linux/drivers/scsi/stex.c

2034 lines
49 KiB
C

/*
* SuperTrak EX Series Storage Controller driver for Linux
*
* Copyright (C) 2005-2015 Promise Technology Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Written By:
* Ed Lin <promise_linux@promise.com>
*
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/pci.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/ktime.h>
#include <linux/reboot.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#define DRV_NAME "stex"
#define ST_DRIVER_VERSION "6.02.0000.01"
#define ST_VER_MAJOR 6
#define ST_VER_MINOR 02
#define ST_OEM 0000
#define ST_BUILD_VER 01
enum {
/* MU register offset */
IMR0 = 0x10, /* MU_INBOUND_MESSAGE_REG0 */
IMR1 = 0x14, /* MU_INBOUND_MESSAGE_REG1 */
OMR0 = 0x18, /* MU_OUTBOUND_MESSAGE_REG0 */
OMR1 = 0x1c, /* MU_OUTBOUND_MESSAGE_REG1 */
IDBL = 0x20, /* MU_INBOUND_DOORBELL */
IIS = 0x24, /* MU_INBOUND_INTERRUPT_STATUS */
IIM = 0x28, /* MU_INBOUND_INTERRUPT_MASK */
ODBL = 0x2c, /* MU_OUTBOUND_DOORBELL */
OIS = 0x30, /* MU_OUTBOUND_INTERRUPT_STATUS */
OIM = 0x3c, /* MU_OUTBOUND_INTERRUPT_MASK */
YIOA_STATUS = 0x00,
YH2I_INT = 0x20,
YINT_EN = 0x34,
YI2H_INT = 0x9c,
YI2H_INT_C = 0xa0,
YH2I_REQ = 0xc0,
YH2I_REQ_HI = 0xc4,
PSCRATCH0 = 0xb0,
PSCRATCH1 = 0xb4,
PSCRATCH2 = 0xb8,
PSCRATCH3 = 0xbc,
PSCRATCH4 = 0xc8,
MAILBOX_BASE = 0x1000,
MAILBOX_HNDSHK_STS = 0x0,
/* MU register value */
MU_INBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_INBOUND_DOORBELL_REQHEADCHANGED = (1 << 1),
MU_INBOUND_DOORBELL_STATUSTAILCHANGED = (1 << 2),
MU_INBOUND_DOORBELL_HMUSTOPPED = (1 << 3),
MU_INBOUND_DOORBELL_RESET = (1 << 4),
MU_OUTBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_OUTBOUND_DOORBELL_REQUESTTAILCHANGED = (1 << 1),
MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED = (1 << 2),
MU_OUTBOUND_DOORBELL_BUSCHANGE = (1 << 3),
MU_OUTBOUND_DOORBELL_HASEVENT = (1 << 4),
MU_OUTBOUND_DOORBELL_REQUEST_RESET = (1 << 27),
/* MU status code */
MU_STATE_STARTING = 1,
MU_STATE_STARTED = 2,
MU_STATE_RESETTING = 3,
MU_STATE_FAILED = 4,
MU_STATE_STOP = 5,
MU_STATE_NOCONNECT = 6,
MU_MAX_DELAY = 50,
MU_HANDSHAKE_SIGNATURE = 0x55aaaa55,
MU_HANDSHAKE_SIGNATURE_HALF = 0x5a5a0000,
MU_HARD_RESET_WAIT = 30000,
HMU_PARTNER_TYPE = 2,
/* firmware returned values */
SRB_STATUS_SUCCESS = 0x01,
SRB_STATUS_ERROR = 0x04,
SRB_STATUS_BUSY = 0x05,
SRB_STATUS_INVALID_REQUEST = 0x06,
SRB_STATUS_SELECTION_TIMEOUT = 0x0A,
SRB_SEE_SENSE = 0x80,
/* task attribute */
TASK_ATTRIBUTE_SIMPLE = 0x0,
TASK_ATTRIBUTE_HEADOFQUEUE = 0x1,
TASK_ATTRIBUTE_ORDERED = 0x2,
TASK_ATTRIBUTE_ACA = 0x4,
SS_STS_NORMAL = 0x80000000,
SS_STS_DONE = 0x40000000,
SS_STS_HANDSHAKE = 0x20000000,
SS_HEAD_HANDSHAKE = 0x80,
SS_H2I_INT_RESET = 0x100,
SS_I2H_REQUEST_RESET = 0x2000,
SS_MU_OPERATIONAL = 0x80000000,
STEX_CDB_LENGTH = 16,
STATUS_VAR_LEN = 128,
/* sg flags */
SG_CF_EOT = 0x80, /* end of table */
SG_CF_64B = 0x40, /* 64 bit item */
SG_CF_HOST = 0x20, /* sg in host memory */
MSG_DATA_DIR_ND = 0,
MSG_DATA_DIR_IN = 1,
MSG_DATA_DIR_OUT = 2,
st_shasta = 0,
st_vsc = 1,
st_yosemite = 2,
st_seq = 3,
st_yel = 4,
st_P3 = 5,
PASSTHRU_REQ_TYPE = 0x00000001,
PASSTHRU_REQ_NO_WAKEUP = 0x00000100,
ST_INTERNAL_TIMEOUT = 180,
ST_TO_CMD = 0,
ST_FROM_CMD = 1,
/* vendor specific commands of Promise */
MGT_CMD = 0xd8,
SINBAND_MGT_CMD = 0xd9,
ARRAY_CMD = 0xe0,
CONTROLLER_CMD = 0xe1,
DEBUGGING_CMD = 0xe2,
PASSTHRU_CMD = 0xe3,
PASSTHRU_GET_ADAPTER = 0x05,
PASSTHRU_GET_DRVVER = 0x10,
CTLR_CONFIG_CMD = 0x03,
CTLR_SHUTDOWN = 0x0d,
CTLR_POWER_STATE_CHANGE = 0x0e,
CTLR_POWER_SAVING = 0x01,
PASSTHRU_SIGNATURE = 0x4e415041,
MGT_CMD_SIGNATURE = 0xba,
INQUIRY_EVPD = 0x01,
ST_ADDITIONAL_MEM = 0x200000,
ST_ADDITIONAL_MEM_MIN = 0x80000,
PMIC_SHUTDOWN = 0x0D,
PMIC_REUMSE = 0x10,
ST_IGNORED = -1,
ST_NOTHANDLED = 7,
ST_S3 = 3,
ST_S4 = 4,
ST_S5 = 5,
ST_S6 = 6,
};
struct st_sgitem {
u8 ctrl; /* SG_CF_xxx */
u8 reserved[3];
__le32 count;
__le64 addr;
};
struct st_ss_sgitem {
__le32 addr;
__le32 addr_hi;
__le32 count;
};
struct st_sgtable {
__le16 sg_count;
__le16 max_sg_count;
__le32 sz_in_byte;
};
struct st_msg_header {
__le64 handle;
u8 flag;
u8 channel;
__le16 timeout;
u32 reserved;
};
struct handshake_frame {
__le64 rb_phy; /* request payload queue physical address */
__le16 req_sz; /* size of each request payload */
__le16 req_cnt; /* count of reqs the buffer can hold */
__le16 status_sz; /* size of each status payload */
__le16 status_cnt; /* count of status the buffer can hold */
__le64 hosttime; /* seconds from Jan 1, 1970 (GMT) */
u8 partner_type; /* who sends this frame */
