mirror of https://gitee.com/openkylin/linux.git
1075 lines
30 KiB
C
1075 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2018 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_refcount.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_ag_resv.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_quota.h"
|
|
#include "scrub/xfs_scrub.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/trace.h"
|
|
#include "scrub/repair.h"
|
|
|
|
/*
|
|
* Attempt to repair some metadata, if the metadata is corrupt and userspace
|
|
* told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
|
|
* and will set *fixed to true if it thinks it repaired anything.
|
|
*/
|
|
int
|
|
xfs_repair_attempt(
|
|
struct xfs_inode *ip,
|
|
struct xfs_scrub_context *sc,
|
|
bool *fixed)
|
|
{
|
|
int error = 0;
|
|
|
|
trace_xfs_repair_attempt(ip, sc->sm, error);
|
|
|
|
xfs_scrub_ag_btcur_free(&sc->sa);
|
|
|
|
/* Repair whatever's broken. */
|
|
ASSERT(sc->ops->repair);
|
|
error = sc->ops->repair(sc);
|
|
trace_xfs_repair_done(ip, sc->sm, error);
|
|
switch (error) {
|
|
case 0:
|
|
/*
|
|
* Repair succeeded. Commit the fixes and perform a second
|
|
* scrub so that we can tell userspace if we fixed the problem.
|
|
*/
|
|
sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
|
|
*fixed = true;
|
|
return -EAGAIN;
|
|
case -EDEADLOCK:
|
|
case -EAGAIN:
|
|
/* Tell the caller to try again having grabbed all the locks. */
|
|
if (!sc->try_harder) {
|
|
sc->try_harder = true;
|
|
return -EAGAIN;
|
|
}
|
|
/*
|
|
* We tried harder but still couldn't grab all the resources
|
|
* we needed to fix it. The corruption has not been fixed,
|
|
* so report back to userspace.
|
|
*/
|
|
return -EFSCORRUPTED;
|
|
default:
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Complain about unfixable problems in the filesystem. We don't log
|
|
* corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
|
|
* program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
|
|
* administrator isn't running xfs_scrub in no-repairs mode.
|
|
*
|
|
* Use this helper function because _ratelimited silently declares a static
|
|
* structure to track rate limiting information.
|
|
*/
|
|
void
|
|
xfs_repair_failure(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_alert_ratelimited(mp,
|
|
"Corruption not fixed during online repair. Unmount and run xfs_repair.");
|
|
}
|
|
|
|
/*
|
|
* Repair probe -- userspace uses this to probe if we're willing to repair a
|
|
* given mountpoint.
|
|
*/
|
|
int
|
|
xfs_repair_probe(
|
|
struct xfs_scrub_context *sc)
|
|
{
|
|
int error = 0;
|
|
|
|
if (xfs_scrub_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Roll a transaction, keeping the AG headers locked and reinitializing
|
|
* the btree cursors.
|
|
*/
|
|
int
|
|
xfs_repair_roll_ag_trans(
|
|
struct xfs_scrub_context *sc)
|
|
{
|
|
int error;
|
|
|
|
/* Keep the AG header buffers locked so we can keep going. */
|
|
xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
|
|
xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
|
|
xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
|
|
|
|
/* Roll the transaction. */
|
|
error = xfs_trans_roll(&sc->tp);
|
|
if (error)
|
|
goto out_release;
|
|
|
|
/* Join AG headers to the new transaction. */
|
|
xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
|
|
xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
|
|
xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
|
|
|
|
return 0;
|
|
|
|
out_release:
|
|
/*
|
|
* Rolling failed, so release the hold on the buffers. The
|
|
* buffers will be released during teardown on our way out
|
|
* of the kernel.
|
|
*/
|
|
xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
|
|
xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
|
|
xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Does the given AG have enough space to rebuild a btree? Neither AG
|
|
* reservation can be critical, and we must have enough space (factoring
|
|
* in AG reservations) to construct a whole btree.
|
|
*/
|
|
bool
|
|
xfs_repair_ag_has_space(
|
|
struct xfs_perag *pag,
|
|
xfs_extlen_t nr_blocks,
|
|
enum xfs_ag_resv_type type)
|
|
{
|
|
return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
|
|
!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
|
|
pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
|
|
}
|
|
|
|
/*
|
|
* Figure out how many blocks to reserve for an AG repair. We calculate the
|
|
* worst case estimate for the number of blocks we'd need to rebuild one of
|
|
* any type of per-AG btree.
