linux/drivers/net/dsa/mt7530.c

1701 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Mediatek MT7530 DSA Switch driver
* Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phylink.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/gpio/consumer.h>
#include <net/dsa.h>
#include "mt7530.h"
/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
MIB_DESC(1, 0x00, "TxDrop"),
MIB_DESC(1, 0x04, "TxCrcErr"),
MIB_DESC(1, 0x08, "TxUnicast"),
MIB_DESC(1, 0x0c, "TxMulticast"),
MIB_DESC(1, 0x10, "TxBroadcast"),
MIB_DESC(1, 0x14, "TxCollision"),
MIB_DESC(1, 0x18, "TxSingleCollision"),
MIB_DESC(1, 0x1c, "TxMultipleCollision"),
MIB_DESC(1, 0x20, "TxDeferred"),
MIB_DESC(1, 0x24, "TxLateCollision"),
MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
MIB_DESC(1, 0x2c, "TxPause"),
MIB_DESC(1, 0x30, "TxPktSz64"),
MIB_DESC(1, 0x34, "TxPktSz65To127"),
MIB_DESC(1, 0x38, "TxPktSz128To255"),
MIB_DESC(1, 0x3c, "TxPktSz256To511"),
MIB_DESC(1, 0x40, "TxPktSz512To1023"),
MIB_DESC(1, 0x44, "Tx1024ToMax"),
MIB_DESC(2, 0x48, "TxBytes"),
MIB_DESC(1, 0x60, "RxDrop"),
MIB_DESC(1, 0x64, "RxFiltering"),
MIB_DESC(1, 0x6c, "RxMulticast"),
MIB_DESC(1, 0x70, "RxBroadcast"),
MIB_DESC(1, 0x74, "RxAlignErr"),
MIB_DESC(1, 0x78, "RxCrcErr"),
MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
MIB_DESC(1, 0x80, "RxFragErr"),
MIB_DESC(1, 0x84, "RxOverSzErr"),
MIB_DESC(1, 0x88, "RxJabberErr"),
MIB_DESC(1, 0x8c, "RxPause"),
MIB_DESC(1, 0x90, "RxPktSz64"),
MIB_DESC(1, 0x94, "RxPktSz65To127"),
MIB_DESC(1, 0x98, "RxPktSz128To255"),
MIB_DESC(1, 0x9c, "RxPktSz256To511"),
MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
MIB_DESC(2, 0xa8, "RxBytes"),
MIB_DESC(1, 0xb0, "RxCtrlDrop"),
MIB_DESC(1, 0xb4, "RxIngressDrop"),
MIB_DESC(1, 0xb8, "RxArlDrop"),
};
static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
struct mii_bus *bus = priv->bus;
int value, ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Read the content of the MMD's selected register */
value = bus->read(bus, 0, MII_MMD_DATA);
return value;
err:
dev_err(&bus->dev, "failed to read mmd register\n");
return ret;
}
static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
int devad, u32 data)
{
struct mii_bus *bus = priv->bus;
int ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Write the data into MMD's selected register */
ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mmd register\n");
return ret;
}
static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
val &= ~mask;
val |= set;
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, 0, val);
}
static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, val, 0);
}
static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
lo = val & 0xffff;
hi = val >> 16;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, r, lo);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, 0x10, hi);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mt7530 register\n");
return ret;
}
static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0) {
dev_err(&bus->dev,
"failed to read mt7530 register\n");
return ret;
}
lo = bus->read(bus, 0x1f, r);
hi = bus->read(bus, 0x1f, 0x10);
return (hi << 16) | (lo & 0xffff);
}
static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
struct mii_bus *bus = p->priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(p->priv, p->reg);
mutex_unlock(&bus->mdio_lock);
return val;
}
static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
struct mt7530_dummy_poll p;
INIT_MT7530_DUMMY_POLL(&p, priv, reg);
return _mt7530_read(&p);
}
static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(priv, reg);
val &= ~mask;
val |= set;
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, 0, val);
}
static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, val, 0);
}
static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
u32 val;
int ret;
struct mt7530_dummy_poll p;
/* Set the command operating upon the MAC address entries */
val = ATC_BUSY | ATC_MAT(0) | cmd;
mt7530_write(priv, MT7530_ATC, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & ATC_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
/* Additional sanity for read command if the specified
* entry is invalid
*/
val = mt7530_read(priv, MT7530_ATC);
if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
return -EINVAL;
if (rsp)
*rsp = val;
return 0;
}
static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
u32 reg[3];
int i;