u8 reserved0[7];
__le32 partner_ver_major;
__le32 partner_ver_minor;
__le32 partner_ver_oem;
__le32 partner_ver_build;
__le32 extra_offset; /* NEW */
__le32 extra_size; /* NEW */
__le32 scratch_size;
u32 reserved1;
};
struct req_msg {
__le16 tag;
u8 lun;
u8 target;
u8 task_attr;
u8 task_manage;
u8 data_dir;
u8 payload_sz; /* payload size in 4-byte, not used */
u8 cdb[STEX_CDB_LENGTH];
u32 variable[0];
};
struct status_msg {
__le16 tag;
u8 lun;
u8 target;
u8 srb_status;
u8 scsi_status;
u8 reserved;
u8 payload_sz; /* payload size in 4-byte */
u8 variable[STATUS_VAR_LEN];
};
struct ver_info {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 reserved[2];
};
struct st_frame {
u32 base[6];
u32 rom_addr;
struct ver_info drv_ver;
struct ver_info bios_ver;
u32 bus;
u32 slot;
u32 irq_level;
u32 irq_vec;
u32 id;
u32 subid;
u32 dimm_size;
u8 dimm_type;
u8 reserved[3];
u32 channel;
u32 reserved1;
};
struct st_drvver {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 signature[2];
u8 console_id;
u8 host_no;
u8 reserved0[2];
u32 reserved[3];
};
struct st_ccb {
struct req_msg *req;
struct scsi_cmnd *cmd;
void *sense_buffer;
unsigned int sense_bufflen;
int sg_count;
u32 req_type;
u8 srb_status;
u8 scsi_status;
u8 reserved[2];
};
struct st_hba {
void __iomem *mmio_base; /* iomapped PCI memory space */
void *dma_mem;
dma_addr_t dma_handle;
size_t dma_size;
struct Scsi_Host *host;
struct pci_dev *pdev;
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
u32 req_head;
u32 req_tail;
u32 status_head;
u32 status_tail;
struct status_msg *status_buffer;
void *copy_buffer; /* temp buffer for driver-handled commands */
struct st_ccb *ccb;
struct st_ccb *wait_ccb;
__le32 *scratch;
char work_q_name[20];
struct workqueue_struct *work_q;
struct work_struct reset_work;
wait_queue_head_t reset_waitq;
unsigned int mu_status;
unsigned int cardtype;
int msi_enabled;
int out_req_cnt;
u32 extra_offset;
u16 rq_count;
u16 rq_size;
u16 sts_count;
u8 supports_pm;
int msi_lock;
};
struct st_card_info {
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
unsigned int max_id;
unsigned int max_lun;
unsigned int max_channel;
u16 rq_count;
u16 rq_size;
u16 sts_count;
};
static int S6flag;
static int stex_halt(struct notifier_block *nb, ulong event, void *buf);
static struct notifier_block stex_notifier = {
stex_halt, NULL, 0
};
static int msi;
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "Enable Message Signaled Interrupts(0=off, 1=on)");
static const char console_inq_page[] =
{
0x03,0x00,0x03,0x03,0xFA,0x00,0x00,0x30,
0x50,0x72,0x6F,0x6D,0x69,0x73,0x65,0x20, /* "Promise " */
0x52,0x41,0x49,0x44,0x20,0x43,0x6F,0x6E, /* "RAID Con" */
0x73,0x6F,0x6C,0x65,0x20,0x20,0x20,0x20, /* "sole " */
0x31,0x2E,0x30,0x30,0x20,0x20,0x20,0x20, /* "1.00 " */
0x53,0x58,0x2F,0x52,0x53,0x41,0x46,0x2D, /* "SX/RSAF-" */
0x54,0x45,0x31,0x2E,0x30,0x30,0x20,0x20, /* "TE1.00 " */
0x0C,0x20,0x20,0x20,0x20,0x20,0x20,0x20
};
MODULE_AUTHOR("Ed Lin");
MODULE_DESCRIPTION("Promise Technology SuperTrak EX Controllers");
MODULE_LICENSE("GPL");
MODULE_VERSION(ST_DRIVER_VERSION);
static struct status_msg *stex_get_status(struct st_hba *hba)
{
struct status_msg *status = hba->status_buffer + hba->status_tail;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
return status;
}
static void stex_invalid_field(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
/* "Invalid field in cdb" */
scsi_build_sense_buffer(0, cmd->sense_buffer, ILLEGAL_REQUEST, 0x24,
0x0);
done(cmd);
}
static struct req_msg *stex_alloc_req(struct st_hba *hba)
{
struct req_msg *req = hba->dma_mem + hba->req_head * hba->rq_size;
++hba->req_head;
hba->req_head %= hba->rq_count+1;
return req;
}
static struct req_msg *stex_ss_alloc_req(struct st_hba *hba)
{
return (struct req_msg *)(hba->dma_mem +
hba->req_head * hba->rq_size + sizeof(struct st_msg_header));
}
static int stex_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr = cpu_to_le64(sg_dma_address(sg));
table[i].ctrl = SG_CF_64B | SG_CF_HOST;
}
table[--i].ctrl |= SG_CF_EOT;
}
return nseg;
}
static int stex_ss_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_ss_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_ss_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr =
cpu_to_le32(sg_dma_address(sg) & 0xffffffff);
table[i].addr_hi =
cpu_to_le32((sg_dma_address(sg) >> 16) >> 16);
}
}
return nseg;
}