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_repair_calc_ag_resblks(
|
|
struct xfs_scrub_context *sc)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_scrub_metadata *sm = sc->sm;
|
|
struct xfs_perag *pag;
|
|
struct xfs_buf *bp;
|
|
xfs_agino_t icount = 0;
|
|
xfs_extlen_t aglen = 0;
|
|
xfs_extlen_t usedlen;
|
|
xfs_extlen_t freelen;
|
|
xfs_extlen_t bnobt_sz;
|
|
xfs_extlen_t inobt_sz;
|
|
xfs_extlen_t rmapbt_sz;
|
|
xfs_extlen_t refcbt_sz;
|
|
int error;
|
|
|
|
if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
|
|
return 0;
|
|
|
|
/* Use in-core counters if possible. */
|
|
pag = xfs_perag_get(mp, sm->sm_agno);
|
|
if (pag->pagi_init)
|
|
icount = pag->pagi_count;
|
|
|
|
/*
|
|
* Otherwise try to get the actual counters from disk; if not, make
|
|
* some worst case assumptions.
|
|
*/
|
|
if (icount == 0) {
|
|
error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
|
|
if (error) {
|
|
icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
|
|
} else {
|
|
icount = pag->pagi_count;
|
|
xfs_buf_relse(bp);
|
|
}
|
|
}
|
|
|
|
/* Now grab the block counters from the AGF. */
|
|
error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
|
|
if (error) {
|
|
aglen = mp->m_sb.sb_agblocks;
|
|
freelen = aglen;
|
|
usedlen = aglen;
|
|
} else {
|
|
aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
|
|
freelen = pag->pagf_freeblks;
|
|
usedlen = aglen - freelen;
|
|
xfs_buf_relse(bp);
|
|
}
|
|
xfs_perag_put(pag);
|
|
|
|
trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
|
|
freelen, usedlen);
|
|
|
|
/*
|
|
* Figure out how many blocks we'd need worst case to rebuild
|
|
* each type of btree. Note that we can only rebuild the
|
|
* bnobt/cntbt or inobt/finobt as pairs.
|
|
*/
|
|
bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
|
|
if (xfs_sb_version_hassparseinodes(&mp->m_sb))
|
|
inobt_sz = xfs_iallocbt_calc_size(mp, icount /
|
|
XFS_INODES_PER_HOLEMASK_BIT);
|
|
else
|
|
inobt_sz = xfs_iallocbt_calc_size(mp, icount /
|
|
XFS_INODES_PER_CHUNK);
|
|
if (xfs_sb_version_hasfinobt(&mp->m_sb))
|
|
inobt_sz *= 2;
|
|
if (xfs_sb_version_hasreflink(&mp->m_sb))
|
|
refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
|
|
else
|
|
refcbt_sz = 0;
|
|
if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
|
|
/*
|
|
* Guess how many blocks we need to rebuild the rmapbt.
|
|
* For non-reflink filesystems we can't have more records than
|
|
* used blocks. However, with reflink it's possible to have
|
|
* more than one rmap record per AG block. We don't know how
|
|
* many rmaps there could be in the AG, so we start off with
|
|
* what we hope is an generous over-estimation.
|
|
*/
|
|
if (xfs_sb_version_hasreflink(&mp->m_sb))
|
|
rmapbt_sz = xfs_rmapbt_calc_size(mp,
|
|
(unsigned long long)aglen * 2);
|
|
else
|
|
rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
|
|
} else {
|
|
rmapbt_sz = 0;
|
|
}
|
|
|
|
trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
|
|
inobt_sz, rmapbt_sz, refcbt_sz);
|
|
|
|
return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
|
|
}
|
|
|
|
/* Allocate a block in an AG. */
|
|
int
|
|
xfs_repair_alloc_ag_block(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_owner_info *oinfo,
|
|
xfs_fsblock_t *fsbno,
|
|
enum xfs_ag_resv_type resv)
|
|
{
|
|
struct xfs_alloc_arg args = {0};
|
|
xfs_agblock_t bno;
|
|
int error;
|
|
|
|
switch (resv) {
|
|
case XFS_AG_RESV_AGFL:
|
|
case XFS_AG_RESV_RMAPBT:
|
|
error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
|
|
if (error)
|
|
return error;
|
|
if (bno == NULLAGBLOCK)
|
|
return -ENOSPC;
|
|
xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
|
|
1, false);
|
|
*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
|
|
if (resv == XFS_AG_RESV_RMAPBT)
|
|
xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
args.tp = sc->tp;
|
|
args.mp = sc->mp;
|
|
args.oinfo = *oinfo;
|
|
args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
|
|
args.minlen = 1;
|
|
args.maxlen = 1;
|
|
args.prod = 1;
|
|
args.type = XFS_ALLOCTYPE_THIS_AG;
|
|
args.resv = resv;
|
|
|
|
error = xfs_alloc_vextent(&args);
|
|
if (error)
|
|
return error;
|
|
if (args.fsbno == NULLFSBLOCK)