/* Read from ARL table into an array */
for (i = 0; i < 3; i++) {
reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
__func__, __LINE__, i, reg[i]);
}
fdb->vid = (reg[1] >> CVID) & CVID_MASK;
fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}
static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
u8 port_mask, const u8 *mac,
u8 aging, u8 type)
{
u32 reg[3] = { 0 };
int i;
reg[1] |= vid & CVID_MASK;
reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
/* STATIC_ENT indicate that entry is static wouldn't
* be aged out and STATIC_EMP specified as erasing an
* entry
*/
reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
reg[1] |= mac[5] << MAC_BYTE_5;
reg[1] |= mac[4] << MAC_BYTE_4;
reg[0] |= mac[3] << MAC_BYTE_3;
reg[0] |= mac[2] << MAC_BYTE_2;
reg[0] |= mac[1] << MAC_BYTE_1;
reg[0] |= mac[0] << MAC_BYTE_0;
/* Write array into the ARL table */
for (i = 0; i < 3; i++)
mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}
static int
mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
{
struct mt7530_priv *priv = ds->priv;
u32 ncpo1, ssc_delta, trgint, i, xtal;
xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
if (xtal == HWTRAP_XTAL_20MHZ) {
dev_err(priv->dev,
"%s: MT7530 with a 20MHz XTAL is not supported!\n",
__func__);
return -EINVAL;
}
switch (mode) {
case PHY_INTERFACE_MODE_RGMII:
trgint = 0;
/* PLL frequency: 125MHz */
ncpo1 = 0x0c80;
break;
case PHY_INTERFACE_MODE_TRGMII:
trgint = 1;
if (priv->id == ID_MT7621) {
/* PLL frequency: 150MHz: 1.2GBit */
if (xtal == HWTRAP_XTAL_40MHZ)
ncpo1 = 0x0780;
if (xtal == HWTRAP_XTAL_25MHZ)
ncpo1 = 0x0a00;
} else { /* PLL frequency: 250MHz: 2.0Gbit */
if (xtal == HWTRAP_XTAL_40MHZ)
ncpo1 = 0x0c80;
if (xtal == HWTRAP_XTAL_25MHZ)
ncpo1 = 0x1400;
}
break;
default:
dev_err(priv->dev, "xMII mode %d not supported\n", mode);
return -EINVAL;
}
if (xtal == HWTRAP_XTAL_25MHZ)
ssc_delta = 0x57;
else
ssc_delta = 0x87;
mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
P6_INTF_MODE(trgint));
/* Lower Tx Driving for TRGMII path */
for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
TD_DM_DRVP(8) | TD_DM_DRVN(8));
/* Setup core clock for MT7530 */
if (!trgint) {
/* Disable MT7530 core clock */
core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
/* Disable PLL, since phy_device has not yet been created
* provided for phy_[read,write]_mmd_indirect is called, we
* provide our own core_write_mmd_indirect to complete this
* function.
*/
core_write_mmd_indirect(priv,
CORE_GSWPLL_GRP1,
MDIO_MMD_VEND2,
0);
/* Set core clock into 500Mhz */
core_write(priv, CORE_GSWPLL_GRP2,
RG_GSWPLL_POSDIV_500M(1) |
RG_GSWPLL_FBKDIV_500M(25));
/* Enable PLL */
core_write(priv, CORE_GSWPLL_GRP1,
RG_GSWPLL_EN_PRE |
RG_GSWPLL_POSDIV_200M(2) |
RG_GSWPLL_FBKDIV_200M(32));
/* Enable MT7530 core clock */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
}
/* Setup the MT7530 TRGMII Tx Clock */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
core_write(priv, CORE_PLL_GROUP4,
RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
RG_SYSPLL_BIAS_LPF_EN);
core_write(priv, CORE_PLL_GROUP2,
RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
RG_SYSPLL_POSDIV(1));
core_write(priv, CORE_PLL_GROUP7,
RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
core_set(priv, CORE_TRGMII_GSW_CLK_CG,
REG_GSWCK_EN | REG_TRGMIICK_EN);
if (!trgint)
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mt7530_rmw(priv, MT7530_TRGMII_RD(i),
RD_TAP_MASK, RD_TAP(16));
return 0;
}
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}
static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mt7530_priv *priv = ds->priv;
return mdiobus_read_nested(priv->bus, port, regnum);
}
static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
u16 val)
{
struct mt7530_priv *priv = ds->priv;
return mdiobus_write_nested(priv->bus, port, regnum, val);
}
static void
mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
ETH_GSTRING_LEN);
}
static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct mt7530_priv *priv = ds->priv;
const struct mt7530_mib_desc *mib;
u32 reg, i;
u64 hi;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
mib = &mt7530_mib[i];
reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
data[i] = mt7530_read(priv, reg);
if (mib->size == 2) {
hi = mt7530_read(priv, reg + 4);
data[i] |= hi << 32;
}
}
}
static int
mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(mt7530_mib);
}