static void stex_controller_info(struct st_hba *hba, struct st_ccb *ccb)
{
struct st_frame *p;
size_t count = sizeof(struct st_frame);
p = hba->copy_buffer;
scsi_sg_copy_to_buffer(ccb->cmd, p, count);
memset(p->base, 0, sizeof(u32)*6);
*(unsigned long *)(p->base) = pci_resource_start(hba->pdev, 0);
p->rom_addr = 0;
p->drv_ver.major = ST_VER_MAJOR;
p->drv_ver.minor = ST_VER_MINOR;
p->drv_ver.oem = ST_OEM;
p->drv_ver.build = ST_BUILD_VER;
p->bus = hba->pdev->bus->number;
p->slot = hba->pdev->devfn;
p->irq_level = 0;
p->irq_vec = hba->pdev->irq;
p->id = hba->pdev->vendor << 16 | hba->pdev->device;
p->subid =
hba->pdev->subsystem_vendor << 16 | hba->pdev->subsystem_device;
scsi_sg_copy_from_buffer(ccb->cmd, p, count);
}
static void
stex_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
writel(hba->req_head, hba->mmio_base + IMR0);
writel(MU_INBOUND_DOORBELL_REQHEADCHANGED, hba->mmio_base + IDBL);
readl(hba->mmio_base + IDBL); /* flush */
}
static void
stex_ss_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
struct scsi_cmnd *cmd;
struct st_msg_header *msg_h;
dma_addr_t addr;
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
cmd = hba->ccb[tag].cmd;
msg_h = (struct st_msg_header *)req - 1;
if (likely(cmd)) {
msg_h->channel = (u8)cmd->device->channel;
msg_h->timeout = cpu_to_le16(cmd->request->timeout/HZ);
}
addr = hba->dma_handle + hba->req_head * hba->rq_size;
addr += (hba->ccb[tag].sg_count+4)/11;
msg_h->handle = cpu_to_le64(addr);
++hba->req_head;
hba->req_head %= hba->rq_count+1;
if (hba->cardtype == st_P3) {
writel((addr >> 16) >> 16, hba->mmio_base + YH2I_REQ_HI);
writel(addr, hba->mmio_base + YH2I_REQ);
} else {
writel((addr >> 16) >> 16, hba->mmio_base + YH2I_REQ_HI);
readl(hba->mmio_base + YH2I_REQ_HI); /* flush */
writel(addr, hba->mmio_base + YH2I_REQ);
readl(hba->mmio_base + YH2I_REQ); /* flush */
}
}
static void return_abnormal_state(struct st_hba *hba, int status)
{
struct st_ccb *ccb;
unsigned long flags;
u16 tag;
spin_lock_irqsave(hba->host->host_lock, flags);
for (tag = 0; tag < hba->host->can_queue; tag++) {
ccb = &hba->ccb[tag];
if (ccb->req == NULL)
continue;
ccb->req = NULL;
if (ccb->cmd) {
scsi_dma_unmap(ccb->cmd);
ccb->cmd->result = status << 16;
ccb->cmd->scsi_done(ccb->cmd);
ccb->cmd = NULL;
}
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static int
stex_slave_config(struct scsi_device *sdev)
{
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
blk_queue_rq_timeout(sdev->request_queue, 60 * HZ);
return 0;
}
static int
stex_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct st_hba *hba;
struct Scsi_Host *host;
unsigned int id, lun;
struct req_msg *req;
u16 tag;
host = cmd->device->host;
id = cmd->device->id;
lun = cmd->device->lun;
hba = (struct st_hba *) &host->hostdata[0];
if (hba->mu_status == MU_STATE_NOCONNECT) {
cmd->result = DID_NO_CONNECT;
done(cmd);
return 0;
}
if (unlikely(hba->mu_status != MU_STATE_STARTED))
return SCSI_MLQUEUE_HOST_BUSY;
switch (cmd->cmnd[0]) {
case MODE_SENSE_10:
{
static char ms10_caching_page[12] =
{ 0, 0x12, 0, 0, 0, 0, 0, 0, 0x8, 0xa, 0x4, 0 };
unsigned char page;
page = cmd->cmnd[2] & 0x3f;
if (page == 0x8 || page == 0x3f) {
scsi_sg_copy_from_buffer(cmd, ms10_caching_page,
sizeof(ms10_caching_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
}
case REPORT_LUNS:
/*
* The shasta firmware does not report actual luns in the
* target, so fail the command to force sequential lun scan.
* Also, the console device does not support this command.
*/
if (hba->cardtype == st_shasta || id == host->max_id - 1) {
stex_invalid_field(cmd, done);
return 0;
}
break;
case TEST_UNIT_READY:
if (id == host->max_id - 1) {
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
break;
case INQUIRY:
if (lun >= host->max_lun) {
cmd->result = DID_NO_CONNECT << 16;
done(cmd);
return 0;
}
if (id != host->max_id - 1)
break;
if (!lun && !cmd->device->channel &&
(cmd->cmnd[1] & INQUIRY_EVPD) == 0) {
scsi_sg_copy_from_buffer(cmd, (void *)console_inq_page,
sizeof(console_inq_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
case PASSTHRU_CMD:
if (cmd->cmnd[1] == PASSTHRU_GET_DRVVER) {
struct st_drvver ver;
size_t cp_len = sizeof(ver);
ver.major = ST_VER_MAJOR;
ver.minor = ST_VER_MINOR;
ver.oem = ST_OEM;
ver.build = ST_BUILD_VER;
ver.signature[0] = PASSTHRU_SIGNATURE;
ver.console_id = host->max_id - 1;
ver.host_no = hba->host->host_no;
cp_len = scsi_sg_copy_from_buffer(cmd, &ver, cp_len);
cmd->result = sizeof(ver) == cp_len ?
