "WAKE\t\t: 0x%08x\n",
readl(base + SSI_WAKE_REG(port->num)));
seq_printf(m, "MPU_ENABLE_IRQ%d\t: 0x%08x\n", 0,
readl(base + SSI_MPU_ENABLE_REG(port->num, 0)));
seq_printf(m, "MPU_STATUS_IRQ%d\t: 0x%08x\n", 0,
readl(base + SSI_MPU_STATUS_REG(port->num, 0)));
/* SST */
base = omap_port->sst_base;
seq_puts(m, "\nSST\n===\n");
seq_printf(m, "ID SST\t\t: 0x%08x\n",
readl(base + SSI_SST_ID_REG));
seq_printf(m, "MODE\t\t: 0x%08x\n",
readl(base + SSI_SST_MODE_REG));
seq_printf(m, "FRAMESIZE\t: 0x%08x\n",
readl(base + SSI_SST_FRAMESIZE_REG));
seq_printf(m, "DIVISOR\t\t: 0x%08x\n",
readl(base + SSI_SST_DIVISOR_REG));
seq_printf(m, "CHANNELS\t: 0x%08x\n",
readl(base + SSI_SST_CHANNELS_REG));
seq_printf(m, "ARBMODE\t\t: 0x%08x\n",
readl(base + SSI_SST_ARBMODE_REG));
seq_printf(m, "TXSTATE\t\t: 0x%08x\n",
readl(base + SSI_SST_TXSTATE_REG));
seq_printf(m, "BUFSTATE\t: 0x%08x\n",
readl(base + SSI_SST_BUFSTATE_REG));
seq_printf(m, "BREAK\t\t: 0x%08x\n",
readl(base + SSI_SST_BREAK_REG));
for (ch = 0; ch < omap_port->channels; ch++) {
seq_printf(m, "BUFFER_CH%d\t: 0x%08x\n", ch,
readl(base + SSI_SST_BUFFER_CH_REG(ch)));
}
/* SSR */
base = omap_port->ssr_base;
seq_puts(m, "\nSSR\n===\n");
seq_printf(m, "ID SSR\t\t: 0x%08x\n",
readl(base + SSI_SSR_ID_REG));
seq_printf(m, "MODE\t\t: 0x%08x\n",
readl(base + SSI_SSR_MODE_REG));
seq_printf(m, "FRAMESIZE\t: 0x%08x\n",
readl(base + SSI_SSR_FRAMESIZE_REG));
seq_printf(m, "CHANNELS\t: 0x%08x\n",
readl(base + SSI_SSR_CHANNELS_REG));
seq_printf(m, "TIMEOUT\t\t: 0x%08x\n",
readl(base + SSI_SSR_TIMEOUT_REG));
seq_printf(m, "RXSTATE\t\t: 0x%08x\n",
readl(base + SSI_SSR_RXSTATE_REG));
seq_printf(m, "BUFSTATE\t: 0x%08x\n",
readl(base + SSI_SSR_BUFSTATE_REG));
seq_printf(m, "BREAK\t\t: 0x%08x\n",
readl(base + SSI_SSR_BREAK_REG));
seq_printf(m, "ERROR\t\t: 0x%08x\n",
readl(base + SSI_SSR_ERROR_REG));
seq_printf(m, "ERRORACK\t: 0x%08x\n",
readl(base + SSI_SSR_ERRORACK_REG));
for (ch = 0; ch < omap_port->channels; ch++) {
seq_printf(m, "BUFFER_CH%d\t: 0x%08x\n", ch,
readl(base + SSI_SSR_BUFFER_CH_REG(ch)));
}
pm_runtime_put_autosuspend(omap_port->pdev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ssi_port_regs);
static int ssi_div_get(void *data, u64 *val)
{
struct hsi_port *port = data;
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
pm_runtime_get_sync(omap_port->pdev);
*val = readl(omap_port->sst_base + SSI_SST_DIVISOR_REG);
pm_runtime_put_autosuspend(omap_port->pdev);
return 0;
}
static int ssi_div_set(void *data, u64 val)
{
struct hsi_port *port = data;
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
if (val > 127)
return -EINVAL;
pm_runtime_get_sync(omap_port->pdev);
writel(val, omap_port->sst_base + SSI_SST_DIVISOR_REG);
omap_port->sst.divisor = val;
pm_runtime_put_autosuspend(omap_port->pdev);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(ssi_sst_div_fops, ssi_div_get, ssi_div_set, "%llu\n");
static int ssi_debug_add_port(struct omap_ssi_port *omap_port,
struct dentry *dir)
{
struct hsi_port *port = to_hsi_port(omap_port->dev);
dir = debugfs_create_dir(dev_name(omap_port->dev), dir);
if (!dir)
return -ENOMEM;
omap_port->dir = dir;
debugfs_create_file("regs", S_IRUGO, dir, port, &ssi_port_regs_fops);
dir = debugfs_create_dir("sst", dir);
if (!dir)
return -ENOMEM;
debugfs_create_file_unsafe("divisor", 0644, dir, port,
&ssi_sst_div_fops);
return 0;
}
#endif
static void ssi_process_errqueue(struct work_struct *work)
{
struct omap_ssi_port *omap_port;
struct list_head *head, *tmp;
struct hsi_msg *msg;
omap_port = container_of(work, struct omap_ssi_port, errqueue_work.work);
list_for_each_safe(head, tmp, &omap_port->errqueue) {
msg = list_entry(head, struct hsi_msg, link);
msg->complete(msg);
list_del(head);
}
}
static int ssi_claim_lch(struct hsi_msg *msg)
{
struct hsi_port *port = hsi_get_port(msg->cl);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
int lch;
for (lch = 0; lch < SSI_MAX_GDD_LCH; lch++)
if (!omap_ssi->gdd_trn[lch].msg) {
omap_ssi->gdd_trn[lch].msg = msg;
omap_ssi->gdd_trn[lch].sg = msg->sgt.sgl;
return lch;
}
return -EBUSY;
}
static int ssi_start_dma(struct hsi_msg *msg, int lch)
{
struct hsi_port *port = hsi_get_port(msg->cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
void __iomem *gdd = omap_ssi->gdd;
int err;
u16 csdp;
u16 ccr;
u32 s_addr;
u32 d_addr;
u32 tmp;
/* Hold clocks during the transfer */
