mirror of https://gitee.com/openkylin/linux.git
827 lines
31 KiB
C
827 lines
31 KiB
C
/*****************************************************************************
|
|
* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
|
|
*
|
|
* Unless you and Broadcom execute a separate written software license
|
|
* agreement governing use of this software, this software is licensed to you
|
|
* under the terms of the GNU General Public License version 2, available at
|
|
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
|
|
*
|
|
* Notwithstanding the above, under no circumstances may you combine this
|
|
* software in any way with any other Broadcom software provided under a
|
|
* license other than the GPL, without Broadcom's express prior written
|
|
* consent.
|
|
*****************************************************************************/
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* @file dma.h
|
|
*
|
|
* @brief API definitions for the linux DMA interface.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
#if !defined(ASM_ARM_ARCH_BCMRING_DMA_H)
|
|
#define ASM_ARM_ARCH_BCMRING_DMA_H
|
|
|
|
/* ---- Include Files ---------------------------------------------------- */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/semaphore.h>
|
|
#include <csp/dmacHw.h>
|
|
#include <mach/timer.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
/* ---- Constants and Types ---------------------------------------------- */
|
|
|
|
/* If DMA_DEBUG_TRACK_RESERVATION is set to a non-zero value, then the filename */
|
|
/* and line number of the reservation request will be recorded in the channel table */
|
|
|
|
#define DMA_DEBUG_TRACK_RESERVATION 1
|
|
|
|
#define DMA_NUM_CONTROLLERS 2
|
|
#define DMA_NUM_CHANNELS 8 /* per controller */
|
|
|
|
typedef enum {
|
|
DMA_DEVICE_MEM_TO_MEM, /* For memory to memory transfers */
|
|
DMA_DEVICE_I2S0_DEV_TO_MEM,
|
|
DMA_DEVICE_I2S0_MEM_TO_DEV,
|
|
DMA_DEVICE_I2S1_DEV_TO_MEM,
|
|
DMA_DEVICE_I2S1_MEM_TO_DEV,
|
|
DMA_DEVICE_APM_CODEC_A_DEV_TO_MEM,
|
|
DMA_DEVICE_APM_CODEC_A_MEM_TO_DEV,
|
|
DMA_DEVICE_APM_CODEC_B_DEV_TO_MEM,
|
|
DMA_DEVICE_APM_CODEC_B_MEM_TO_DEV,
|
|
DMA_DEVICE_APM_CODEC_C_DEV_TO_MEM, /* Additional mic input for beam-forming */
|
|
DMA_DEVICE_APM_PCM0_DEV_TO_MEM,
|
|
DMA_DEVICE_APM_PCM0_MEM_TO_DEV,
|
|
DMA_DEVICE_APM_PCM1_DEV_TO_MEM,
|
|
DMA_DEVICE_APM_PCM1_MEM_TO_DEV,
|
|
DMA_DEVICE_SPUM_DEV_TO_MEM,
|
|
DMA_DEVICE_SPUM_MEM_TO_DEV,
|
|
DMA_DEVICE_SPIH_DEV_TO_MEM,
|
|
DMA_DEVICE_SPIH_MEM_TO_DEV,
|
|
DMA_DEVICE_UART_A_DEV_TO_MEM,
|
|
DMA_DEVICE_UART_A_MEM_TO_DEV,
|
|
DMA_DEVICE_UART_B_DEV_TO_MEM,
|
|
DMA_DEVICE_UART_B_MEM_TO_DEV,
|
|
DMA_DEVICE_PIF_MEM_TO_DEV,
|
|
DMA_DEVICE_PIF_DEV_TO_MEM,
|
|
DMA_DEVICE_ESW_DEV_TO_MEM,
|
|
DMA_DEVICE_ESW_MEM_TO_DEV,
|
|
DMA_DEVICE_VPM_MEM_TO_MEM,
|
|
DMA_DEVICE_CLCD_MEM_TO_MEM,
|
|
DMA_DEVICE_NAND_MEM_TO_MEM,
|
|
DMA_DEVICE_MEM_TO_VRAM,
|
|
DMA_DEVICE_VRAM_TO_MEM,
|
|
|
|
/* Add new entries before this line. */
|
|
|
|
DMA_NUM_DEVICE_ENTRIES,
|
|
DMA_DEVICE_NONE = 0xff, /* Special value to indicate that no device is currently assigned. */
|
|
|
|
} DMA_Device_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_Handle_t is the primary object used by callers of the API.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define DMA_INVALID_HANDLE ((DMA_Handle_t) -1)