DID_OK << 16 | COMMAND_COMPLETE << 8 :
DID_ERROR << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
default:
break;
}
cmd->scsi_done = done;
tag = cmd->request->tag;
if (unlikely(tag >= host->can_queue))
return SCSI_MLQUEUE_HOST_BUSY;
req = hba->alloc_rq(hba);
req->lun = lun;
req->target = id;
/* cdb */
memcpy(req->cdb, cmd->cmnd, STEX_CDB_LENGTH);
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
req->data_dir = MSG_DATA_DIR_IN;
else if (cmd->sc_data_direction == DMA_TO_DEVICE)
req->data_dir = MSG_DATA_DIR_OUT;
else
req->data_dir = MSG_DATA_DIR_ND;
hba->ccb[tag].cmd = cmd;
hba->ccb[tag].sense_bufflen = SCSI_SENSE_BUFFERSIZE;
hba->ccb[tag].sense_buffer = cmd->sense_buffer;
if (!hba->map_sg(hba, req, &hba->ccb[tag])) {
hba->ccb[tag].sg_count = 0;
memset(&req->variable[0], 0, 8);
}
hba->send(hba, req, tag);
return 0;
}
static DEF_SCSI_QCMD(stex_queuecommand)
static void stex_scsi_done(struct st_ccb *ccb)
{
struct scsi_cmnd *cmd = ccb->cmd;
int result;
if (ccb->srb_status == SRB_STATUS_SUCCESS || ccb->srb_status == 0) {
result = ccb->scsi_status;
switch (ccb->scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DRIVER_SENSE << 24;
break;
case SAM_STAT_BUSY:
result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
default:
result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
}
else if (ccb->srb_status & SRB_SEE_SENSE)
result = DRIVER_SENSE << 24 | SAM_STAT_CHECK_CONDITION;
else switch (ccb->srb_status) {
case SRB_STATUS_SELECTION_TIMEOUT:
result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUSY:
result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_INVALID_REQUEST:
case SRB_STATUS_ERROR:
default:
result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
cmd->result = result;
cmd->scsi_done(cmd);
}
static void stex_copy_data(struct st_ccb *ccb,
struct status_msg *resp, unsigned int variable)
{
if (resp->scsi_status != SAM_STAT_GOOD) {
if (ccb->sense_buffer != NULL)
memcpy(ccb->sense_buffer, resp->variable,
min(variable, ccb->sense_bufflen));
return;
}
if (ccb->cmd == NULL)
return;
scsi_sg_copy_from_buffer(ccb->cmd, resp->variable, variable);
}
static void stex_check_cmd(struct st_hba *hba,
struct st_ccb *ccb, struct status_msg *resp)
{
if (ccb->cmd->cmnd[0] == MGT_CMD &&
resp->scsi_status != SAM_STAT_CHECK_CONDITION)
scsi_set_resid(ccb->cmd, scsi_bufflen(ccb->cmd) -
le32_to_cpu(*(__le32 *)&resp->variable[0]));
}
static void stex_mu_intr(struct st_hba *hba, u32 doorbell)
{
void __iomem *base = hba->mmio_base;
struct status_msg *resp;
struct st_ccb *ccb;
unsigned int size;
u16 tag;
if (unlikely(!(doorbell & MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED)))
return;
/* status payloads */
hba->status_head = readl(base + OMR1);
if (unlikely(hba->status_head > hba->sts_count)) {
printk(KERN_WARNING DRV_NAME "(%s): invalid status head\n",
pci_name(hba->pdev));
return;
}
/*
* it's not a valid status payload if:
* 1. there are no pending requests(e.g. during init stage)
* 2. there are some pending requests, but the controller is in
* reset status, and its type is not st_yosemite
* firmware of st_yosemite in reset status will return pending requests
* to driver, so we allow it to pass
*/
if (unlikely(hba->out_req_cnt <= 0 ||
(hba->mu_status == MU_STATE_RESETTING &&
hba->cardtype != st_yosemite))) {
hba->status_tail = hba->status_head;
goto update_status;
}
while (hba->status_tail != hba->status_head) {
resp = stex_get_status(hba);
tag = le16_to_cpu(resp->tag);
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
size = resp->payload_sz * sizeof(u32); /* payload size */
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME "(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN; /* copy size */
if (size)
stex_copy_data(ccb, resp, size);
}
ccb->req = NULL;
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
if (likely(ccb->cmd != NULL)) {
if (hba->cardtype == st_yosemite)
stex_check_cmd(hba, ccb, resp);
if (unlikely(ccb->cmd->cmnd[0] == PASSTHRU_CMD &&
ccb->cmd->cmnd[1] == PASSTHRU_GET_ADAPTER))
stex_controller_info(hba, ccb);
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
update_status:
writel(hba->status_head, base + IMR1);
readl(base + IMR1); /* flush */
}
static irqreturn_t stex_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
data = readl(base + ODBL);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & MU_OUTBOUND_DOORBELL_REQUEST_RESET &&
hba->cardtype == st_shasta))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static void stex_ss_mu_intr(struct st_hba *hba)
{
struct status_msg *resp;
struct st_ccb *ccb;
__le32 *scratch;
unsigned int size;
int count = 0;
u32 value;
u16 tag;
if (unlikely(hba->out_req_cnt <= 0 ||
hba->mu_status == MU_STATE_RESETTING))
return;
while (count < hba->sts_count) {
scratch = hba->scratch + hba->status_tail;
value = le32_to_cpu(*scratch);
if (unlikely(!(value & SS_STS_NORMAL)))
return;
resp = hba->status_buffer + hba->status_tail;
*scratch = 0;
++count;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
tag = (u16)value;
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
ccb->req = NULL;
if (likely(value & SS_STS_DONE)) { /* normal case */
ccb->srb_status = SRB_STATUS_SUCCESS;
ccb->scsi_status = SAM_STAT_GOOD;
} else {
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
size = resp->payload_sz * sizeof(u32);
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME
"(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN;
if (size)
stex_copy_data(ccb, resp, size);
}