pm_runtime_get(omap_port->pdev);
if (!pm_runtime_active(omap_port->pdev)) {
dev_warn(&port->device, "ssi_start_dma called without runtime PM!\n");
pm_runtime_put_autosuspend(omap_port->pdev);
return -EREMOTEIO;
}
if (msg->ttype == HSI_MSG_READ) {
err = dma_map_sg(&ssi->device, msg->sgt.sgl, msg->sgt.nents,
DMA_FROM_DEVICE);
if (err < 0) {
dev_dbg(&ssi->device, "DMA map SG failed !\n");
pm_runtime_put_autosuspend(omap_port->pdev);
return err;
}
csdp = SSI_DST_BURST_4x32_BIT | SSI_DST_MEMORY_PORT |
SSI_SRC_SINGLE_ACCESS0 | SSI_SRC_PERIPHERAL_PORT |
SSI_DATA_TYPE_S32;
ccr = msg->channel + 0x10 + (port->num * 8); /* Sync */
ccr |= SSI_DST_AMODE_POSTINC | SSI_SRC_AMODE_CONST |
SSI_CCR_ENABLE;
s_addr = omap_port->ssr_dma +
SSI_SSR_BUFFER_CH_REG(msg->channel);
d_addr = sg_dma_address(msg->sgt.sgl);
} else {
err = dma_map_sg(&ssi->device, msg->sgt.sgl, msg->sgt.nents,
DMA_TO_DEVICE);
if (err < 0) {
dev_dbg(&ssi->device, "DMA map SG failed !\n");
pm_runtime_put_autosuspend(omap_port->pdev);
return err;
}
csdp = SSI_SRC_BURST_4x32_BIT | SSI_SRC_MEMORY_PORT |
SSI_DST_SINGLE_ACCESS0 | SSI_DST_PERIPHERAL_PORT |
SSI_DATA_TYPE_S32;
ccr = (msg->channel + 1 + (port->num * 8)) & 0xf; /* Sync */
ccr |= SSI_SRC_AMODE_POSTINC | SSI_DST_AMODE_CONST |
SSI_CCR_ENABLE;
s_addr = sg_dma_address(msg->sgt.sgl);
d_addr = omap_port->sst_dma +
SSI_SST_BUFFER_CH_REG(msg->channel);
}
dev_dbg(&ssi->device, "lch %d cdsp %08x ccr %04x s_addr %08x d_addr %08x\n",
lch, csdp, ccr, s_addr, d_addr);
writew_relaxed(csdp, gdd + SSI_GDD_CSDP_REG(lch));
writew_relaxed(SSI_BLOCK_IE | SSI_TOUT_IE, gdd + SSI_GDD_CICR_REG(lch));
writel_relaxed(d_addr, gdd + SSI_GDD_CDSA_REG(lch));
writel_relaxed(s_addr, gdd + SSI_GDD_CSSA_REG(lch));
writew_relaxed(SSI_BYTES_TO_FRAMES(msg->sgt.sgl->length),
gdd + SSI_GDD_CEN_REG(lch));
spin_lock_bh(&omap_ssi->lock);
tmp = readl(omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
tmp |= SSI_GDD_LCH(lch);
writel_relaxed(tmp, omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
spin_unlock_bh(&omap_ssi->lock);
writew(ccr, gdd + SSI_GDD_CCR_REG(lch));
msg->status = HSI_STATUS_PROCEEDING;
return 0;
}
static int ssi_start_pio(struct hsi_msg *msg)
{
struct hsi_port *port = hsi_get_port(msg->cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
u32 val;
pm_runtime_get(omap_port->pdev);
if (!pm_runtime_active(omap_port->pdev)) {
dev_warn(&port->device, "ssi_start_pio called without runtime PM!\n");
pm_runtime_put_autosuspend(omap_port->pdev);
return -EREMOTEIO;
}
if (msg->ttype == HSI_MSG_WRITE) {
val = SSI_DATAACCEPT(msg->channel);
/* Hold clocks for pio writes */
pm_runtime_get(omap_port->pdev);
} else {
val = SSI_DATAAVAILABLE(msg->channel) | SSI_ERROROCCURED;
}
dev_dbg(&port->device, "Single %s transfer\n",
msg->ttype ? "write" : "read");
val |= readl(omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
writel(val, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
pm_runtime_put_autosuspend(omap_port->pdev);
msg->actual_len = 0;
msg->status = HSI_STATUS_PROCEEDING;
return 0;
}
static int ssi_start_transfer(struct list_head *queue)
{
struct hsi_msg *msg;
int lch = -1;
if (list_empty(queue))
return 0;
msg = list_first_entry(queue, struct hsi_msg, link);
if (msg->status != HSI_STATUS_QUEUED)
return 0;
if ((msg->sgt.nents) && (msg->sgt.sgl->length > sizeof(u32)))
lch = ssi_claim_lch(msg);
if (lch >= 0)
return ssi_start_dma(msg, lch);
else
return ssi_start_pio(msg);
}
static int ssi_async_break(struct hsi_msg *msg)
{
struct hsi_port *port = hsi_get_port(msg->cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
int err = 0;
u32 tmp;
pm_runtime_get_sync(omap_port->pdev);
if (msg->ttype == HSI_MSG_WRITE) {
if (omap_port->sst.mode != SSI_MODE_FRAME) {
err = -EINVAL;
goto out;
}
writel(1, omap_port->sst_base + SSI_SST_BREAK_REG);
msg->status = HSI_STATUS_COMPLETED;
msg->complete(msg);
} else {
if (omap_port->ssr.mode != SSI_MODE_FRAME) {
err = -EINVAL;
goto out;
}
spin_lock_bh(&omap_port->lock);
tmp = readl(omap_ssi->sys +
SSI_MPU_ENABLE_REG(port->num, 0));
writel(tmp | SSI_BREAKDETECTED,
omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
msg->status = HSI_STATUS_PROCEEDING;
list_add_tail(&msg->link, &omap_port->brkqueue);
spin_unlock_bh(&omap_port->lock);
}
out:
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
return err;
}
static int ssi_async(struct hsi_msg *msg)
{