|
|
return -ENOSPC;
|
|
ASSERT(args.len == 1);
|
|
*fsbno = args.fsbno;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize a new AG btree root block with zero entries. */
|
|
int
|
|
xfs_repair_init_btblock(
|
|
struct xfs_scrub_context *sc,
|
|
xfs_fsblock_t fsb,
|
|
struct xfs_buf **bpp,
|
|
xfs_btnum_t btnum,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_trans *tp = sc->tp;
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_buf *bp;
|
|
|
|
trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
|
|
XFS_FSB_TO_AGBNO(mp, fsb), btnum);
|
|
|
|
ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
|
|
XFS_FSB_TO_BB(mp, 1), 0);
|
|
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
|
|
xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
|
|
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
|
|
xfs_trans_log_buf(tp, bp, 0, bp->b_length);
|
|
bp->b_ops = ops;
|
|
*bpp = bp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reconstructing per-AG Btrees
|
|
*
|
|
* When a space btree is corrupt, we don't bother trying to fix it. Instead,
|
|
* we scan secondary space metadata to derive the records that should be in
|
|
* the damaged btree, initialize a fresh btree root, and insert the records.
|
|
* Note that for rebuilding the rmapbt we scan all the primary data to
|
|
* generate the new records.
|
|
*
|
|
* However, that leaves the matter of removing all the metadata describing the
|
|
* old broken structure. For primary metadata we use the rmap data to collect
|
|
* every extent with a matching rmap owner (exlist); we then iterate all other
|
|
* metadata structures with the same rmap owner to collect the extents that
|
|
* cannot be removed (sublist). We then subtract sublist from exlist to
|
|
* derive the blocks that were used by the old btree. These blocks can be
|
|
* reaped.
|
|
*
|
|
* For rmapbt reconstructions we must use different tactics for extent
|
|
* collection. First we iterate all primary metadata (this excludes the old
|
|
* rmapbt, obviously) to generate new rmap records. The gaps in the rmap
|
|
* records are collected as exlist. The bnobt records are collected as
|
|
* sublist. As with the other btrees we subtract sublist from exlist, and the
|
|
* result (since the rmapbt lives in the free space) are the blocks from the
|
|
* old rmapbt.
|
|
*/
|
|
|
|
/* Collect a dead btree extent for later disposal. */
|
|
int
|
|
xfs_repair_collect_btree_extent(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_repair_extent_list *exlist,
|
|
xfs_fsblock_t fsbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
struct xfs_repair_extent *rex;
|
|
|
|
trace_xfs_repair_collect_btree_extent(sc->mp,
|
|
XFS_FSB_TO_AGNO(sc->mp, fsbno),
|
|
XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
|
|
|
|
rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
|
|
if (!rex)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&rex->list);
|
|
rex->fsbno = fsbno;
|
|
rex->len = len;
|
|
list_add_tail(&rex->list, &exlist->list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* An error happened during the rebuild so the transaction will be cancelled.
|
|
* The fs will shut down, and the administrator has to unmount and run repair.
|
|
* Therefore, free all the memory associated with the list so we can die.
|
|
*/
|
|
void
|
|
xfs_repair_cancel_btree_extents(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_repair_extent_list *exlist)
|
|
{
|
|
struct xfs_repair_extent *rex;
|
|
struct xfs_repair_extent *n;
|
|
|
|
for_each_xfs_repair_extent_safe(rex, n, exlist) {
|
|
list_del(&rex->list);
|
|
kmem_free(rex);
|
|
}
|
|
}
|
|
|
|
/* Compare two btree extents. */
|
|
static int
|
|
xfs_repair_btree_extent_cmp(
|
|
void *priv,
|
|
struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct xfs_repair_extent *ap;
|
|
struct xfs_repair_extent *bp;
|
|
|
|
ap = container_of(a, struct xfs_repair_extent, list);
|
|
bp = container_of(b, struct xfs_repair_extent, list);
|
|
|
|
if (ap->fsbno > bp->fsbno)
|
|
return 1;
|
|
if (ap->fsbno < bp->fsbno)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove all the blocks mentioned in @sublist from the extents in @exlist.