|
|
|
|
typedef int DMA_Handle_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_DescriptorRing_t contains a ring of descriptors which is used
|
|
* to point to regions of memory.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
typedef struct {
|
|
void *virtAddr; /* Virtual Address of the descriptor ring */
|
|
dma_addr_t physAddr; /* Physical address of the descriptor ring */
|
|
int descriptorsAllocated; /* Number of descriptors allocated in the descriptor ring */
|
|
size_t bytesAllocated; /* Number of bytes allocated in the descriptor ring */
|
|
|
|
} DMA_DescriptorRing_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_MemType_t and DMA_MemMap_t are helper structures used to setup
|
|
* DMA chains from a variety of memory sources.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define DMA_MEM_MAP_MIN_SIZE 4096 /* Pages less than this size are better */
|
|
/* off not being DMA'd. */
|
|
|
|
typedef enum {
|
|
DMA_MEM_TYPE_NONE, /* Not a valid setting */
|
|
DMA_MEM_TYPE_VMALLOC, /* Memory came from vmalloc call */
|
|
DMA_MEM_TYPE_KMALLOC, /* Memory came from kmalloc call */
|
|
DMA_MEM_TYPE_DMA, /* Memory came from dma_alloc_xxx call */
|
|
DMA_MEM_TYPE_USER, /* Memory came from user space. */
|
|
|
|
} DMA_MemType_t;
|
|
|
|
/* A segment represents a physically and virtually contiguous chunk of memory. */
|
|
/* i.e. each segment can be DMA'd */
|
|
/* A user of the DMA code will add memory regions. Each region may need to be */
|
|
/* represented by one or more segments. */
|
|
|
|
typedef struct {
|
|
void *virtAddr; /* Virtual address used for this segment */
|
|
dma_addr_t physAddr; /* Physical address this segment maps to */
|
|
size_t numBytes; /* Size of the segment, in bytes */
|
|
|
|
} DMA_Segment_t;
|
|
|
|
/* A region represents a virtually contiguous chunk of memory, which may be */
|
|
/* made up of multiple segments. */
|
|
|
|
typedef struct {
|
|
DMA_MemType_t memType;
|
|
void *virtAddr;
|
|
size_t numBytes;
|
|
|
|
/* Each region (virtually contiguous) consists of one or more segments. Each */
|
|
/* segment is virtually and physically contiguous. */
|
|
|
|
int numSegmentsUsed;
|
|
int numSegmentsAllocated;
|
|
DMA_Segment_t *segment;
|
|
|
|
/* When a region corresponds to user memory, we need to lock all of the pages */
|
|
/* down before we can figure out the physical addresses. The lockedPage array contains */
|
|
/* the pages that were locked, and which subsequently need to be unlocked once the */
|
|
/* memory is unmapped. */
|
|
|
|
unsigned numLockedPages;
|
|
struct page **lockedPages;
|
|
|
|
} DMA_Region_t;
|
|
|
|
typedef struct {
|
|
int inUse; /* Is this mapping currently being used? */
|
|
struct semaphore lock; /* Acquired when using this structure */
|
|
enum dma_data_direction dir; /* Direction this transfer is intended for */
|
|
|
|
/* In the event that we're mapping user memory, we need to know which task */
|
|
/* the memory is for, so that we can obtain the correct mm locks. */
|
|
|
|
struct task_struct *userTask;
|
|
|
|
int numRegionsUsed;
|
|
int numRegionsAllocated;
|
|
DMA_Region_t *region;
|
|
|
|
} DMA_MemMap_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_DeviceAttribute_t contains information which describes a
|
|
* particular DMA device (or peripheral).