static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
u8 tx_delay = 0;
int val;
mutex_lock(&priv->reg_mutex);
val = mt7530_read(priv, MT7530_MHWTRAP);
val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
switch (priv->p5_intf_sel) {
case P5_INTF_SEL_PHY_P0:
/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
val |= MHWTRAP_PHY0_SEL;
/* fall through */
case P5_INTF_SEL_PHY_P4:
/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
/* Setup the MAC by default for the cpu port */
mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
break;
case P5_INTF_SEL_GMAC5:
/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
val &= ~MHWTRAP_P5_DIS;
break;
case P5_DISABLED:
interface = PHY_INTERFACE_MODE_NA;
break;
default:
dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
priv->p5_intf_sel);
goto unlock_exit;
}
/* Setup RGMII settings */
if (phy_interface_mode_is_rgmii(interface)) {
val |= MHWTRAP_P5_RGMII_MODE;
/* P5 RGMII RX Clock Control: delay setting for 1000M */
mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
/* Don't set delay in DSA mode */
if (!dsa_is_dsa_port(priv->ds, 5) &&
(interface == PHY_INTERFACE_MODE_RGMII_TXID ||
interface == PHY_INTERFACE_MODE_RGMII_ID))
tx_delay = 4; /* n * 0.5 ns */
/* P5 RGMII TX Clock Control: delay x */
mt7530_write(priv, MT7530_P5RGMIITXCR,
CSR_RGMII_TXC_CFG(0x10 + tx_delay));
/* reduce P5 RGMII Tx driving, 8mA */
mt7530_write(priv, MT7530_IO_DRV_CR,
P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
}
mt7530_write(priv, MT7530_MHWTRAP, val);
dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
priv->p5_interface = interface;
unlock_exit:
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_cpu_port_enable(struct mt7530_priv *priv,
int port)
{
/* Enable Mediatek header mode on the cpu port */
mt7530_write(priv, MT7530_PVC_P(port),
PORT_SPEC_TAG);
/* Unknown multicast frame forwarding to the cpu port */
mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port)));
/* Set CPU port number */
if (priv->id == ID_MT7621)
mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
/* CPU port gets connected to all user ports of
* the switch
*/
mt7530_write(priv, MT7530_PCR_P(port),
PCR_MATRIX(dsa_user_ports(priv->ds)));
return 0;
}
static int
mt7530_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct mt7530_priv *priv = ds->priv;
if (!dsa_is_user_port(ds, port))
return 0;
mutex_lock(&priv->reg_mutex);
/* Allow the user port gets connected to the cpu port and also
* restore the port matrix if the port is the member of a certain
* bridge.
*/
priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
priv->ports[port].enable = true;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
priv->ports[port].pm);
mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_disable(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
if (!dsa_is_user_port(ds, port))
return;
mutex_lock(&priv->reg_mutex);
/* Clear up all port matrix which could be restored in the next
* enablement for the port.
*/
priv->ports[port].enable = false;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
mutex_unlock(&priv->reg_mutex);
}
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct mt7530_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = MT7530_STP_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = MT7530_STP_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = MT7530_STP_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = MT7530_STP_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = MT7530_STP_FORWARDING;
break;
}
mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
}
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
u32 port_bitmap = BIT(MT7530_CPU_PORT);
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Add this port to the port matrix of the other ports in the
* same bridge. If the port is disabled, port matrix is kept
* and not being setup until the port becomes enabled.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_set(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm |= PCR_MATRIX(BIT(port));
port_bitmap |= BIT(i);
}
}
/* Add the all other ports to this port matrix. */
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port),
PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
bool all_user_ports_removed = true;
int i;
/* When a port is removed from the bridge, the port would be set up
* back to the default as is at initial boot which is a VLAN-unaware
* port.