|
|
*
|
|
* The intent is that callers will iterate the rmapbt for all of its records
|
|
* for a given owner to generate @exlist; and iterate all the blocks of the
|
|
* metadata structures that are not being rebuilt and have the same rmapbt
|
|
* owner to generate @sublist. This routine subtracts all the extents
|
|
* mentioned in sublist from all the extents linked in @exlist, which leaves
|
|
* @exlist as the list of blocks that are not accounted for, which we assume
|
|
* are the dead blocks of the old metadata structure. The blocks mentioned in
|
|
* @exlist can be reaped.
|
|
*/
|
|
#define LEFT_ALIGNED (1 << 0)
|
|
#define RIGHT_ALIGNED (1 << 1)
|
|
int
|
|
xfs_repair_subtract_extents(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_repair_extent_list *exlist,
|
|
struct xfs_repair_extent_list *sublist)
|
|
{
|
|
struct list_head *lp;
|
|
struct xfs_repair_extent *ex;
|
|
struct xfs_repair_extent *newex;
|
|
struct xfs_repair_extent *subex;
|
|
xfs_fsblock_t sub_fsb;
|
|
xfs_extlen_t sub_len;
|
|
int state;
|
|
int error = 0;
|
|
|
|
if (list_empty(&exlist->list) || list_empty(&sublist->list))
|
|
return 0;
|
|
ASSERT(!list_empty(&sublist->list));
|
|
|
|
list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
|
|
list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);
|
|
|
|
/*
|
|
* Now that we've sorted both lists, we iterate exlist once, rolling
|
|
* forward through sublist and/or exlist as necessary until we find an
|
|
* overlap or reach the end of either list. We do not reset lp to the
|
|
* head of exlist nor do we reset subex to the head of sublist. The
|
|
* list traversal is similar to merge sort, but we're deleting
|
|
* instead. In this manner we avoid O(n^2) operations.
|
|
*/
|
|
subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
|
|
list);
|
|
lp = exlist->list.next;
|
|
while (lp != &exlist->list) {
|
|
ex = list_entry(lp, struct xfs_repair_extent, list);
|
|
|
|
/*
|
|
* Advance subex and/or ex until we find a pair that
|
|
* intersect or we run out of extents.
|
|
*/
|
|
while (subex->fsbno + subex->len <= ex->fsbno) {
|
|
if (list_is_last(&subex->list, &sublist->list))
|
|
goto out;
|
|
subex = list_next_entry(subex, list);
|
|
}
|
|
if (subex->fsbno >= ex->fsbno + ex->len) {
|
|
lp = lp->next;
|
|
continue;
|
|
}
|
|
|
|
/* trim subex to fit the extent we have */
|
|
sub_fsb = subex->fsbno;
|
|
sub_len = subex->len;
|
|
if (subex->fsbno < ex->fsbno) {
|
|
sub_len -= ex->fsbno - subex->fsbno;
|
|
sub_fsb = ex->fsbno;
|
|
}
|
|
if (sub_len > ex->len)
|
|
sub_len = ex->len;
|
|
|
|
state = 0;
|
|
if (sub_fsb == ex->fsbno)
|
|
state |= LEFT_ALIGNED;
|
|
if (sub_fsb + sub_len == ex->fsbno + ex->len)
|
|
state |= RIGHT_ALIGNED;
|
|
switch (state) {
|
|
case LEFT_ALIGNED:
|
|
/* Coincides with only the left. */
|
|
ex->fsbno += sub_len;
|
|
ex->len -= sub_len;
|
|
break;
|
|
case RIGHT_ALIGNED:
|
|
/* Coincides with only the right. */
|
|
ex->len -= sub_len;
|
|
lp = lp->next;
|
|
break;
|
|
case LEFT_ALIGNED | RIGHT_ALIGNED:
|
|
/* Total overlap, just delete ex. */
|
|
lp = lp->next;
|
|
list_del(&ex->list);
|
|
kmem_free(ex);
|
|
break;
|
|
case 0:
|
|
/*
|
|
* Deleting from the middle: add the new right extent
|
|
* and then shrink the left extent.
|
|
*/
|
|
newex = kmem_alloc(sizeof(struct xfs_repair_extent),
|
|
KM_MAYFAIL);
|
|
if (!newex) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
INIT_LIST_HEAD(&newex->list);
|
|
newex->fsbno = sub_fsb + sub_len;
|
|
newex->len = ex->fsbno + ex->len - newex->fsbno;
|
|
list_add(&newex->list, &ex->list);
|
|
ex->len = sub_fsb - ex->fsbno;
|
|
lp = lp->next;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
#undef LEFT_ALIGNED
|
|
#undef RIGHT_ALIGNED
|
|
|
|
/*
|
|
* Disposal of Blocks from Old per-AG Btrees
|
|
*
|
|
* Now that we've constructed a new btree to replace the damaged one, we want
|
|
* to dispose of the blocks that (we think) the old btree was using.