struct hsi_port *port = hsi_get_port(msg->cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct list_head *queue;
int err = 0;
BUG_ON(!msg);
if (msg->sgt.nents > 1)
return -ENOSYS; /* TODO: Add sg support */
if (msg->break_frame)
return ssi_async_break(msg);
if (msg->ttype) {
BUG_ON(msg->channel >= omap_port->sst.channels);
queue = &omap_port->txqueue[msg->channel];
} else {
BUG_ON(msg->channel >= omap_port->ssr.channels);
queue = &omap_port->rxqueue[msg->channel];
}
msg->status = HSI_STATUS_QUEUED;
pm_runtime_get_sync(omap_port->pdev);
spin_lock_bh(&omap_port->lock);
list_add_tail(&msg->link, queue);
err = ssi_start_transfer(queue);
if (err < 0) {
list_del(&msg->link);
msg->status = HSI_STATUS_ERROR;
}
spin_unlock_bh(&omap_port->lock);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
dev_dbg(&port->device, "msg status %d ttype %d ch %d\n",
msg->status, msg->ttype, msg->channel);
return err;
}
static u32 ssi_calculate_div(struct hsi_controller *ssi)
{
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
u32 tx_fckrate = (u32) omap_ssi->fck_rate;
/* / 2 : SSI TX clock is always half of the SSI functional clock */
tx_fckrate >>= 1;
/* Round down when tx_fckrate % omap_ssi->max_speed == 0 */
tx_fckrate--;
dev_dbg(&ssi->device, "TX div %d for fck_rate %lu Khz speed %d Kb/s\n",
tx_fckrate / omap_ssi->max_speed, omap_ssi->fck_rate,
omap_ssi->max_speed);
return tx_fckrate / omap_ssi->max_speed;
}
static void ssi_flush_queue(struct list_head *queue, struct hsi_client *cl)
{
struct list_head *node, *tmp;
struct hsi_msg *msg;
list_for_each_safe(node, tmp, queue) {
msg = list_entry(node, struct hsi_msg, link);
if ((cl) && (cl != msg->cl))
continue;
list_del(node);
pr_debug("flush queue: ch %d, msg %p len %d type %d ctxt %p\n",
msg->channel, msg, msg->sgt.sgl->length,
msg->ttype, msg->context);
if (msg->destructor)
msg->destructor(msg);
else
hsi_free_msg(msg);
}
}
static int ssi_setup(struct hsi_client *cl)
{
struct hsi_port *port = to_hsi_port(cl->device.parent);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
void __iomem *sst = omap_port->sst_base;
void __iomem *ssr = omap_port->ssr_base;
u32 div;
u32 val;
int err = 0;
pm_runtime_get_sync(omap_port->pdev);
spin_lock_bh(&omap_port->lock);
if (cl->tx_cfg.speed)
omap_ssi->max_speed = cl->tx_cfg.speed;
div = ssi_calculate_div(ssi);
if (div > SSI_MAX_DIVISOR) {
dev_err(&cl->device, "Invalid TX speed %d Mb/s (div %d)\n",
cl->tx_cfg.speed, div);
err = -EINVAL;
goto out;
}
/* Set TX/RX module to sleep to stop TX/RX during cfg update */
writel_relaxed(SSI_MODE_SLEEP, sst + SSI_SST_MODE_REG);
writel_relaxed(SSI_MODE_SLEEP, ssr + SSI_SSR_MODE_REG);
/* Flush posted write */
val = readl(ssr + SSI_SSR_MODE_REG);
/* TX */
writel_relaxed(31, sst + SSI_SST_FRAMESIZE_REG);
writel_relaxed(div, sst + SSI_SST_DIVISOR_REG);
writel_relaxed(cl->tx_cfg.num_hw_channels, sst + SSI_SST_CHANNELS_REG);
writel_relaxed(cl->tx_cfg.arb_mode, sst + SSI_SST_ARBMODE_REG);
writel_relaxed(cl->tx_cfg.mode, sst + SSI_SST_MODE_REG);
/* RX */
writel_relaxed(31, ssr + SSI_SSR_FRAMESIZE_REG);
writel_relaxed(cl->rx_cfg.num_hw_channels, ssr + SSI_SSR_CHANNELS_REG);
writel_relaxed(0, ssr + SSI_SSR_TIMEOUT_REG);
/* Cleanup the break queue if we leave FRAME mode */
if ((omap_port->ssr.mode == SSI_MODE_FRAME) &&
(cl->rx_cfg.mode != SSI_MODE_FRAME))
ssi_flush_queue(&omap_port->brkqueue, cl);
writel_relaxed(cl->rx_cfg.mode, ssr + SSI_SSR_MODE_REG);
omap_port->channels = max(cl->rx_cfg.num_hw_channels,
cl->tx_cfg.num_hw_channels);
/* Shadow registering for OFF mode */
/* SST */
omap_port->sst.divisor = div;
omap_port->sst.frame_size = 31;
omap_port->sst.channels = cl->tx_cfg.num_hw_channels;
omap_port->sst.arb_mode = cl->tx_cfg.arb_mode;
omap_port->sst.mode = cl->tx_cfg.mode;
/* SSR */
omap_port->ssr.frame_size = 31;
omap_port->ssr.timeout = 0;
omap_port->ssr.channels = cl->rx_cfg.num_hw_channels;
omap_port->ssr.mode = cl->rx_cfg.mode;
out:
spin_unlock_bh(&omap_port->lock);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
return err;
}
static int ssi_flush(struct hsi_client *cl)
{
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct hsi_msg *msg;
void __iomem *sst = omap_port->sst_base;
void __iomem *ssr = omap_port->ssr_base;
unsigned int i;
u32 err;
pm_runtime_get_sync(omap_port->pdev);
spin_lock_bh(&omap_port->lock);
/* stop all ssi communication */
pinctrl_pm_select_idle_state(omap_port->pdev);