if (likely(ccb->cmd != NULL))
stex_check_cmd(hba, ccb, resp);
}
if (likely(ccb->cmd != NULL)) {
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
}
static irqreturn_t stex_ss_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->cardtype == st_yel) {
data = readl(base + YI2H_INT);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & SS_I2H_REQUEST_RESET))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
} else {
data = readl(base + PSCRATCH4);
if (data != 0xffffffff) {
if (data != 0) {
/* clear the interrupt */
writel(data, base + PSCRATCH1);
writel((1 << 22), base + YH2I_INT);
}
stex_ss_mu_intr(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & SS_I2H_REQUEST_RESET))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static int stex_common_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct handshake_frame *h;
dma_addr_t status_phys;
u32 data;
unsigned long before;
if (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no handshake signature\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
}
udelay(10);
data = readl(base + OMR1);
if ((data & 0xffff0000) == MU_HANDSHAKE_SIGNATURE_HALF) {
data &= 0x0000ffff;
if (hba->host->can_queue > data) {
hba->host->can_queue = data;
hba->host->cmd_per_lun = data;
}
}
h = (struct handshake_frame *)hba->status_buffer;
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
h->hosttime = cpu_to_le64(ktime_get_real_seconds());
h->partner_type = HMU_PARTNER_TYPE;
if (hba->extra_offset) {
h->extra_offset = cpu_to_le32(hba->extra_offset);
h->extra_size = cpu_to_le32(hba->dma_size - hba->extra_offset);
} else
h->extra_offset = h->extra_size = 0;
status_phys = hba->dma_handle + (hba->rq_count+1) * hba->rq_size;
writel(status_phys, base + IMR0);
readl(base + IMR0);
writel((status_phys >> 16) >> 16, base + IMR1);
readl(base + IMR1);
writel((status_phys >> 16) >> 16, base + OMR0); /* old fw compatible */
readl(base + OMR0);
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL); /* flush */
udelay(10);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
writel(0, base + IMR0);
readl(base + IMR0);
writel(0, base + OMR0);
readl(base + OMR0);
writel(0, base + IMR1);
readl(base + IMR1);
writel(0, base + OMR1);
readl(base + OMR1); /* flush */
return 0;
}
static int stex_ss_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct st_msg_header *msg_h;
struct handshake_frame *h;
__le32 *scratch;
u32 data, scratch_size, mailboxdata, operationaldata;
unsigned long before;
int ret = 0;
before = jiffies;
if (hba->cardtype == st_yel) {
operationaldata = readl(base + YIOA_STATUS);
while (operationaldata != SS_MU_OPERATIONAL) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): firmware not operational\n",
pci_name(hba->pdev));
return -1;
}
msleep(1);
operationaldata = readl(base + YIOA_STATUS);
}
} else {
operationaldata = readl(base + PSCRATCH3);
while (operationaldata != SS_MU_OPERATIONAL) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): firmware not operational\n",
pci_name(hba->pdev));
return -1;
}
msleep(1);
operationaldata = readl(base + PSCRATCH3);
}
}
msg_h = (struct st_msg_header *)hba->dma_mem;
msg_h->handle = cpu_to_le64(hba->dma_handle);
msg_h->flag = SS_HEAD_HANDSHAKE;
h = (struct handshake_frame *)(msg_h + 1);
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
h->hosttime = cpu_to_le64(ktime_get_real_seconds());
h->partner_type = HMU_PARTNER_TYPE;
h->extra_offset = h->extra_size = 0;
scratch_size = (hba->sts_count+1)*sizeof(u32);
h->scratch_size = cpu_to_le32(scratch_size);
if (hba->cardtype == st_yel) {
data = readl(base + YINT_EN);
data &= ~4;
writel(data, base + YINT_EN);
writel((hba->dma_handle >> 16) >> 16, base + YH2I_REQ_HI);
readl(base + YH2I_REQ_HI);
writel(hba->dma_handle, base + YH2I_REQ);
readl(base + YH2I_REQ); /* flush */
} else {
data = readl(base + YINT_EN);
data &= ~(1 << 0);
data &= ~(1 << 2);
writel(data, base + YINT_EN);
if (hba->msi_lock == 0) {
/* P3 MSI Register cannot access twice */
writel((1 << 6), base + YH2I_INT);
hba->msi_lock = 1;
}
writel((hba->dma_handle >> 16) >> 16, base + YH2I_REQ_HI);
writel(hba->dma_handle, base + YH2I_REQ);
}
before = jiffies;
scratch = hba->scratch;
if (hba->cardtype == st_yel) {
while (!(le32_to_cpu(*scratch) & SS_STS_HANDSHAKE)) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
ret = -1;
break;
}
rmb();
msleep(1);
}
} else {
mailboxdata = readl(base + MAILBOX_BASE + MAILBOX_HNDSHK_STS);
while (mailboxdata != SS_STS_HANDSHAKE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
ret = -1;
break;
}
rmb();
msleep(1);
mailboxdata = readl(base + MAILBOX_BASE + MAILBOX_HNDSHK_STS);
}
}
memset(scratch, 0, scratch_size);
msg_h->flag = 0;
return ret;
}
static int stex_handshake(struct st_hba *hba)
{
int err;
unsigned long flags;
unsigned int mu_status;
if (hba->cardtype == st_yel || hba->cardtype == st_P3)
err = stex_ss_handshake(hba);
else
err = stex_common_handshake(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
if (err == 0) {
hba->req_head = 0;
hba->req_tail = 0;
hba->status_head = 0;
hba->status_tail = 0;
hba->out_req_cnt = 0;
hba->mu_status = MU_STATE_STARTED;
} else
hba->mu_status = MU_STATE_FAILED;
if (mu_status == MU_STATE_RESETTING)
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
static int stex_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
struct st_hba *hba = (struct st_hba *)host->hostdata;
u16 tag = cmd->request->tag;
void __iomem *base;
u32 data;
int result = SUCCESS;
unsigned long flags;
scmd_printk(KERN_INFO, cmd, "aborting command\n");