|
|
* Previously, we used the rmapbt to collect the extents (exlist) with the
|
|
* rmap owner corresponding to the tree we rebuilt, collected extents for any
|
|
* blocks with the same rmap owner that are owned by another data structure
|
|
* (sublist), and subtracted sublist from exlist. In theory the extents
|
|
* remaining in exlist are the old btree's blocks.
|
|
*
|
|
* Unfortunately, it's possible that the btree was crosslinked with other
|
|
* blocks on disk. The rmap data can tell us if there are multiple owners, so
|
|
* if the rmapbt says there is an owner of this block other than @oinfo, then
|
|
* the block is crosslinked. Remove the reverse mapping and continue.
|
|
*
|
|
* If there is one rmap record, we can free the block, which removes the
|
|
* reverse mapping but doesn't add the block to the free space. Our repair
|
|
* strategy is to hope the other metadata objects crosslinked on this block
|
|
* will be rebuilt (atop different blocks), thereby removing all the cross
|
|
* links.
|
|
*
|
|
* If there are no rmap records at all, we also free the block. If the btree
|
|
* being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
|
|
* supposed to be a rmap record and everything is ok. For other btrees there
|
|
* had to have been an rmap entry for the block to have ended up on @exlist,
|
|
* so if it's gone now there's something wrong and the fs will shut down.
|
|
*
|
|
* Note: If there are multiple rmap records with only the same rmap owner as
|
|
* the btree we're trying to rebuild and the block is indeed owned by another
|
|
* data structure with the same rmap owner, then the block will be in sublist
|
|
* and therefore doesn't need disposal. If there are multiple rmap records
|
|
* with only the same rmap owner but the block is not owned by something with
|
|
* the same rmap owner, the block will be freed.
|
|
*
|
|
* The caller is responsible for locking the AG headers for the entire rebuild
|
|
* operation so that nothing else can sneak in and change the AG state while
|
|
* we're not looking. We also assume that the caller already invalidated any
|
|
* buffers associated with @exlist.
|
|
*/
|
|
|
|
/*
|
|
* Invalidate buffers for per-AG btree blocks we're dumping. This function
|
|
* is not intended for use with file data repairs; we have bunmapi for that.
|
|
*/
|
|
int
|
|
xfs_repair_invalidate_blocks(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_repair_extent_list *exlist)
|
|
{
|
|
struct xfs_repair_extent *rex;
|
|
struct xfs_repair_extent *n;
|
|
struct xfs_buf *bp;
|
|
xfs_fsblock_t fsbno;
|
|
xfs_agblock_t i;
|
|
|
|
/*
|
|
* For each block in each extent, see if there's an incore buffer for
|
|
* exactly that block; if so, invalidate it. The buffer cache only
|
|
* lets us look for one buffer at a time, so we have to look one block
|
|
* at a time. Avoid invalidating AG headers and post-EOFS blocks
|
|
* because we never own those; and if we can't TRYLOCK the buffer we
|
|
* assume it's owned by someone else.
|
|
*/
|
|
for_each_xfs_repair_extent_safe(rex, n, exlist) {
|
|
for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
|
|
/* Skip AG headers and post-EOFS blocks */
|
|
if (!xfs_verify_fsbno(sc->mp, fsbno))
|
|
continue;
|
|
bp = xfs_buf_incore(sc->mp->m_ddev_targp,
|
|
XFS_FSB_TO_DADDR(sc->mp, fsbno),
|
|
XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
|
|
if (bp) {
|
|
xfs_trans_bjoin(sc->tp, bp);
|
|
xfs_trans_binval(sc->tp, bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure the freelist is the correct size. */
|
|
int
|
|
xfs_repair_fix_freelist(
|
|
struct xfs_scrub_context *sc,
|
|
bool can_shrink)
|
|
{
|
|
struct xfs_alloc_arg args = {0};
|
|
|
|
args.mp = sc->mp;
|
|
args.tp = sc->tp;
|
|
args.agno = sc->sa.agno;
|
|
args.alignment = 1;
|
|
args.pag = sc->sa.pag;
|
|
|
|
return xfs_alloc_fix_freelist(&args,
|
|
can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
|
|
}
|
|
|
|
/*
|
|
* Put a block back on the AGFL.