udelay(1); /* wait for racing frames */
/* Stop all DMA transfers */
for (i = 0; i < SSI_MAX_GDD_LCH; i++) {
msg = omap_ssi->gdd_trn[i].msg;
if (!msg || (port != hsi_get_port(msg->cl)))
continue;
writew_relaxed(0, omap_ssi->gdd + SSI_GDD_CCR_REG(i));
if (msg->ttype == HSI_MSG_READ)
pm_runtime_put_autosuspend(omap_port->pdev);
omap_ssi->gdd_trn[i].msg = NULL;
}
/* Flush all SST buffers */
writel_relaxed(0, sst + SSI_SST_BUFSTATE_REG);
writel_relaxed(0, sst + SSI_SST_TXSTATE_REG);
/* Flush all SSR buffers */
writel_relaxed(0, ssr + SSI_SSR_RXSTATE_REG);
writel_relaxed(0, ssr + SSI_SSR_BUFSTATE_REG);
/* Flush all errors */
err = readl(ssr + SSI_SSR_ERROR_REG);
writel_relaxed(err, ssr + SSI_SSR_ERRORACK_REG);
/* Flush break */
writel_relaxed(0, ssr + SSI_SSR_BREAK_REG);
/* Clear interrupts */
writel_relaxed(0, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
writel_relaxed(0xffffff00,
omap_ssi->sys + SSI_MPU_STATUS_REG(port->num, 0));
writel_relaxed(0, omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
writel(0xff, omap_ssi->sys + SSI_GDD_MPU_IRQ_STATUS_REG);
/* Dequeue all pending requests */
for (i = 0; i < omap_port->channels; i++) {
/* Release write clocks */
if (!list_empty(&omap_port->txqueue[i]))
pm_runtime_put_autosuspend(omap_port->pdev);
ssi_flush_queue(&omap_port->txqueue[i], NULL);
ssi_flush_queue(&omap_port->rxqueue[i], NULL);
}
ssi_flush_queue(&omap_port->brkqueue, NULL);
/* Resume SSI communication */
pinctrl_pm_select_default_state(omap_port->pdev);
spin_unlock_bh(&omap_port->lock);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
return 0;
}
static void start_tx_work(struct work_struct *work)
{
struct omap_ssi_port *omap_port =
container_of(work, struct omap_ssi_port, work);
struct hsi_port *port = to_hsi_port(omap_port->dev);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
pm_runtime_get_sync(omap_port->pdev); /* Grab clocks */
writel(SSI_WAKE(0), omap_ssi->sys + SSI_SET_WAKE_REG(port->num));
}
static int ssi_start_tx(struct hsi_client *cl)
{
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
dev_dbg(&port->device, "Wake out high %d\n", omap_port->wk_refcount);
spin_lock_bh(&omap_port->wk_lock);
if (omap_port->wk_refcount++) {
spin_unlock_bh(&omap_port->wk_lock);
return 0;
}
spin_unlock_bh(&omap_port->wk_lock);
schedule_work(&omap_port->work);
return 0;
}
static int ssi_stop_tx(struct hsi_client *cl)
{
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
dev_dbg(&port->device, "Wake out low %d\n", omap_port->wk_refcount);
spin_lock_bh(&omap_port->wk_lock);
BUG_ON(!omap_port->wk_refcount);
if (--omap_port->wk_refcount) {
spin_unlock_bh(&omap_port->wk_lock);
return 0;
}
writel(SSI_WAKE(0), omap_ssi->sys + SSI_CLEAR_WAKE_REG(port->num));
spin_unlock_bh(&omap_port->wk_lock);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev); /* Release clocks */
return 0;
}
static void ssi_transfer(struct omap_ssi_port *omap_port,
struct list_head *queue)
{
struct hsi_msg *msg;
int err = -1;
pm_runtime_get(omap_port->pdev);
spin_lock_bh(&omap_port->lock);
while (err < 0) {
err = ssi_start_transfer(queue);
if (err < 0) {
msg = list_first_entry(queue, struct hsi_msg, link);
msg->status = HSI_STATUS_ERROR;
msg->actual_len = 0;
list_del(&msg->link);
spin_unlock_bh(&omap_port->lock);
msg->complete(msg);
spin_lock_bh(&omap_port->lock);
}
}
spin_unlock_bh(&omap_port->lock);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
}
static void ssi_cleanup_queues(struct hsi_client *cl)
{
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct hsi_msg *msg;
unsigned int i;
u32 rxbufstate = 0;
u32 txbufstate = 0;
u32 status = SSI_ERROROCCURED;
u32 tmp;
ssi_flush_queue(&omap_port->brkqueue, cl);
if (list_empty(&omap_port->brkqueue))
status |= SSI_BREAKDETECTED;
for (i = 0; i < omap_port->channels; i++) {
if (list_empty(&omap_port->txqueue[i]))
continue;
msg = list_first_entry(&omap_port->txqueue[i], struct hsi_msg,
link);
if ((msg->cl == cl) && (msg->status == HSI_STATUS_PROCEEDING)) {
txbufstate |= (1 << i);
status |= SSI_DATAACCEPT(i);
/* Release the clocks writes, also GDD ones */
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
}
ssi_flush_queue(&omap_port->txqueue[i], cl);
}
for (i = 0; i < omap_port->channels; i++) {
if (list_empty(&omap_port->rxqueue[i]))
continue;
msg = list_first_entry(&omap_port->rxqueue[i], struct hsi_msg,
link);