*/
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_MATRIX_MODE);
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
for (i = 0; i < MT7530_NUM_PORTS; i++) {
if (dsa_is_user_port(ds, i) &&
dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
all_user_ports_removed = false;
break;
}
}
/* CPU port also does the same thing until all user ports belonging to
* the CPU port get out of VLAN filtering mode.
*/
if (all_user_ports_removed) {
mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
PCR_MATRIX(dsa_user_ports(priv->ds)));
mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
| PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
}
static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
/* The real fabric path would be decided on the membership in the
* entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
* means potential VLAN can be consisting of certain subset of all
* ports.
*/
mt7530_rmw(priv, MT7530_PCR_P(port),
PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
/* Trapped into security mode allows packet forwarding through VLAN
* table lookup. CPU port is set to fallback mode to let untagged
* frames pass through.
*/
if (dsa_is_cpu_port(ds, port))
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_FALLBACK_MODE);
else
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_SECURITY_MODE);
/* Set the port as a user port which is to be able to recognize VID
* from incoming packets before fetching entry within the VLAN table.
*/
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
VLAN_ATTR(MT7530_VLAN_USER) |
PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
}
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Remove this port from the port matrix of the other ports
* in the same bridge. If the port is disabled, port matrix
* is kept and not being setup until the port becomes enabled.
* And the other port's port matrix cannot be broken when the
* other port is still a VLAN-aware port.
*/
if (dsa_is_user_port(ds, i) && i != port &&
!dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_clear(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
}
}
/* Set the cpu port to be the only one in the port matrix of
* this port.
*/
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX(BIT(MT7530_CPU_PORT)));
priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_fdb _fdb = { 0 };
int cnt = MT7530_NUM_FDB_RECORDS;
int ret = 0;
u32 rsp = 0;
mutex_lock(&priv->reg_mutex);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
if (ret < 0)
goto err;
do {
if (rsp & ATC_SRCH_HIT) {
mt7530_fdb_read(priv, &_fdb);
if (_fdb.port_mask & BIT(port)) {
ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
data);
if (ret < 0)
break;
}
}
} while (--cnt &&
!(rsp & ATC_SRCH_END) &&
!mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
struct mt7530_dummy_poll p;
u32 val;
int ret;
val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
mt7530_write(priv, MT7530_VTCR, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & VTCR_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
return ret;
}
val = mt7530_read(priv, MT7530_VTCR);
if (val & VTCR_INVALID) {
dev_err(priv->dev, "read VTCR invalid\n");
return -EINVAL;
}
return 0;
}
static int
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
if (vlan_filtering) {
/* The port is being kept as VLAN-unaware port when bridge is
* set up with vlan_filtering not being set, Otherwise, the
* port and the corresponding CPU port is required the setup
* for becoming a VLAN-aware port.
*/
mt7530_port_set_vlan_aware(ds, port);
mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
} else {
mt7530_port_set_vlan_unaware(ds, port);
}
return 0;
}
static int
mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
/* nothing needed */
return 0;
}
static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members | BIT(entry->port) |
BIT(MT7530_CPU_PORT);
/* Validate the entry with independent learning, create egress tag per
* VLAN and joining the port as one of the port members.
*/
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
/* Decide whether adding tag or not for those outgoing packets from the
* port inside the VLAN.
*/
val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
MT7530_VLAN_EGRESS_TAG;
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(entry->port),
ETAG_CTRL_P(entry->port, val));
/* CPU port is always taken as a tagged port for serving more than one
* VLANs across and also being applied with egress type stack mode for
* that VLAN tags would be appended after hardware special tag used as
* DSA tag.
*/
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
ETAG_CTRL_P(MT7530_CPU_PORT,
MT7530_VLAN_EGRESS_STACK));
}
static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members & ~BIT(entry->port);
val = mt7530_read(priv, MT7530_VAWD1);
if (!(val & VLAN_VALID)) {
dev_err(priv->dev,
"Cannot be deleted due to invalid entry\n");
return;
}
/* If certain member apart from CPU port is still alive in the VLAN,
* the entry would be kept valid. Otherwise, the entry is got to be
* disabled.