base = hba->mmio_base;
spin_lock_irqsave(host->host_lock, flags);
if (tag < host->can_queue &&
hba->ccb[tag].req && hba->ccb[tag].cmd == cmd)
hba->wait_ccb = &hba->ccb[tag];
else
goto out;
if (hba->cardtype == st_yel) {
data = readl(base + YI2H_INT);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
} else if (hba->cardtype == st_P3) {
data = readl(base + PSCRATCH4);
if (data == 0xffffffff)
goto fail_out;
if (data != 0) {
writel(data, base + PSCRATCH1);
writel((1 << 22), base + YH2I_INT);
}
stex_ss_mu_intr(hba);
} else {
data = readl(base + ODBL);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
}
if (hba->wait_ccb == NULL) {
printk(KERN_WARNING DRV_NAME
"(%s): lost interrupt\n", pci_name(hba->pdev));
goto out;
}
fail_out:
scsi_dma_unmap(cmd);
hba->wait_ccb->req = NULL; /* nullify the req's future return */
hba->wait_ccb = NULL;
result = FAILED;
out:
spin_unlock_irqrestore(host->host_lock, flags);
return result;
}
static void stex_hard_reset(struct st_hba *hba)
{
struct pci_bus *bus;
int i;
u16 pci_cmd;
u8 pci_bctl;
for (i = 0; i < 16; i++)
pci_read_config_dword(hba->pdev, i * 4,
&hba->pdev->saved_config_space[i]);
/* Reset secondary bus. Our controller(MU/ATU) is the only device on
secondary bus. Consult Intel 80331/3 developer's manual for detail */
bus = hba->pdev->bus;
pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &pci_bctl);
pci_bctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
/*
* 1 ms may be enough for 8-port controllers. But 16-port controllers
* require more time to finish bus reset. Use 100 ms here for safety
*/
msleep(100);
pci_bctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
for (i = 0; i < MU_HARD_RESET_WAIT; i++) {
pci_read_config_word(hba->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd != 0xffff && (pci_cmd & PCI_COMMAND_MASTER))
break;
msleep(1);
}
ssleep(5);
for (i = 0; i < 16; i++)
pci_write_config_dword(hba->pdev, i * 4,
hba->pdev->saved_config_space[i]);
}
static int stex_yos_reset(struct st_hba *hba)
{
void __iomem *base;
unsigned long flags, before;
int ret = 0;
base = hba->mmio_base;
writel(MU_INBOUND_DOORBELL_RESET, base + IDBL);
readl(base + IDBL); /* flush */
before = jiffies;
while (hba->out_req_cnt > 0) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
printk(KERN_WARNING DRV_NAME
"(%s): reset timeout\n", pci_name(hba->pdev));
ret = -1;
break;
}
msleep(1);
}
spin_lock_irqsave(hba->host->host_lock, flags);
if (ret == -1)
hba->mu_status = MU_STATE_FAILED;
else
hba->mu_status = MU_STATE_STARTED;
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
static void stex_ss_reset(struct st_hba *hba)
{
writel(SS_H2I_INT_RESET, hba->mmio_base + YH2I_INT);
readl(hba->mmio_base + YH2I_INT);
ssleep(5);
}
static void stex_p3_reset(struct st_hba *hba)
{
writel(SS_H2I_INT_RESET, hba->mmio_base + YH2I_INT);
ssleep(5);
}
static int stex_do_reset(struct st_hba *hba)
{
unsigned long flags;
unsigned int mu_status = MU_STATE_RESETTING;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->mu_status == MU_STATE_STARTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
printk(KERN_INFO DRV_NAME "(%s): request reset during init\n",
pci_name(hba->pdev));
return 0;
}
while (hba->mu_status == MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
wait_event_timeout(hba->reset_waitq,
hba->mu_status != MU_STATE_RESETTING,
MU_MAX_DELAY * HZ);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
}
if (mu_status != MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return (mu_status == MU_STATE_STARTED) ? 0 : -1;
}
hba->mu_status = MU_STATE_RESETTING;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (hba->cardtype == st_yosemite)
return stex_yos_reset(hba);
if (hba->cardtype == st_shasta)
stex_hard_reset(hba);
else if (hba->cardtype == st_yel)
stex_ss_reset(hba);
else if (hba->cardtype == st_P3)
stex_p3_reset(hba);
return_abnormal_state(hba, DID_RESET);
if (stex_handshake(hba) == 0)
return 0;
printk(KERN_WARNING DRV_NAME "(%s): resetting: handshake failed\n",
pci_name(hba->pdev));
return -1;
}
static int stex_reset(struct scsi_cmnd *cmd)
{
struct st_hba *hba;
hba = (struct st_hba *) &cmd->device->host->hostdata[0];
shost_printk(KERN_INFO, cmd->device->host,
"resetting host\n");
return stex_do_reset(hba) ? FAILED : SUCCESS;
}
static void stex_reset_work(struct work_struct *work)
{
struct st_hba *hba = container_of(work, struct st_hba, reset_work);
stex_do_reset(hba);
}
static int stex_biosparam(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int geom[])
{
int heads = 255, sectors = 63;
if (capacity < 0x200000) {
heads = 64;
sectors = 32;
}
sector_div(capacity, heads * sectors);
geom[0] = heads;
geom[1] = sectors;
geom[2] = capacity;
return 0;
}
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = DRV_NAME,
.proc_name = DRV_NAME,
.bios_param = stex_biosparam,
.queuecommand = stex_queuecommand,
.slave_configure = stex_slave_config,
.eh_abort_handler = stex_abort,
.eh_host_reset_handler = stex_reset,
.this_id = -1,
.dma_boundary = PAGE_SIZE - 1,
};
static struct pci_device_id stex_pci_tbl[] = {
/* st_shasta */
{ 0x105a, 0x8350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX8350/8300/16350/16300 */
{ 0x105a, 0xc350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX12350 */
{ 0x105a, 0x4302, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX4350 */
{ 0x105a, 0xe350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX24350 */
/* st_vsc */
{ 0x105a, 0x7250, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_vsc },