if ((msg->cl == cl) && (msg->status == HSI_STATUS_PROCEEDING)) {
rxbufstate |= (1 << i);
status |= SSI_DATAAVAILABLE(i);
}
ssi_flush_queue(&omap_port->rxqueue[i], cl);
/* Check if we keep the error detection interrupt armed */
if (!list_empty(&omap_port->rxqueue[i]))
status &= ~SSI_ERROROCCURED;
}
/* Cleanup write buffers */
tmp = readl(omap_port->sst_base + SSI_SST_BUFSTATE_REG);
tmp &= ~txbufstate;
writel_relaxed(tmp, omap_port->sst_base + SSI_SST_BUFSTATE_REG);
/* Cleanup read buffers */
tmp = readl(omap_port->ssr_base + SSI_SSR_BUFSTATE_REG);
tmp &= ~rxbufstate;
writel_relaxed(tmp, omap_port->ssr_base + SSI_SSR_BUFSTATE_REG);
/* Disarm and ack pending interrupts */
tmp = readl(omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
tmp &= ~status;
writel_relaxed(tmp, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
writel_relaxed(status, omap_ssi->sys +
SSI_MPU_STATUS_REG(port->num, 0));
}
static void ssi_cleanup_gdd(struct hsi_controller *ssi, struct hsi_client *cl)
{
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_msg *msg;
unsigned int i;
u32 val = 0;
u32 tmp;
for (i = 0; i < SSI_MAX_GDD_LCH; i++) {
msg = omap_ssi->gdd_trn[i].msg;
if ((!msg) || (msg->cl != cl))
continue;
writew_relaxed(0, omap_ssi->gdd + SSI_GDD_CCR_REG(i));
val |= (1 << i);
/*
* Clock references for write will be handled in
* ssi_cleanup_queues
*/
if (msg->ttype == HSI_MSG_READ) {
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
}
omap_ssi->gdd_trn[i].msg = NULL;
}
tmp = readl_relaxed(omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
tmp &= ~val;
writel_relaxed(tmp, omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
writel(val, omap_ssi->sys + SSI_GDD_MPU_IRQ_STATUS_REG);
}
static int ssi_set_port_mode(struct omap_ssi_port *omap_port, u32 mode)
{
writel(mode, omap_port->sst_base + SSI_SST_MODE_REG);
writel(mode, omap_port->ssr_base + SSI_SSR_MODE_REG);
/* OCP barrier */
mode = readl(omap_port->ssr_base + SSI_SSR_MODE_REG);
return 0;
}
static int ssi_release(struct hsi_client *cl)
{
struct hsi_port *port = hsi_get_port(cl);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
pm_runtime_get_sync(omap_port->pdev);
spin_lock_bh(&omap_port->lock);
/* Stop all the pending DMA requests for that client */
ssi_cleanup_gdd(ssi, cl);
/* Now cleanup all the queues */
ssi_cleanup_queues(cl);
/* If it is the last client of the port, do extra checks and cleanup */
if (port->claimed <= 1) {
/*
* Drop the clock reference for the incoming wake line
* if it is still kept high by the other side.
*/
if (test_and_clear_bit(SSI_WAKE_EN, &omap_port->flags))
pm_runtime_put_sync(omap_port->pdev);
pm_runtime_get(omap_port->pdev);
/* Stop any SSI TX/RX without a client */
ssi_set_port_mode(omap_port, SSI_MODE_SLEEP);
omap_port->sst.mode = SSI_MODE_SLEEP;
omap_port->ssr.mode = SSI_MODE_SLEEP;
pm_runtime_put(omap_port->pdev);
WARN_ON(omap_port->wk_refcount != 0);
}
spin_unlock_bh(&omap_port->lock);
pm_runtime_put_sync(omap_port->pdev);
return 0;
}
static void ssi_error(struct hsi_port *port)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct hsi_msg *msg;
unsigned int i;
u32 err;
u32 val;
u32 tmp;
/* ACK error */
err = readl(omap_port->ssr_base + SSI_SSR_ERROR_REG);
dev_err(&port->device, "SSI error: 0x%02x\n", err);
if (!err) {
dev_dbg(&port->device, "spurious SSI error ignored!\n");
return;
}
spin_lock(&omap_ssi->lock);
/* Cancel all GDD read transfers */
for (i = 0, val = 0; i < SSI_MAX_GDD_LCH; i++) {
msg = omap_ssi->gdd_trn[i].msg;
if ((msg) && (msg->ttype == HSI_MSG_READ)) {
writew_relaxed(0, omap_ssi->gdd + SSI_GDD_CCR_REG(i));
val |= (1 << i);
omap_ssi->gdd_trn[i].msg = NULL;
}
}
tmp = readl(omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
tmp &= ~val;
writel_relaxed(tmp, omap_ssi->sys + SSI_GDD_MPU_IRQ_ENABLE_REG);
spin_unlock(&omap_ssi->lock);
/* Cancel all PIO read transfers */
spin_lock(&omap_port->lock);
tmp = readl(omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
tmp &= 0xfeff00ff; /* Disable error & all dataavailable interrupts */
writel_relaxed(tmp, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
/* ACK error */
writel_relaxed(err, omap_port->ssr_base + SSI_SSR_ERRORACK_REG);
writel_relaxed(SSI_ERROROCCURED,
omap_ssi->sys + SSI_MPU_STATUS_REG(port->num, 0));
/* Signal the error all current pending read requests */
for (i = 0; i < omap_port->channels; i++) {
if (list_empty(&omap_port->rxqueue[i]))