*/
if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
} else {
mt7530_write(priv, MT7530_VAWD1, 0);
mt7530_write(priv, MT7530_VAWD2, 0);
}
}
static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
struct mt7530_hw_vlan_entry *entry,
mt7530_vlan_op vlan_op)
{
u32 val;
/* Fetch entry */
mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
val = mt7530_read(priv, MT7530_VAWD1);
entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
/* Manipulate entry */
vlan_op(priv, entry);
/* Flush result to hardware */
mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}
static void
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct mt7530_hw_vlan_entry new_entry;
struct mt7530_priv *priv = ds->priv;
u16 vid;
mutex_lock(&priv->reg_mutex);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
mt7530_hw_vlan_update(priv, vid, &new_entry,
mt7530_hw_vlan_add);
}
if (pvid) {
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID(vlan->vid_end));
priv->ports[port].pvid = vlan->vid_end;
}
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mt7530_hw_vlan_entry target_entry;
struct mt7530_priv *priv = ds->priv;
u16 vid, pvid;
mutex_lock(&priv->reg_mutex);
pvid = priv->ports[port].pvid;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
mt7530_hw_vlan_entry_init(&target_entry, port, 0);
mt7530_hw_vlan_update(priv, vid, &target_entry,
mt7530_hw_vlan_del);
/* PVID is being restored to the default whenever the PVID port
* is being removed from the VLAN.
*/
if (pvid == vid)
pvid = G0_PORT_VID_DEF;
}
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
priv->ports[port].pvid = pvid;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int mt7530_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct mt7530_priv *priv = ds->priv;
u32 val;
/* Check for existent entry */
if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
return -EEXIST;
val = mt7530_read(priv, MT7530_MFC);
/* MT7530 only supports one monitor port */
if (val & MIRROR_EN && MIRROR_PORT(val) != mirror->to_local_port)
return -EEXIST;
val |= MIRROR_EN;
val &= ~MIRROR_MASK;
val |= mirror->to_local_port;
mt7530_write(priv, MT7530_MFC, val);
val = mt7530_read(priv, MT7530_PCR_P(port));
if (ingress) {
val |= PORT_RX_MIR;
priv->mirror_rx |= BIT(port);
} else {
val |= PORT_TX_MIR;
priv->mirror_tx |= BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
return 0;
}
static void mt7530_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct mt7530_priv *priv = ds->priv;
u32 val;
val = mt7530_read(priv, MT7530_PCR_P(port));
if (mirror->ingress) {
val &= ~PORT_RX_MIR;
priv->mirror_rx &= ~BIT(port);
} else {
val &= ~PORT_TX_MIR;
priv->mirror_tx &= ~BIT(port);
}
mt7530_write(priv, MT7530_PCR_P(port), val);
if (!priv->mirror_rx && !priv->mirror_tx) {
val = mt7530_read(priv, MT7530_MFC);
val &= ~MIRROR_EN;
mt7530_write(priv, MT7530_MFC, val);
}
}
static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch *ds, int port,
enum dsa_tag_protocol mp)
{
struct mt7530_priv *priv = ds->priv;
if (port != MT7530_CPU_PORT) {
dev_warn(priv->dev,
"port not matched with tagging CPU port\n");
return DSA_TAG_PROTO_NONE;
} else {
return DSA_TAG_PROTO_MTK;
}
}
static int
mt7530_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
struct device_node *phy_node;
struct device_node *mac_np;
struct mt7530_dummy_poll p;
phy_interface_t interface;
struct device_node *dn;
u32 id, val;
int ret, i;
/* The parent node of master netdev which holds the common system
* controller also is the container for two GMACs nodes representing
* as two netdev instances.