|
|
*
|
|
* It is anticipated that the arrary of DMA_DeviceAttribute_t's will be
|
|
* statically initialized.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/* The device handler is called whenever a DMA operation completes. The reaon */
|
|
/* for it to be called will be a bitmask with one or more of the following bits */
|
|
/* set. */
|
|
|
|
#define DMA_HANDLER_REASON_BLOCK_COMPLETE dmacHw_INTERRUPT_STATUS_BLOCK
|
|
#define DMA_HANDLER_REASON_TRANSFER_COMPLETE dmacHw_INTERRUPT_STATUS_TRANS
|
|
#define DMA_HANDLER_REASON_ERROR dmacHw_INTERRUPT_STATUS_ERROR
|
|
|
|
typedef void (*DMA_DeviceHandler_t) (DMA_Device_t dev, int reason,
|
|
void *userData);
|
|
|
|
#define DMA_DEVICE_FLAG_ON_DMA0 0x00000001
|
|
#define DMA_DEVICE_FLAG_ON_DMA1 0x00000002
|
|
#define DMA_DEVICE_FLAG_PORT_PER_DMAC 0x00000004 /* If set, it means that the port used on DMAC0 is different from the port used on DMAC1 */
|
|
#define DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST 0x00000008 /* If set, allocate from DMA1 before allocating from DMA0 */
|
|
#define DMA_DEVICE_FLAG_IS_DEDICATED 0x00000100
|
|
#define DMA_DEVICE_FLAG_NO_ISR 0x00000200
|
|
#define DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO 0x00000400
|
|
#define DMA_DEVICE_FLAG_IN_USE 0x00000800 /* If set, device is in use on a channel */
|
|
|
|
/* Note: Some DMA devices can be used from multiple DMA Controllers. The bitmask is used to */
|
|
/* determine which DMA controllers a given device can be used from, and the interface */
|
|
/* array determeines the actual interface number to use for a given controller. */
|
|
|
|
typedef struct {
|
|
uint32_t flags; /* Bitmask of DMA_DEVICE_FLAG_xxx constants */
|
|
uint8_t dedicatedController; /* Controller number to use if DMA_DEVICE_FLAG_IS_DEDICATED is set. */
|
|
uint8_t dedicatedChannel; /* Channel number to use if DMA_DEVICE_FLAG_IS_DEDICATED is set. */
|
|
const char *name; /* Will show up in the /proc entry */
|
|
|
|
uint32_t dmacPort[DMA_NUM_CONTROLLERS]; /* Specifies the port number when DMA_DEVICE_FLAG_PORT_PER_DMAC flag is set */
|
|
|
|
dmacHw_CONFIG_t config; /* Configuration to use when DMA'ing using this device */
|
|
|
|
void *userData; /* Passed to the devHandler */
|
|
DMA_DeviceHandler_t devHandler; /* Called when DMA operations finish. */
|
|
|
|
timer_tick_count_t transferStartTime; /* Time the current transfer was started */
|
|
|
|
/* The following statistical information will be collected and presented in a proc entry. */
|
|
/* Note: With a contiuous bandwidth of 1 Gb/sec, it would take 584 years to overflow */
|
|
/* a 64 bit counter. */
|
|
|
|
uint64_t numTransfers; /* Number of DMA transfers performed */
|
|
uint64_t transferTicks; /* Total time spent doing DMA transfers (measured in timer_tick_count_t's) */
|
|
uint64_t transferBytes; /* Total bytes transferred */
|
|
uint32_t timesBlocked; /* Number of times a channel was unavailable */
|
|
uint32_t numBytes; /* Last transfer size */
|
|
|
|
/* It's not possible to free memory which is allocated for the descriptors from within */
|
|
/* the ISR. So make the presumption that a given device will tend to use the */
|
|
/* same sized buffers over and over again, and we keep them around. */
|
|
|
|
DMA_DescriptorRing_t ring; /* Ring of descriptors allocated for this device */
|
|
|
|
/* We stash away some of the information from the previous transfer. If back-to-back */
|
|
/* transfers are performed from the same buffer, then we don't have to keep re-initializing */
|
|
/* the descriptor buffers. */
|
|
|
|
uint32_t prevNumBytes;
|
|
dma_addr_t prevSrcData;
|
|
dma_addr_t prevDstData;
|
|
|
|
} DMA_DeviceAttribute_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* DMA_Channel_t, DMA_Controller_t, and DMA_State_t are really internal
|
|
* data structures and don't belong in this header file, but are included
|
|
* merely for discussion.