continue;
msg = list_first_entry(&omap_port->rxqueue[i], struct hsi_msg,
link);
list_del(&msg->link);
msg->status = HSI_STATUS_ERROR;
spin_unlock(&omap_port->lock);
msg->complete(msg);
/* Now restart queued reads if any */
ssi_transfer(omap_port, &omap_port->rxqueue[i]);
spin_lock(&omap_port->lock);
}
spin_unlock(&omap_port->lock);
}
static void ssi_break_complete(struct hsi_port *port)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct hsi_msg *msg;
struct hsi_msg *tmp;
u32 val;
dev_dbg(&port->device, "HWBREAK received\n");
spin_lock(&omap_port->lock);
val = readl(omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
val &= ~SSI_BREAKDETECTED;
writel_relaxed(val, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
writel_relaxed(0, omap_port->ssr_base + SSI_SSR_BREAK_REG);
writel(SSI_BREAKDETECTED,
omap_ssi->sys + SSI_MPU_STATUS_REG(port->num, 0));
spin_unlock(&omap_port->lock);
list_for_each_entry_safe(msg, tmp, &omap_port->brkqueue, link) {
msg->status = HSI_STATUS_COMPLETED;
spin_lock(&omap_port->lock);
list_del(&msg->link);
spin_unlock(&omap_port->lock);
msg->complete(msg);
}
}
static void ssi_pio_complete(struct hsi_port *port, struct list_head *queue)
{
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_msg *msg;
u32 *buf;
u32 reg;
u32 val;
spin_lock_bh(&omap_port->lock);
msg = list_first_entry(queue, struct hsi_msg, link);
if ((!msg->sgt.nents) || (!msg->sgt.sgl->length)) {
msg->actual_len = 0;
msg->status = HSI_STATUS_PENDING;
}
if (msg->ttype == HSI_MSG_WRITE)
val = SSI_DATAACCEPT(msg->channel);
else
val = SSI_DATAAVAILABLE(msg->channel);
if (msg->status == HSI_STATUS_PROCEEDING) {
buf = sg_virt(msg->sgt.sgl) + msg->actual_len;
if (msg->ttype == HSI_MSG_WRITE)
writel(*buf, omap_port->sst_base +
SSI_SST_BUFFER_CH_REG(msg->channel));
else
*buf = readl(omap_port->ssr_base +
SSI_SSR_BUFFER_CH_REG(msg->channel));
dev_dbg(&port->device, "ch %d ttype %d 0x%08x\n", msg->channel,
msg->ttype, *buf);
msg->actual_len += sizeof(*buf);
if (msg->actual_len >= msg->sgt.sgl->length)
msg->status = HSI_STATUS_COMPLETED;
/*
* Wait for the last written frame to be really sent before
* we call the complete callback
*/
if ((msg->status == HSI_STATUS_PROCEEDING) ||
((msg->status == HSI_STATUS_COMPLETED) &&
(msg->ttype == HSI_MSG_WRITE))) {
writel(val, omap_ssi->sys +
SSI_MPU_STATUS_REG(port->num, 0));
spin_unlock_bh(&omap_port->lock);
return;
}
}
/* Transfer completed at this point */
reg = readl(omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
if (msg->ttype == HSI_MSG_WRITE) {
/* Release clocks for write transfer */
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
}
reg &= ~val;
writel_relaxed(reg, omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
writel_relaxed(val, omap_ssi->sys + SSI_MPU_STATUS_REG(port->num, 0));
list_del(&msg->link);
spin_unlock_bh(&omap_port->lock);
msg->complete(msg);
ssi_transfer(omap_port, queue);
}
static irqreturn_t ssi_pio_thread(int irq, void *ssi_port)
{
struct hsi_port *port = (struct hsi_port *)ssi_port;
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
void __iomem *sys = omap_ssi->sys;
unsigned int ch;
u32 status_reg;
pm_runtime_get_sync(omap_port->pdev);
do {
status_reg = readl(sys + SSI_MPU_STATUS_REG(port->num, 0));
status_reg &= readl(sys + SSI_MPU_ENABLE_REG(port->num, 0));
for (ch = 0; ch < omap_port->channels; ch++) {
if (status_reg & SSI_DATAACCEPT(ch))
ssi_pio_complete(port, &omap_port->txqueue[ch]);
if (status_reg & SSI_DATAAVAILABLE(ch))
ssi_pio_complete(port, &omap_port->rxqueue[ch]);
}
if (status_reg & SSI_BREAKDETECTED)
ssi_break_complete(port);
if (status_reg & SSI_ERROROCCURED)
ssi_error(port);
status_reg = readl(sys + SSI_MPU_STATUS_REG(port->num, 0));
status_reg &= readl(sys + SSI_MPU_ENABLE_REG(port->num, 0));
/* TODO: sleep if we retry? */
} while (status_reg);
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
return IRQ_HANDLED;
}
static irqreturn_t ssi_wake_thread(int irq __maybe_unused, void *ssi_port)
{
struct hsi_port *port = (struct hsi_port *)ssi_port;
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
if (ssi_wakein(port)) {
/**
* We can have a quick High-Low-High transition in the line.
* In such a case if we have long interrupt latencies,
* we can miss the low event or get twice a high event.
* This workaround will avoid breaking the clock reference
* count when such a situation ocurrs.