/* st_yosemite */
{ 0x105a, 0x8650, 0x105a, PCI_ANY_ID, 0, 0, st_yosemite },
/* st_seq */
{ 0x105a, 0x3360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_seq },
/* st_yel */
{ 0x105a, 0x8650, 0x1033, PCI_ANY_ID, 0, 0, st_yel },
{ 0x105a, 0x8760, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_yel },
/* st_P3, pluto */
{ PCI_VENDOR_ID_PROMISE, 0x8870, PCI_VENDOR_ID_PROMISE,
0x8870, 0, 0, st_P3 },
/* st_P3, p3 */
{ PCI_VENDOR_ID_PROMISE, 0x8870, PCI_VENDOR_ID_PROMISE,
0x4300, 0, 0, st_P3 },
/* st_P3, SymplyStor4E */
{ PCI_VENDOR_ID_PROMISE, 0x8871, PCI_VENDOR_ID_PROMISE,
0x4311, 0, 0, st_P3 },
/* st_P3, SymplyStor8E */
{ PCI_VENDOR_ID_PROMISE, 0x8871, PCI_VENDOR_ID_PROMISE,
0x4312, 0, 0, st_P3 },
/* st_P3, SymplyStor4 */
{ PCI_VENDOR_ID_PROMISE, 0x8871, PCI_VENDOR_ID_PROMISE,
0x4321, 0, 0, st_P3 },
/* st_P3, SymplyStor8 */
{ PCI_VENDOR_ID_PROMISE, 0x8871, PCI_VENDOR_ID_PROMISE,
0x4322, 0, 0, st_P3 },
{ } /* terminate list */
};
static struct st_card_info stex_card_info[] = {
/* st_shasta */
{
.max_id = 17,
.max_lun = 8,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_vsc */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yosemite */
{
.max_id = 2,
.max_lun = 256,
.max_channel = 0,
.rq_count = 256,
.rq_size = 1048,
.sts_count = 256,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_seq */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yel */
{
.max_id = 129,
.max_lun = 256,
.max_channel = 3,
.rq_count = 801,
.rq_size = 512,
.sts_count = 801,
.alloc_rq = stex_ss_alloc_req,
.map_sg = stex_ss_map_sg,
.send = stex_ss_send_cmd,
},
/* st_P3 */
{
.max_id = 129,
.max_lun = 256,
.max_channel = 0,
.rq_count = 801,
.rq_size = 512,
.sts_count = 801,
.alloc_rq = stex_ss_alloc_req,
.map_sg = stex_ss_map_sg,
.send = stex_ss_send_cmd,
},
};
static int stex_request_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
int status;
if (msi || hba->cardtype == st_P3) {
status = pci_enable_msi(pdev);
if (status != 0)
printk(KERN_ERR DRV_NAME
"(%s): error %d setting up MSI\n",
pci_name(pdev), status);
else
hba->msi_enabled = 1;
} else
hba->msi_enabled = 0;
status = request_irq(pdev->irq,
(hba->cardtype == st_yel || hba->cardtype == st_P3) ?
stex_ss_intr : stex_intr, IRQF_SHARED, DRV_NAME, hba);
if (status != 0) {
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
return status;
}
static void stex_free_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
free_irq(pdev->irq, hba);
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
static int stex_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct st_hba *hba;
struct Scsi_Host *host;
const struct st_card_info *ci = NULL;
u32 sts_offset, cp_offset, scratch_offset;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
S6flag = 0;
register_reboot_notifier(&stex_notifier);
host = scsi_host_alloc(&driver_template, sizeof(struct st_hba));
if (!host) {
printk(KERN_ERR DRV_NAME "(%s): scsi_host_alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_disable;
}
hba = (struct st_hba *)host->hostdata;
memset(hba, 0, sizeof(struct st_hba));
err = pci_request_regions(pdev, DRV_NAME);
if (err < 0) {
printk(KERN_ERR DRV_NAME "(%s): request regions failed\n",
pci_name(pdev));
goto out_scsi_host_put;
}
hba->mmio_base = pci_ioremap_bar(pdev, 0);
if ( !hba->mmio_base) {
printk(KERN_ERR DRV_NAME "(%s): memory map failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_release_regions;
}
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
printk(KERN_ERR DRV_NAME "(%s): set dma mask failed\n",
pci_name(pdev));
goto out_iounmap;
}
hba->cardtype = (unsigned int) id->driver_data;
ci = &stex_card_info[hba->cardtype];
switch (id->subdevice) {
case 0x4221:
case 0x4222:
case 0x4223:
case 0x4224:
case 0x4225:
case 0x4226:
case 0x4227:
case 0x4261:
case 0x4262:
case 0x4263:
case 0x4264:
case 0x4265:
break;
default:
if (hba->cardtype == st_yel || hba->cardtype == st_P3)
hba->supports_pm = 1;
}
sts_offset = scratch_offset = (ci->rq_count+1) * ci->rq_size;
if (hba->cardtype == st_yel || hba->cardtype == st_P3)
sts_offset += (ci->sts_count+1) * sizeof(u32);
cp_offset = sts_offset + (ci->sts_count+1) * sizeof(struct status_msg);
hba->dma_size = cp_offset + sizeof(struct st_frame);
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
hba->extra_offset = hba->dma_size;
hba->dma_size += ST_ADDITIONAL_MEM;
}
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
if (!hba->dma_mem) {
/* Retry minimum coherent mapping for st_seq and st_vsc */
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
printk(KERN_WARNING DRV_NAME
"(%s): allocating min buffer for controller\n",
pci_name(pdev));
hba->dma_size = hba->extra_offset
+ ST_ADDITIONAL_MEM_MIN;
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
}
if (!hba->dma_mem) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): dma mem alloc failed\n",
pci_name(pdev));
goto out_iounmap;
}
}
hba->ccb = kcalloc(ci->rq_count, sizeof(struct st_ccb), GFP_KERNEL);
if (!hba->ccb) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): ccb alloc failed\n",
pci_name(pdev));
goto out_pci_free;
}
if (hba->cardtype == st_yel || hba->cardtype == st_P3)
hba->scratch = (__le32 *)(hba->dma_mem + scratch_offset);
hba->status_buffer = (struct status_msg *)(hba->dma_mem + sts_offset);
hba->copy_buffer = hba->dma_mem + cp_offset;
hba->rq_count = ci->rq_count;
hba->rq_size = ci->rq_size;
hba->sts_count = ci->sts_count;
hba->alloc_rq = ci->alloc_rq;
hba->map_sg = ci->map_sg;
hba->send = ci->send;