|
|
*
|
|
* By the time this is implemented, these structures will be moved out into
|
|
* the appropriate C source file instead.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_Channel_t contains state information about each DMA channel. Some
|
|
* of the channels are dedicated. Non-dedicated channels are shared
|
|
* amongst the other devices.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define DMA_CHANNEL_FLAG_IN_USE 0x00000001
|
|
#define DMA_CHANNEL_FLAG_IS_DEDICATED 0x00000002
|
|
#define DMA_CHANNEL_FLAG_NO_ISR 0x00000004
|
|
#define DMA_CHANNEL_FLAG_LARGE_FIFO 0x00000008
|
|
|
|
typedef struct {
|
|
uint32_t flags; /* bitmask of DMA_CHANNEL_FLAG_xxx constants */
|
|
DMA_Device_t devType; /* Device this channel is currently reserved for */
|
|
DMA_Device_t lastDevType; /* Device type that used this previously */
|
|
char name[20]; /* Name passed onto request_irq */
|
|
|
|
#if (DMA_DEBUG_TRACK_RESERVATION)
|
|
const char *fileName; /* Place where channel reservation took place */
|
|
int lineNum; /* Place where channel reservation took place */
|
|
#endif
|
|
dmacHw_HANDLE_t dmacHwHandle; /* low level channel handle. */
|
|
|
|
} DMA_Channel_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_Controller_t contains state information about each DMA controller.
|
|
*
|
|
* The freeChannelQ is stored in the controller data structure rather than
|
|
* the channel data structure since several of the devices are accessible
|
|
* from multiple controllers, and there is no way to know which controller
|
|
* will become available first.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
typedef struct {
|
|
DMA_Channel_t channel[DMA_NUM_CHANNELS];
|
|
|
|
} DMA_Controller_t;
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The DMA_Global_t contains all of the global state information used by
|
|
* the DMA code.
|
|
*
|
|
* Callers which need to allocate a shared channel will be queued up
|
|
* on the freeChannelQ until a channel becomes available.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
typedef struct {
|
|
struct semaphore lock; /* acquired when manipulating table entries */
|
|
wait_queue_head_t freeChannelQ;
|
|
|
|
DMA_Controller_t controller[DMA_NUM_CONTROLLERS];
|
|
|
|
} DMA_Global_t;
|
|
|
|
/* ---- Variable Externs ------------------------------------------------- */
|
|
|
|
extern DMA_DeviceAttribute_t DMA_gDeviceAttribute[DMA_NUM_DEVICE_ENTRIES];
|
|
|
|
/* ---- Function Prototypes ---------------------------------------------- */
|
|
|
|
#if defined(__KERNEL__)
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initializes the DMA module.
|
|
*
|
|
* @return
|
|
* 0 - Success
|
|
* < 0 - Error
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_init(void);
|
|
|
|
#if (DMA_DEBUG_TRACK_RESERVATION)
|
|
DMA_Handle_t dma_request_channel_dbg(DMA_Device_t dev, const char *fileName,
|
|
int lineNum);
|
|
#define dma_request_channel(dev) dma_request_channel_dbg(dev, __FILE__, __LINE__)
|
|
#else
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Reserves a channel for use with @a dev. If the device is setup to use
|
|
* a shared channel, then this function will block until a free channel
|
|
* becomes available.
|
|
*
|
|
* @return
|
|
* >= 0 - A valid DMA Handle.
|
|
* -EBUSY - Device is currently being used.
|
|
* -ENODEV - Device handed in is invalid.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
DMA_Handle_t dma_request_channel(DMA_Device_t dev /* Device to use with the allocated channel. */
|
|
);
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Frees a previously allocated DMA Handle.