*/
if (!test_and_set_bit(SSI_WAKE_EN, &omap_port->flags))
pm_runtime_get_sync(omap_port->pdev);
dev_dbg(&ssi->device, "Wake in high\n");
if (omap_port->wktest) { /* FIXME: HACK ! To be removed */
writel(SSI_WAKE(0),
omap_ssi->sys + SSI_SET_WAKE_REG(port->num));
}
hsi_event(port, HSI_EVENT_START_RX);
} else {
dev_dbg(&ssi->device, "Wake in low\n");
if (omap_port->wktest) { /* FIXME: HACK ! To be removed */
writel(SSI_WAKE(0),
omap_ssi->sys + SSI_CLEAR_WAKE_REG(port->num));
}
hsi_event(port, HSI_EVENT_STOP_RX);
if (test_and_clear_bit(SSI_WAKE_EN, &omap_port->flags)) {
pm_runtime_mark_last_busy(omap_port->pdev);
pm_runtime_put_autosuspend(omap_port->pdev);
}
}
return IRQ_HANDLED;
}
static int ssi_port_irq(struct hsi_port *port, struct platform_device *pd)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
int err;
err = platform_get_irq(pd, 0);
if (err < 0)
return err;
omap_port->irq = err;
err = devm_request_threaded_irq(&port->device, omap_port->irq, NULL,
ssi_pio_thread, IRQF_ONESHOT, "SSI PORT", port);
if (err < 0)
dev_err(&port->device, "Request IRQ %d failed (%d)\n",
omap_port->irq, err);
return err;
}
static int ssi_wake_irq(struct hsi_port *port, struct platform_device *pd)
{
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
int cawake_irq;
int err;
if (!omap_port->wake_gpio) {
omap_port->wake_irq = -1;
return 0;
}
cawake_irq = gpiod_to_irq(omap_port->wake_gpio);
omap_port->wake_irq = cawake_irq;
err = devm_request_threaded_irq(&port->device, cawake_irq, NULL,
ssi_wake_thread,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"SSI cawake", port);
if (err < 0)
dev_err(&port->device, "Request Wake in IRQ %d failed %d\n",
cawake_irq, err);
err = enable_irq_wake(cawake_irq);
if (err < 0)
dev_err(&port->device, "Enable wake on the wakeline in irq %d failed %d\n",
cawake_irq, err);
return err;
}
static void ssi_queues_init(struct omap_ssi_port *omap_port)
{
unsigned int ch;
for (ch = 0; ch < SSI_MAX_CHANNELS; ch++) {
INIT_LIST_HEAD(&omap_port->txqueue[ch]);
INIT_LIST_HEAD(&omap_port->rxqueue[ch]);
}
INIT_LIST_HEAD(&omap_port->brkqueue);
}
static int ssi_port_get_iomem(struct platform_device *pd,
const char *name, void __iomem **pbase, dma_addr_t *phy)
{
struct hsi_port *port = platform_get_drvdata(pd);
struct resource *mem;
struct resource *ioarea;
void __iomem *base;
mem = platform_get_resource_byname(pd, IORESOURCE_MEM, name);
if (!mem) {
dev_err(&pd->dev, "IO memory region missing (%s)\n", name);
return -ENXIO;
}
ioarea = devm_request_mem_region(&port->device, mem->start,
resource_size(mem), dev_name(&pd->dev));
if (!ioarea) {
dev_err(&pd->dev, "%s IO memory region request failed\n",
mem->name);
return -ENXIO;
}
base = devm_ioremap(&port->device, mem->start, resource_size(mem));
if (!base) {
dev_err(&pd->dev, "%s IO remap failed\n", mem->name);
return -ENXIO;
}
*pbase = base;
if (phy)
*phy = mem->start;
return 0;
}
static int ssi_port_probe(struct platform_device *pd)
{
struct device_node *np = pd->dev.of_node;
struct hsi_port *port;
struct omap_ssi_port *omap_port;
struct hsi_controller *ssi = dev_get_drvdata(pd->dev.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
struct gpio_desc *cawake_gpio = NULL;
u32 port_id;
int err;
dev_dbg(&pd->dev, "init ssi port...\n");
if (!ssi->port || !omap_ssi->port) {
dev_err(&pd->dev, "ssi controller not initialized!\n");
err = -ENODEV;
goto error;
}
/* get id of first uninitialized port in controller */
for (port_id = 0; port_id < ssi->num_ports && omap_ssi->port[port_id];
port_id++)
;
if (port_id >= ssi->num_ports) {
dev_err(&pd->dev, "port id out of range!\n");
err = -ENODEV;
goto error;
}
port = ssi->port[port_id];
if (!np) {
dev_err(&pd->dev, "missing device tree data\n");
err = -EINVAL;
goto error;
}
cawake_gpio = devm_gpiod_get(&pd->dev, "ti,ssi-cawake", GPIOD_IN);
if (IS_ERR(cawake_gpio)) {
err = PTR_ERR(cawake_gpio);
dev_err(&pd->dev, "couldn't get cawake gpio (err=%d)!\n", err);
goto error;
}
omap_port = devm_kzalloc(&port->device, sizeof(*omap_port), GFP_KERNEL);
if (!omap_port) {
err = -ENOMEM;
goto error;
}
omap_port->wake_gpio = cawake_gpio;
omap_port->pdev = &pd->dev;
omap_port->port_id = port_id;
INIT_DEFERRABLE_WORK(&omap_port->errqueue_work, ssi_process_errqueue);
INIT_WORK(&omap_port->work, start_tx_work);
/* initialize HSI port */
port->async = ssi_async;
port->setup = ssi_setup;
port->flush = ssi_flush;
port->start_tx = ssi_start_tx;
port->stop_tx = ssi_stop_tx;
port->release = ssi_release;
hsi_port_set_drvdata(port, omap_port);
omap_ssi->port[port_id] = omap_port;
platform_set_drvdata(pd, port);
err = ssi_port_get_iomem(pd, "tx", &omap_port->sst_base,
&omap_port->sst_dma);
if (err < 0)
goto error;
err = ssi_port_get_iomem(pd, "rx", &omap_port->ssr_base,
&omap_port->ssr_dma);
if (err < 0)
goto error;