|
|
*/
|
|
STATIC int
|
|
xfs_repair_put_freelist(
|
|
struct xfs_scrub_context *sc,
|
|
xfs_agblock_t agbno)
|
|
{
|
|
struct xfs_owner_info oinfo;
|
|
int error;
|
|
|
|
/* Make sure there's space on the freelist. */
|
|
error = xfs_repair_fix_freelist(sc, true);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Since we're "freeing" a lost block onto the AGFL, we have to
|
|
* create an rmap for the block prior to merging it or else other
|
|
* parts will break.
|
|
*/
|
|
xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
|
|
error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
|
|
&oinfo);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Put the block on the AGFL. */
|
|
error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
|
|
agbno, 0);
|
|
if (error)
|
|
return error;
|
|
xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
|
|
XFS_EXTENT_BUSY_SKIP_DISCARD);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Dispose of a single metadata block. */
|
|
STATIC int
|
|
xfs_repair_dispose_btree_block(
|
|
struct xfs_scrub_context *sc,
|
|
xfs_fsblock_t fsbno,
|
|
struct xfs_owner_info *oinfo,
|
|
enum xfs_ag_resv_type resv)
|
|
{
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_buf *agf_bp = NULL;
|
|
xfs_agnumber_t agno;
|
|
xfs_agblock_t agbno;
|
|
bool has_other_rmap;
|
|
int error;
|
|
|
|
agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
|
|
agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
|
|
|
|
/*
|
|
* If we are repairing per-inode metadata, we need to read in the AGF
|
|
* buffer. Otherwise, we're repairing a per-AG structure, so reuse
|
|
* the AGF buffer that the setup functions already grabbed.
|
|
*/
|
|
if (sc->ip) {
|
|
error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
|
|
if (error)
|
|
return error;
|
|
if (!agf_bp)
|
|
return -ENOMEM;
|
|
} else {
|
|
agf_bp = sc->sa.agf_bp;
|
|
}
|
|
cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
|
|
|
|
/* Can we find any other rmappings? */
|
|
error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
goto out_free;
|
|
|
|
/*
|
|
* If there are other rmappings, this block is cross linked and must
|
|
* not be freed. Remove the reverse mapping and move on. Otherwise,
|
|
* we were the only owner of the block, so free the extent, which will
|
|
* also remove the rmap.
|
|
*
|
|
* XXX: XFS doesn't support detecting the case where a single block
|
|
* metadata structure is crosslinked with a multi-block structure
|
|
* because the buffer cache doesn't detect aliasing problems, so we
|
|
* can't fix 100% of crosslinking problems (yet). The verifiers will
|
|
* blow on writeout, the filesystem will shut down, and the admin gets
|
|
* to run xfs_repair.
|
|
*/
|
|
if (has_other_rmap)
|
|
error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
|
|
else if (resv == XFS_AG_RESV_AGFL)
|
|
error = xfs_repair_put_freelist(sc, agbno);
|
|
else
|
|
error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
|
|
if (agf_bp != sc->sa.agf_bp)
|
|
xfs_trans_brelse(sc->tp, agf_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (sc->ip)
|
|
return xfs_trans_roll_inode(&sc->tp, sc->ip);
|
|
return xfs_repair_roll_ag_trans(sc);
|
|
|
|
out_free:
|
|
if (agf_bp != sc->sa.agf_bp)
|
|
xfs_trans_brelse(sc->tp, agf_bp);
|
|
return error;
|
|
}
|
|
|
|
/* Dispose of btree blocks from an old per-AG btree. */
|
|
int
|
|
xfs_repair_reap_btree_extents(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_repair_extent_list *exlist,
|
|
struct xfs_owner_info *oinfo,
|
|
enum xfs_ag_resv_type type)
|
|
{
|
|
struct xfs_repair_extent *rex;
|
|
struct xfs_repair_extent *n;
|
|
int error = 0;
|
|
|
|
ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
|
|
|
|
/* Dispose of every block from the old btree. */
|
|
for_each_xfs_repair_extent_safe(rex, n, exlist) {
|
|
ASSERT(sc->ip != NULL ||
|
|
XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);
|
|
|
|
trace_xfs_repair_dispose_btree_extent(sc->mp,
|
|
XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
|
|
XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);
|
|
|
|
for (; rex->len > 0; rex->len--, rex->fsbno++) {
|
|
error = xfs_repair_dispose_btree_block(sc, rex->fsbno,
|
|
oinfo, type);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
list_del(&rex->list);
|
|
kmem_free(rex);
|
|
}
|
|
|
|
out:
|
|
xfs_repair_cancel_btree_extents(sc, exlist);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Finding per-AG Btree Roots for AGF/AGI Reconstruction
|
|
*
|
|
* If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
|
|
* the AG headers by using the rmap data to rummage through the AG looking for
|
|
* btree roots. This is not guaranteed to work if the AG is heavily damaged
|
|
* or the rmap data are corrupt.