|
|
*
|
|
* @return
|
|
* 0 - DMA Handle was released successfully.
|
|
* -EINVAL - Invalid DMA handle
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_free_channel(DMA_Handle_t channel /* DMA handle. */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Determines if a given device has been configured as using a shared
|
|
* channel.
|
|
*
|
|
* @return boolean
|
|
* 0 Device uses a dedicated channel
|
|
* non-zero Device uses a shared channel
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_device_is_channel_shared(DMA_Device_t dev /* Device to check. */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Allocates memory to hold a descriptor ring. The descriptor ring then
|
|
* needs to be populated by making one or more calls to
|
|
* dna_add_descriptors.
|
|
*
|
|
* The returned descriptor ring will be automatically initialized.
|
|
*
|
|
* @return
|
|
* 0 Descriptor ring was allocated successfully
|
|
* -ENOMEM Unable to allocate memory for the desired number of descriptors.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to populate */
|
|
int numDescriptors /* Number of descriptors that need to be allocated. */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Releases the memory which was previously allocated for a descriptor ring.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring /* Descriptor to release */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initializes a descriptor ring, so that descriptors can be added to it.
|
|
* Once a descriptor ring has been allocated, it may be reinitialized for
|
|
* use with additional/different regions of memory.
|
|
*
|
|
* Note that if 7 descriptors are allocated, it's perfectly acceptable to
|
|
* initialize the ring with a smaller number of descriptors. The amount
|
|
* of memory allocated for the descriptor ring will not be reduced, and
|
|
* the descriptor ring may be reinitialized later
|
|
*
|
|
* @return
|
|
* 0 Descriptor ring was initialized successfully
|
|
* -ENOMEM The descriptor which was passed in has insufficient space
|
|
* to hold the desired number of descriptors.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to initialize */
|
|
int numDescriptors /* Number of descriptors to initialize. */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Determines the number of descriptors which would be required for a
|
|
* transfer of the indicated memory region.
|
|
*
|
|
* This function also needs to know which DMA device this transfer will
|
|
* be destined for, so that the appropriate DMA configuration can be retrieved.
|
|
* DMA parameters such as transfer width, and whether this is a memory-to-memory
|
|
* or memory-to-peripheral, etc can all affect the actual number of descriptors
|
|
* required.
|
|
*
|
|
* @return
|
|
* > 0 Returns the number of descriptors required for the indicated transfer
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
* -ENOMEM Memory exhausted
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_calculate_descriptor_count(DMA_Device_t device, /* DMA Device that this will be associated with */
|
|
dma_addr_t srcData, /* Place to get data to write to device */
|
|
dma_addr_t dstData, /* Pointer to device data address */
|
|
size_t numBytes /* Number of bytes to transfer to the device */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Adds a region of memory to the descriptor ring. Note that it may take
|
|
* multiple descriptors for each region of memory. It is the callers
|
|
* responsibility to allocate a sufficiently large descriptor ring.
|
|
*
|
|
* @return
|
|
* 0 Descriptors were added successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
* -ENOMEM Memory exhausted
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_add_descriptors(DMA_DescriptorRing_t *ring, /* Descriptor ring to add descriptors to */
|
|
DMA_Device_t device, /* DMA Device that descriptors are for */
|
|
dma_addr_t srcData, /* Place to get data (memory or device) */
|
|
dma_addr_t dstData, /* Place to put data (memory or device) */
|
|
size_t numBytes /* Number of bytes to transfer to the device */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Sets the descriptor ring associated with a device.
|
|
*
|
|
* Once set, the descriptor ring will be associated with the device, even
|
|
* across channel request/free calls. Passing in a NULL descriptor ring
|
|
* will release any descriptor ring currently associated with the device.
|
|
*
|
|
* Note: If you call dma_transfer, or one of the other dma_alloc_ functions
|
|
* the descriptor ring may be released and reallocated.