*/
dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
ds->configure_vlan_while_not_filtering = true;
if (priv->id == ID_MT7530) {
regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
ret = regulator_enable(priv->core_pwr);
if (ret < 0) {
dev_err(priv->dev,
"Failed to enable core power: %d\n", ret);
return ret;
}
regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
ret = regulator_enable(priv->io_pwr);
if (ret < 0) {
dev_err(priv->dev, "Failed to enable io pwr: %d\n",
ret);
return ret;
}
}
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(1000, 1100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(1000, 1100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7530_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7530_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL,
SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
SYS_CTRL_REG_RST);
/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
val = mt7530_read(priv, MT7530_MHWTRAP);
val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
val |= MHWTRAP_MANUAL;
mt7530_write(priv, MT7530_MHWTRAP, val);
priv->p6_interface = PHY_INTERFACE_MODE_NA;
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
if (dsa_is_cpu_port(ds, i))
mt7530_cpu_port_enable(priv, i);
else
mt7530_port_disable(ds, i);
/* Enable consistent egress tag */
mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
}
/* Setup port 5 */
priv->p5_intf_sel = P5_DISABLED;
interface = PHY_INTERFACE_MODE_NA;
if (!dsa_is_unused_port(ds, 5)) {
priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
if (ret && ret != -ENODEV)
return ret;
} else {
/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
for_each_child_of_node(dn, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
ret = of_property_read_u32(mac_np, "reg", &id);
if (ret < 0 || id != 1)
continue;
phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
if (!phy_node)
continue;
if (phy_node->parent == priv->dev->of_node->parent) {
ret = of_get_phy_mode(mac_np, &interface);
if (ret && ret != -ENODEV)
return ret;
id = of_mdio_parse_addr(ds->dev, phy_node);
if (id == 0)
priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
if (id == 4)
priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
}
of_node_put(phy_node);
break;
}
}
mt7530_setup_port5(ds, interface);
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
if (ret < 0)
return ret;
return 0;
}
static void mt7530_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
u32 mcr_cur, mcr_new;
switch (port) {
case 0: /* Internal phy */
case 1:
case 2:
case 3:
case 4:
if (state->interface != PHY_INTERFACE_MODE_GMII)
return;
break;
case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
if (priv->p5_interface == state->interface)
break;
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_GMII)
return;
mt7530_setup_port5(ds, state->interface);
break;
case 6: /* 1st cpu port */
if (priv->p6_interface == state->interface)
break;
if (state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_TRGMII)
return;
/* Setup TX circuit incluing relevant PAD and driving */
mt7530_pad_clk_setup(ds, state->interface);
priv->p6_interface = state->interface;
break;
default:
dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
return;
}
if (phylink_autoneg_inband(mode)) {
dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
__func__);
return;
}
mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
mcr_new = mcr_cur;
mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
PMCR_BACKPR_EN | PMCR_FORCE_MODE;
/* Are we connected to external phy */
if (port == 5 && dsa_is_user_port(ds, 5))
mcr_new |= PMCR_EXT_PHY;
if (mcr_new != mcr_cur)
mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
}
static void mt7530_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct mt7530_priv *priv = ds->priv;
mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
}
static void mt7530_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct mt7530_priv *priv = ds->priv;
u32 mcr;
mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
switch (speed) {
case SPEED_1000:
mcr |= PMCR_FORCE_SPEED_1000;
break;
case SPEED_100:
mcr |= PMCR_FORCE_SPEED_100;
break;
}
if (duplex == DUPLEX_FULL) {
mcr |= PMCR_FORCE_FDX;
if (tx_pause)
mcr |= PMCR_TX_FC_EN;
if (rx_pause)
mcr |= PMCR_RX_FC_EN;
}
mt7530_set(priv, MT7530_PMCR_P(port), mcr);
}
static void mt7530_phylink_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
switch (port) {
case 0: /* Internal phy */
case 1:
case 2:
case 3:
case 4:
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_GMII)
goto unsupported;
break;
case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
if (state->interface != PHY_INTERFACE_MODE_NA &&
!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_GMII)
goto unsupported;
break;
case 6: /* 1st cpu port */
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_RGMII &&
state->interface != PHY_INTERFACE_MODE_TRGMII)
goto unsupported;
break;
default:
dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port);
unsupported:
linkmode_zero(supported);