|
|
*
|
|
* Callers of xfs_repair_find_ag_btree_roots must lock the AGF and AGFL
|
|
* buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
|
|
* AGI is being rebuilt. It must maintain these locks until it's safe for
|
|
* other threads to change the btrees' shapes. The caller provides
|
|
* information about the btrees to look for by passing in an array of
|
|
* xfs_repair_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
|
|
* The (root, height) fields will be set on return if anything is found. The
|
|
* last element of the array should have a NULL buf_ops to mark the end of the
|
|
* array.
|
|
*
|
|
* For every rmapbt record matching any of the rmap owners in btree_info,
|
|
* read each block referenced by the rmap record. If the block is a btree
|
|
* block from this filesystem matching any of the magic numbers and has a
|
|
* level higher than what we've already seen, remember the block and the
|
|
* height of the tree required to have such a block. When the call completes,
|
|
* we return the highest block we've found for each btree description; those
|
|
* should be the roots.
|
|
*/
|
|
|
|
struct xfs_repair_findroot {
|
|
struct xfs_scrub_context *sc;
|
|
struct xfs_buf *agfl_bp;
|
|
struct xfs_agf *agf;
|
|
struct xfs_repair_find_ag_btree *btree_info;
|
|
};
|
|
|
|
/* See if our block is in the AGFL. */
|
|
STATIC int
|
|
xfs_repair_findroot_agfl_walk(
|
|
struct xfs_mount *mp,
|
|
xfs_agblock_t bno,
|
|
void *priv)
|
|
{
|
|
xfs_agblock_t *agbno = priv;
|
|
|
|
return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
|
|
}
|
|
|
|
/* Does this block match the btree information passed in? */
|
|
STATIC int
|
|
xfs_repair_findroot_block(
|
|
struct xfs_repair_findroot *ri,
|
|
struct xfs_repair_find_ag_btree *fab,
|
|
uint64_t owner,
|
|
xfs_agblock_t agbno,
|
|
bool *found_it)
|
|
{
|
|
struct xfs_mount *mp = ri->sc->mp;
|
|
struct xfs_buf *bp;
|
|
struct xfs_btree_block *btblock;
|
|
xfs_daddr_t daddr;
|
|
int error;
|
|
|
|
daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
|
|
|
|
/*
|
|
* Blocks in the AGFL have stale contents that might just happen to
|
|
* have a matching magic and uuid. We don't want to pull these blocks
|
|
* in as part of a tree root, so we have to filter out the AGFL stuff
|
|
* here. If the AGFL looks insane we'll just refuse to repair.
|
|
*/
|
|
if (owner == XFS_RMAP_OWN_AG) {
|
|
error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
|
|
xfs_repair_findroot_agfl_walk, &agbno);
|
|
if (error == XFS_BTREE_QUERY_RANGE_ABORT)
|
|
return 0;
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
|
|
mp->m_bsize, 0, &bp, NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Does this look like a block matching our fs and higher than any
|
|
* other block we've found so far? If so, reattach buffer verifiers
|
|
* so the AIL won't complain if the buffer is also dirty.
|
|
*/
|
|
btblock = XFS_BUF_TO_BLOCK(bp);
|
|
if (be32_to_cpu(btblock->bb_magic) != fab->magic)
|
|
goto out;
|
|
if (xfs_sb_version_hascrc(&mp->m_sb) &&
|
|
!uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
|
|
goto out;
|
|
bp->b_ops = fab->buf_ops;
|
|
|
|
/* Ignore this block if it's lower in the tree than we've seen. */
|
|
if (fab->root != NULLAGBLOCK &&
|
|
xfs_btree_get_level(btblock) < fab->height)
|
|
goto out;
|
|
|
|
/* Make sure we pass the verifiers. */
|
|
bp->b_ops->verify_read(bp);
|
|
if (bp->b_error)
|
|
goto out;
|
|
fab->root = agbno;
|
|
fab->height = xfs_btree_get_level(btblock) + 1;
|
|
*found_it = true;
|
|
|
|
trace_xfs_repair_findroot_block(mp, ri->sc->sa.agno, agbno,
|
|
be32_to_cpu(btblock->bb_magic), fab->height - 1);
|
|
out:
|
|
xfs_trans_brelse(ri->sc->tp, bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Do any of the blocks in this rmap record match one of the btrees we're
|
|
* looking for?