|
|
*
|
|
* Note: This function will release the descriptor memory for any current
|
|
* descriptor ring associated with this device.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_set_device_descriptor_ring(DMA_Device_t device, /* Device to update the descriptor ring for. */
|
|
DMA_DescriptorRing_t *ring /* Descriptor ring to add descriptors to */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Retrieves the descriptor ring associated with a device.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_get_device_descriptor_ring(DMA_Device_t device, /* Device to retrieve the descriptor ring for. */
|
|
DMA_DescriptorRing_t *ring /* Place to store retrieved ring */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Allocates buffers for the descriptors. This is normally done automatically
|
|
* but needs to be done explicitly when initiating a dma from interrupt
|
|
* context.
|
|
*
|
|
* @return
|
|
* 0 Descriptors were allocated successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
* -ENOMEM Memory exhausted
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_alloc_descriptors(DMA_Handle_t handle, /* DMA Handle */
|
|
dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */
|
|
dma_addr_t srcData, /* Place to get data to write to device */
|
|
dma_addr_t dstData, /* Pointer to device data address */
|
|
size_t numBytes /* Number of bytes to transfer to the device */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Allocates and sets up descriptors for a double buffered circular buffer.
|
|
*
|
|
* This is primarily intended to be used for things like the ingress samples
|
|
* from a microphone.
|
|
*
|
|
* @return
|
|
* > 0 Number of descriptors actually allocated.
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
* -ENOMEM Memory exhausted
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_alloc_double_dst_descriptors(DMA_Handle_t handle, /* DMA Handle */
|
|
dma_addr_t srcData, /* Physical address of source data */
|
|
dma_addr_t dstData1, /* Physical address of first destination buffer */
|
|
dma_addr_t dstData2, /* Physical address of second destination buffer */
|
|
size_t numBytes /* Number of bytes in each destination buffer */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initializes a DMA_MemMap_t data structure
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_init_mem_map(DMA_MemMap_t *memMap /* Stores state information about the map */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Releases any memory currently being held by a memory mapping structure.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_term_mem_map(DMA_MemMap_t *memMap /* Stores state information about the map */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Looks at a memory address and categorizes it.
|
|
*
|
|
* @return One of the values from the DMA_MemType_t enumeration.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
DMA_MemType_t dma_mem_type(void *addr);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Sets the process (aka userTask) associated with a mem map. This is
|
|
* required if user-mode segments will be added to the mapping.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
static inline void dma_mem_map_set_user_task(DMA_MemMap_t *memMap,
|
|
struct task_struct *task)
|
|
{
|
|
memMap->userTask = task;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Looks at a memory address and determines if we support DMA'ing to/from
|
|
* that type of memory.
|
|
*
|
|
* @return boolean -
|
|
* return value != 0 means dma supported
|
|
* return value == 0 means dma not supported
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_mem_supports_dma(void *addr);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initializes a memory map for use. Since this function acquires a
|
|
* sempaphore within the memory map, it is VERY important that dma_unmap
|
|
* be called when you're finished using the map.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_map_start(DMA_MemMap_t *memMap, /* Stores state information about the map */
|
|
enum dma_data_direction dir /* Direction that the mapping will be going */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Adds a segment of memory to a memory map.
|
|
*
|
|
* @return 0 on success, error code otherwise.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_map_add_region(DMA_MemMap_t *memMap, /* Stores state information about the map */
|
|
void *mem, /* Virtual address that we want to get a map of */
|
|
size_t numBytes /* Number of bytes being mapped */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Creates a descriptor ring from a memory mapping.
|
|
*
|
|
* @return 0 on success, error code otherwise.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_map_create_descriptor_ring(DMA_Device_t dev, /* DMA device (where the ring is stored) */
|
|
DMA_MemMap_t *memMap, /* Memory map that will be used */
|
|
dma_addr_t devPhysAddr /* Physical address of device */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Maps in a memory region such that it can be used for performing a DMA.
|
|
*
|
|
* @return
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_map_mem(DMA_MemMap_t *memMap, /* Stores state information about the map */
|
|
void *addr, /* Virtual address that we want to get a map of */
|
|
size_t count, /* Number of bytes being mapped */
|
|
enum dma_data_direction dir /* Direction that the mapping will be going */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Maps in a memory region such that it can be used for performing a DMA.