return;
}
phylink_set_port_modes(mask);
phylink_set(mask, Autoneg);
if (state->interface == PHY_INTERFACE_MODE_TRGMII) {
phylink_set(mask, 1000baseT_Full);
} else {
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
if (state->interface != PHY_INTERFACE_MODE_MII) {
phylink_set(mask, 1000baseT_Half);
phylink_set(mask, 1000baseT_Full);
if (port == 5)
phylink_set(mask, 1000baseX_Full);
}
}
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
linkmode_and(supported, supported, mask);
linkmode_and(state->advertising, state->advertising, mask);
}
static int
mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
struct phylink_link_state *state)
{
struct mt7530_priv *priv = ds->priv;
u32 pmsr;
if (port < 0 || port >= MT7530_NUM_PORTS)
return -EINVAL;
pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
state->link = (pmsr & PMSR_LINK);
state->an_complete = state->link;
state->duplex = !!(pmsr & PMSR_DPX);
switch (pmsr & PMSR_SPEED_MASK) {
case PMSR_SPEED_10:
state->speed = SPEED_10;
break;
case PMSR_SPEED_100:
state->speed = SPEED_100;
break;
case PMSR_SPEED_1000:
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
if (pmsr & PMSR_RX_FC)
state->pause |= MLO_PAUSE_RX;
if (pmsr & PMSR_TX_FC)
state->pause |= MLO_PAUSE_TX;
return 1;
}
static const struct dsa_switch_ops mt7530_switch_ops = {
.get_tag_protocol = mtk_get_tag_protocol,
.setup = mt7530_setup,
.get_strings = mt7530_get_strings,
.phy_read = mt7530_phy_read,
.phy_write = mt7530_phy_write,
.get_ethtool_stats = mt7530_get_ethtool_stats,
.get_sset_count = mt7530_get_sset_count,
.port_enable = mt7530_port_enable,
.port_disable = mt7530_port_disable,
.port_stp_state_set = mt7530_stp_state_set,
.port_bridge_join = mt7530_port_bridge_join,
.port_bridge_leave = mt7530_port_bridge_leave,
.port_fdb_add = mt7530_port_fdb_add,
.port_fdb_del = mt7530_port_fdb_del,
.port_fdb_dump = mt7530_port_fdb_dump,
.port_vlan_filtering = mt7530_port_vlan_filtering,
.port_vlan_prepare = mt7530_port_vlan_prepare,
.port_vlan_add = mt7530_port_vlan_add,
.port_vlan_del = mt7530_port_vlan_del,
.port_mirror_add = mt7530_port_mirror_add,
.port_mirror_del = mt7530_port_mirror_del,
.phylink_validate = mt7530_phylink_validate,
.phylink_mac_link_state = mt7530_phylink_mac_link_state,
.phylink_mac_config = mt7530_phylink_mac_config,
.phylink_mac_link_down = mt7530_phylink_mac_link_down,
.phylink_mac_link_up = mt7530_phylink_mac_link_up,
};
static const struct of_device_id mt7530_of_match[] = {
{ .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, },
{ .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mt7530_of_match);
static int
mt7530_probe(struct mdio_device *mdiodev)
{
struct mt7530_priv *priv;
struct device_node *dn;
dn = mdiodev->dev.of_node;
priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = &mdiodev->dev;
priv->ds->num_ports = DSA_MAX_PORTS;
/* Use medatek,mcm property to distinguish hardware type that would
* casues a little bit differences on power-on sequence.
*/
priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
if (priv->mcm) {
dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
if (IS_ERR(priv->rstc)) {
dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
return PTR_ERR(priv->rstc);
}
}
/* Get the hardware identifier from the devicetree node.
* We will need it for some of the clock and regulator setup.
*/
priv->id = (unsigned int)(unsigned long)
of_device_get_match_data(&mdiodev->dev);
if (priv->id == ID_MT7530) {
priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
if (IS_ERR(priv->core_pwr))
return PTR_ERR(priv->core_pwr);
priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
if (IS_ERR(priv->io_pwr))
return PTR_ERR(priv->io_pwr);
}
/* Not MCM that indicates switch works as the remote standalone
* integrated circuit so the GPIO pin would be used to complete
* the reset, otherwise memory-mapped register accessing used
* through syscon provides in the case of MCM.
*/
if (!priv->mcm) {
priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(priv->reset)) {
dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
return PTR_ERR(priv->reset);
}
}
priv->bus = mdiodev->bus;
priv->dev = &mdiodev->dev;
priv->ds->priv = priv;
priv->ds->ops = &mt7530_switch_ops;
mutex_init(&priv->reg_mutex);
dev_set_drvdata(&mdiodev->dev, priv);
return dsa_register_switch(priv->ds);
}
static void
mt7530_remove(struct mdio_device *mdiodev)
{
struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
int ret = 0;
ret = regulator_disable(priv->core_pwr);
if (ret < 0)
dev_err(priv->dev,
"Failed to disable core power: %d\n", ret);
ret = regulator_disable(priv->io_pwr);
if (ret < 0)
dev_err(priv->dev, "Failed to disable io pwr: %d\n",
ret);
dsa_unregister_switch(priv->ds);
mutex_destroy(&priv->reg_mutex);
}
static struct mdio_driver mt7530_mdio_driver = {
.probe = mt7530_probe,
.remove = mt7530_remove,
.mdiodrv.driver = {
.name = "mt7530",
.of_match_table = mt7530_of_match,
},
};
mdio_module_driver(mt7530_mdio_driver);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");