|
|
*/
|
|
STATIC int
|
|
xfs_repair_findroot_rmap(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_repair_findroot *ri = priv;
|
|
struct xfs_repair_find_ag_btree *fab;
|
|
xfs_agblock_t b;
|
|
bool found_it;
|
|
int error = 0;
|
|
|
|
/* Ignore anything that isn't AG metadata. */
|
|
if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
|
|
return 0;
|
|
|
|
/* Otherwise scan each block + btree type. */
|
|
for (b = 0; b < rec->rm_blockcount; b++) {
|
|
found_it = false;
|
|
for (fab = ri->btree_info; fab->buf_ops; fab++) {
|
|
if (rec->rm_owner != fab->rmap_owner)
|
|
continue;
|
|
error = xfs_repair_findroot_block(ri, fab,
|
|
rec->rm_owner, rec->rm_startblock + b,
|
|
&found_it);
|
|
if (error)
|
|
return error;
|
|
if (found_it)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Find the roots of the per-AG btrees described in btree_info. */
|
|
int
|
|
xfs_repair_find_ag_btree_roots(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_buf *agf_bp,
|
|
struct xfs_repair_find_ag_btree *btree_info,
|
|
struct xfs_buf *agfl_bp)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_repair_findroot ri;
|
|
struct xfs_repair_find_ag_btree *fab;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
|
|
ASSERT(xfs_buf_islocked(agf_bp));
|
|
ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
|
|
|
|
ri.sc = sc;
|
|
ri.btree_info = btree_info;
|
|
ri.agf = XFS_BUF_TO_AGF(agf_bp);
|
|
ri.agfl_bp = agfl_bp;
|
|
for (fab = btree_info; fab->buf_ops; fab++) {
|
|
ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
|
|
ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
|
|
fab->root = NULLAGBLOCK;
|
|
fab->height = 0;
|
|
}
|
|
|
|
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
|
|
error = xfs_rmap_query_all(cur, xfs_repair_findroot_rmap, &ri);
|
|
xfs_btree_del_cursor(cur, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Force a quotacheck the next time we mount. */
|
|
void
|
|
xfs_repair_force_quotacheck(
|
|
struct xfs_scrub_context *sc,
|
|
uint dqtype)
|
|
{
|
|
uint flag;
|
|
|
|
flag = xfs_quota_chkd_flag(dqtype);
|
|
if (!(flag & sc->mp->m_qflags))
|
|
return;
|
|
|
|
sc->mp->m_qflags &= ~flag;
|
|
spin_lock(&sc->mp->m_sb_lock);
|
|
sc->mp->m_sb.sb_qflags &= ~flag;
|
|
spin_unlock(&sc->mp->m_sb_lock);
|
|
xfs_log_sb(sc->tp);
|
|
}
|
|
|
|
/*
|
|
* Attach dquots to this inode, or schedule quotacheck to fix them.
|
|
*
|
|
* This function ensures that the appropriate dquots are attached to an inode.
|
|
* We cannot allow the dquot code to allocate an on-disk dquot block here
|
|
* because we're already in transaction context with the inode locked. The
|
|
* on-disk dquot should already exist anyway. If the quota code signals
|
|
* corruption or missing quota information, schedule quotacheck, which will
|
|
* repair corruptions in the quota metadata.
|
|
*/
|
|
int
|
|
xfs_repair_ino_dqattach(
|
|
struct xfs_scrub_context *sc)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_qm_dqattach_locked(sc->ip, false);
|
|
switch (error) {
|
|
case -EFSBADCRC:
|
|
case -EFSCORRUPTED:
|
|
case -ENOENT:
|
|
xfs_err_ratelimited(sc->mp,
|
|
"inode %llu repair encountered quota error %d, quotacheck forced.",
|
|
(unsigned long long)sc->ip->i_ino, error);
|
|
if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
|
|
xfs_repair_force_quotacheck(sc, XFS_DQ_USER);
|
|
if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
|
|
xfs_repair_force_quotacheck(sc, XFS_DQ_GROUP);
|
|
if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
|
|
xfs_repair_force_quotacheck(sc, XFS_DQ_PROJ);
|
|
/* fall through */
|
|
case -ESRCH:
|
|
error = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|