|
|
*
|
|
* @return
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_unmap(DMA_MemMap_t *memMap, /* Stores state information about the map */
|
|
int dirtied /* non-zero if any of the pages were modified */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initiates a transfer when the descriptors have already been setup.
|
|
*
|
|
* This is a special case, and normally, the dma_transfer_xxx functions should
|
|
* be used.
|
|
*
|
|
* @return
|
|
* 0 Transfer was started successfully
|
|
* -ENODEV Invalid handle
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_start_transfer(DMA_Handle_t handle);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Stops a previously started DMA transfer.
|
|
*
|
|
* @return
|
|
* 0 Transfer was stopped successfully
|
|
* -ENODEV Invalid handle
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_stop_transfer(DMA_Handle_t handle);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Waits for a DMA to complete by polling. This function is only intended
|
|
* to be used for testing. Interrupts should be used for most DMA operations.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_wait_transfer_done(DMA_Handle_t handle);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initiates a DMA transfer
|
|
*
|
|
* @return
|
|
* 0 Transfer was started successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_transfer(DMA_Handle_t handle, /* DMA Handle */
|
|
dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */
|
|
dma_addr_t srcData, /* Place to get data to write to device */
|
|
dma_addr_t dstData, /* Pointer to device data address */
|
|
size_t numBytes /* Number of bytes to transfer to the device */
|
|
);
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initiates a transfer from memory to a device.
|
|
*
|
|
* @return
|
|
* 0 Transfer was started successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV)
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
static inline int dma_transfer_to_device(DMA_Handle_t handle, /* DMA Handle */
|
|
dma_addr_t srcData, /* Place to get data to write to device (physical address) */
|
|
dma_addr_t dstData, /* Pointer to device data address (physical address) */
|
|
size_t numBytes /* Number of bytes to transfer to the device */
|
|
) {
|
|
return dma_transfer(handle,
|
|
dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL,
|
|
srcData, dstData, numBytes);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initiates a transfer from a device to memory.
|
|
*
|
|
* @return
|
|
* 0 Transfer was started successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
static inline int dma_transfer_from_device(DMA_Handle_t handle, /* DMA Handle */
|
|
dma_addr_t srcData, /* Pointer to the device data address (physical address) */
|
|
dma_addr_t dstData, /* Place to store data retrieved from the device (physical address) */
|
|
size_t numBytes /* Number of bytes to retrieve from the device */
|
|
) {
|
|
return dma_transfer(handle,
|
|
dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM,
|
|
srcData, dstData, numBytes);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Initiates a memory to memory transfer.
|
|
*
|
|
* @return
|
|
* 0 Transfer was started successfully
|
|
* -EINVAL Invalid device type for this kind of transfer
|
|
* (i.e. the device wasn't DMA_DEVICE_MEM_TO_MEM)
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
static inline int dma_transfer_mem_to_mem(DMA_Handle_t handle, /* DMA Handle */
|
|
dma_addr_t srcData, /* Place to transfer data from (physical address) */
|
|
dma_addr_t dstData, /* Place to transfer data to (physical address) */
|
|
size_t numBytes /* Number of bytes to transfer */
|
|
) {
|
|
return dma_transfer(handle,
|
|
dmacHw_TRANSFER_TYPE_MEM_TO_MEM,
|
|
srcData, dstData, numBytes);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/**
|
|
* Set the callback function which will be called when a transfer completes.
|
|
* If a NULL callback function is set, then no callback will occur.
|
|
*
|
|
* @note @a devHandler will be called from IRQ context.
|
|
*
|
|
* @return
|
|
* 0 - Success
|
|
* -ENODEV - Device handed in is invalid.
|
|
*/
|
|
/****************************************************************************/
|
|
|
|
int dma_set_device_handler(DMA_Device_t dev, /* Device to set the callback for. */
|
|
DMA_DeviceHandler_t devHandler, /* Function to call when the DMA completes */
|
|
void *userData /* Pointer which will be passed to devHandler. */
|
|
);
|
|
|
|
#endif
|
|
|
|
#endif /* ASM_ARM_ARCH_BCMRING_DMA_H */
|