hba->mu_status = MU_STATE_STARTING;
hba->msi_lock = 0;
if (hba->cardtype == st_yel || hba->cardtype == st_P3)
host->sg_tablesize = 38;
else
host->sg_tablesize = 32;
host->can_queue = ci->rq_count;
host->cmd_per_lun = ci->rq_count;
host->max_id = ci->max_id;
host->max_lun = ci->max_lun;
host->max_channel = ci->max_channel;
host->unique_id = host->host_no;
host->max_cmd_len = STEX_CDB_LENGTH;
hba->host = host;
hba->pdev = pdev;
init_waitqueue_head(&hba->reset_waitq);
snprintf(hba->work_q_name, sizeof(hba->work_q_name),
"stex_wq_%d", host->host_no);
hba->work_q = create_singlethread_workqueue(hba->work_q_name);
if (!hba->work_q) {
printk(KERN_ERR DRV_NAME "(%s): create workqueue failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_ccb_free;
}
INIT_WORK(&hba->reset_work, stex_reset_work);
err = stex_request_irq(hba);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): request irq failed\n",
pci_name(pdev));
goto out_free_wq;
}
err = stex_handshake(hba);
if (err)
goto out_free_irq;
pci_set_drvdata(pdev, hba);
err = scsi_add_host(host, &pdev->dev);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): scsi_add_host failed\n",
pci_name(pdev));
goto out_free_irq;
}
scsi_scan_host(host);
return 0;
out_free_irq:
stex_free_irq(hba);
out_free_wq:
destroy_workqueue(hba->work_q);
out_ccb_free:
kfree(hba->ccb);
out_pci_free:
dma_free_coherent(&pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
out_iounmap:
iounmap(hba->mmio_base);
out_release_regions:
pci_release_regions(pdev);
out_scsi_host_put:
scsi_host_put(host);
out_disable:
pci_disable_device(pdev);
return err;
}
static void stex_hba_stop(struct st_hba *hba, int st_sleep_mic)
{
struct req_msg *req;
struct st_msg_header *msg_h;
unsigned long flags;
unsigned long before;
u16 tag = 0;
spin_lock_irqsave(hba->host->host_lock, flags);
if ((hba->cardtype == st_yel || hba->cardtype == st_P3) &&
hba->supports_pm == 1) {
if (st_sleep_mic == ST_NOTHANDLED) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return;
}
}
req = hba->alloc_rq(hba);
if (hba->cardtype == st_yel || hba->cardtype == st_P3) {
msg_h = (struct st_msg_header *)req - 1;
memset(msg_h, 0, hba->rq_size);
} else
memset(req, 0, hba->rq_size);
if ((hba->cardtype == st_yosemite || hba->cardtype == st_yel
|| hba->cardtype == st_P3)
&& st_sleep_mic == ST_IGNORED) {
req->cdb[0] = MGT_CMD;
req->cdb[1] = MGT_CMD_SIGNATURE;
req->cdb[2] = CTLR_CONFIG_CMD;
req->cdb[3] = CTLR_SHUTDOWN;
} else if ((hba->cardtype == st_yel || hba->cardtype == st_P3)
&& st_sleep_mic != ST_IGNORED) {
req->cdb[0] = MGT_CMD;
req->cdb[1] = MGT_CMD_SIGNATURE;
req->cdb[2] = CTLR_CONFIG_CMD;
req->cdb[3] = PMIC_SHUTDOWN;
req->cdb[4] = st_sleep_mic;
} else {
req->cdb[0] = CONTROLLER_CMD;
req->cdb[1] = CTLR_POWER_STATE_CHANGE;
req->cdb[2] = CTLR_POWER_SAVING;
}
hba->ccb[tag].cmd = NULL;
hba->ccb[tag].sg_count = 0;
hba->ccb[tag].sense_bufflen = 0;
hba->ccb[tag].sense_buffer = NULL;
hba->ccb[tag].req_type = PASSTHRU_REQ_TYPE;
hba->send(hba, req, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
before = jiffies;
while (hba->ccb[tag].req_type & PASSTHRU_REQ_TYPE) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
hba->ccb[tag].req_type = 0;
hba->mu_status = MU_STATE_STOP;
return;
}
msleep(1);
}
hba->mu_status = MU_STATE_STOP;
}
static void stex_hba_free(struct st_hba *hba)
{
stex_free_irq(hba);
destroy_workqueue(hba->work_q);
iounmap(hba->mmio_base);
pci_release_regions(hba->pdev);
kfree(hba->ccb);
dma_free_coherent(&hba->pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
}
static void stex_remove(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
hba->mu_status = MU_STATE_NOCONNECT;
return_abnormal_state(hba, DID_NO_CONNECT);
scsi_remove_host(hba->host);
scsi_block_requests(hba->host);
stex_hba_free(hba);
scsi_host_put(hba->host);
pci_disable_device(pdev);
unregister_reboot_notifier(&stex_notifier);
}
static void stex_shutdown(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
if (hba->supports_pm == 0) {
stex_hba_stop(hba, ST_IGNORED);
} else if (hba->supports_pm == 1 && S6flag) {
unregister_reboot_notifier(&stex_notifier);
stex_hba_stop(hba, ST_S6);
} else
stex_hba_stop(hba, ST_S5);
}
static int stex_choice_sleep_mic(struct st_hba *hba, pm_message_t state)
{
switch (state.event) {
case PM_EVENT_SUSPEND:
return ST_S3;
case PM_EVENT_HIBERNATE:
hba->msi_lock = 0;
return ST_S4;
default:
return ST_NOTHANDLED;
}
}
static int stex_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct st_hba *hba = pci_get_drvdata(pdev);
if ((hba->cardtype == st_yel || hba->cardtype == st_P3)
&& hba->supports_pm == 1)
stex_hba_stop(hba, stex_choice_sleep_mic(hba, state));
else
stex_hba_stop(hba, ST_IGNORED);
return 0;
}
static int stex_resume(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
hba->mu_status = MU_STATE_STARTING;
stex_handshake(hba);
return 0;
}
static int stex_halt(struct notifier_block *nb, unsigned long event, void *buf)
{
S6flag = 1;
return NOTIFY_OK;
}
MODULE_DEVICE_TABLE(pci, stex_pci_tbl);
static struct pci_driver stex_pci_driver = {
.name = DRV_NAME,
.id_table = stex_pci_tbl,
.probe = stex_probe,
.remove = stex_remove,
.shutdown = stex_shutdown,
.suspend = stex_suspend,
.resume = stex_resume,
};
static int __init stex_init(void)
{
printk(KERN_INFO DRV_NAME
": Promise SuperTrak EX Driver version: %s\n",
ST_DRIVER_VERSION);
return pci_register_driver(&stex_pci_driver);
}
static void __exit stex_exit(void)
{
pci_unregister_driver(&stex_pci_driver);
}
module_init(stex_init);
module_exit(stex_exit);