err = ssi_port_irq(port, pd);
if (err < 0)
goto error;
err = ssi_wake_irq(port, pd);
if (err < 0)
goto error;
ssi_queues_init(omap_port);
spin_lock_init(&omap_port->lock);
spin_lock_init(&omap_port->wk_lock);
omap_port->dev = &port->device;
pm_runtime_use_autosuspend(omap_port->pdev);
pm_runtime_set_autosuspend_delay(omap_port->pdev, 250);
pm_runtime_enable(omap_port->pdev);
#ifdef CONFIG_DEBUG_FS
err = ssi_debug_add_port(omap_port, omap_ssi->dir);
if (err < 0) {
pm_runtime_disable(omap_port->pdev);
goto error;
}
#endif
hsi_add_clients_from_dt(port, np);
dev_info(&pd->dev, "ssi port %u successfully initialized\n", port_id);
return 0;
error:
return err;
}
static int ssi_port_remove(struct platform_device *pd)
{
struct hsi_port *port = platform_get_drvdata(pd);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
#ifdef CONFIG_DEBUG_FS
ssi_debug_remove_port(port);
#endif
cancel_delayed_work_sync(&omap_port->errqueue_work);
hsi_port_unregister_clients(port);
port->async = hsi_dummy_msg;
port->setup = hsi_dummy_cl;
port->flush = hsi_dummy_cl;
port->start_tx = hsi_dummy_cl;
port->stop_tx = hsi_dummy_cl;
port->release = hsi_dummy_cl;
omap_ssi->port[omap_port->port_id] = NULL;
platform_set_drvdata(pd, NULL);
pm_runtime_dont_use_autosuspend(&pd->dev);
pm_runtime_disable(&pd->dev);
return 0;
}
static int ssi_restore_divisor(struct omap_ssi_port *omap_port)
{
writel_relaxed(omap_port->sst.divisor,
omap_port->sst_base + SSI_SST_DIVISOR_REG);
return 0;
}
void omap_ssi_port_update_fclk(struct hsi_controller *ssi,
struct omap_ssi_port *omap_port)
{
/* update divisor */
u32 div = ssi_calculate_div(ssi);
omap_port->sst.divisor = div;
ssi_restore_divisor(omap_port);
}
#ifdef CONFIG_PM
static int ssi_save_port_ctx(struct omap_ssi_port *omap_port)
{
struct hsi_port *port = to_hsi_port(omap_port->dev);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
omap_port->sys_mpu_enable = readl(omap_ssi->sys +
SSI_MPU_ENABLE_REG(port->num, 0));
return 0;
}
static int ssi_restore_port_ctx(struct omap_ssi_port *omap_port)
{
struct hsi_port *port = to_hsi_port(omap_port->dev);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
void __iomem *base;
writel_relaxed(omap_port->sys_mpu_enable,
omap_ssi->sys + SSI_MPU_ENABLE_REG(port->num, 0));
/* SST context */
base = omap_port->sst_base;
writel_relaxed(omap_port->sst.frame_size, base + SSI_SST_FRAMESIZE_REG);
writel_relaxed(omap_port->sst.channels, base + SSI_SST_CHANNELS_REG);
writel_relaxed(omap_port->sst.arb_mode, base + SSI_SST_ARBMODE_REG);
/* SSR context */
base = omap_port->ssr_base;
writel_relaxed(omap_port->ssr.frame_size, base + SSI_SSR_FRAMESIZE_REG);
writel_relaxed(omap_port->ssr.channels, base + SSI_SSR_CHANNELS_REG);
writel_relaxed(omap_port->ssr.timeout, base + SSI_SSR_TIMEOUT_REG);
return 0;
}
static int ssi_restore_port_mode(struct omap_ssi_port *omap_port)
{
u32 mode;
writel_relaxed(omap_port->sst.mode,
omap_port->sst_base + SSI_SST_MODE_REG);
writel_relaxed(omap_port->ssr.mode,
omap_port->ssr_base + SSI_SSR_MODE_REG);
/* OCP barrier */
mode = readl(omap_port->ssr_base + SSI_SSR_MODE_REG);
return 0;
}
static int omap_ssi_port_runtime_suspend(struct device *dev)
{
struct hsi_port *port = dev_get_drvdata(dev);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
dev_dbg(dev, "port runtime suspend!\n");
ssi_set_port_mode(omap_port, SSI_MODE_SLEEP);
if (omap_ssi->get_loss)
omap_port->loss_count =
omap_ssi->get_loss(ssi->device.parent);
ssi_save_port_ctx(omap_port);
return 0;
}
static int omap_ssi_port_runtime_resume(struct device *dev)
{
struct hsi_port *port = dev_get_drvdata(dev);
struct omap_ssi_port *omap_port = hsi_port_drvdata(port);
struct hsi_controller *ssi = to_hsi_controller(port->device.parent);
struct omap_ssi_controller *omap_ssi = hsi_controller_drvdata(ssi);
dev_dbg(dev, "port runtime resume!\n");
if ((omap_ssi->get_loss) && (omap_port->loss_count ==
omap_ssi->get_loss(ssi->device.parent)))
goto mode; /* We always need to restore the mode & TX divisor */
ssi_restore_port_ctx(omap_port);
mode:
ssi_restore_divisor(omap_port);
ssi_restore_port_mode(omap_port);
return 0;
}
static const struct dev_pm_ops omap_ssi_port_pm_ops = {
SET_RUNTIME_PM_OPS(omap_ssi_port_runtime_suspend,
omap_ssi_port_runtime_resume, NULL)
};
#define DEV_PM_OPS (&omap_ssi_port_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif
#ifdef CONFIG_OF
static const struct of_device_id omap_ssi_port_of_match[] = {
{ .compatible = "ti,omap3-ssi-port", },
{},
};
MODULE_DEVICE_TABLE(of, omap_ssi_port_of_match);
#else
#define omap_ssi_port_of_match NULL
#endif
struct platform_driver ssi_port_pdriver = {
.probe = ssi_port_probe,
.remove = ssi_port_remove,
.driver = {
.name = "omap_ssi_port",
.of_match_table = omap_ssi_port_of_match,
.pm = DEV_PM_OPS,
},
};